1
|
Romanowicz KJ, Zhang F, Wang S, Veličković D, Chu RK, Shaked Y, Boiteau RM. Single-colony MALDI mass spectrometry imaging reveals spatial differences in metabolite abundance between natural and cultured Trichodesmium morphotypes. mSystems 2024; 9:e0115224. [PMID: 39315778 PMCID: PMC11501100 DOI: 10.1128/msystems.01152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Trichodesmium, a globally significant N2-fixing marine cyanobacterium, forms extensive surface blooms in nutrient-poor ocean regions. These blooms consist of a dynamic assemblage of Trichodesmium species that form distinct colony morphotypes and are inhabited by diverse microorganisms. Trichodesmium colony morphotypes vary in ecological niche, nutrient uptake, and organic molecule release, differentially impacting ocean carbon and nitrogen biogeochemical cycles. Here, we assessed the poorly studied spatial abundance of metabolites within and between three morphologically distinct Trichodesmium colonies collected from the Red Sea. We also compared these results with two morphotypes of the cultivable Trichodesmium strain IMS101. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) coupled with liquid extraction surface analysis (LESA) tandem mass spectrometry (MS2), we identified and localized a wide range of small metabolites associated with single-colony Trichodesmium morphotypes. Our untargeted MALDI-MSI approach revealed 80 unique features (metabolites) shared between Trichodesmium morphotypes. Discrimination analysis showed spatial variations in 57 shared metabolites, accounting for 62% of the observed variation between morphotypes. The greatest variations in metabolite abundance were observed between the cultured morphotypes compared to the natural colony morphotypes, suggesting substantial differences in metabolite production between the cultivable strain IMS101 and the naturally occurring colony morphotypes that the cultivable strain is meant to represent. This study highlights the variations in metabolite abundance between natural and cultured Trichodesmium morphotypes and provides valuable insights into metabolites common to morphologically distinct Trichodesmium colonies, offering a foundation for future targeted metabolomic investigations.IMPORTANCEThis work demonstrates that the application of spatial mass spectrometry imaging at single-colony resolution can successfully resolve metabolite differences between natural and cultured Trichodesmium morphotypes, shedding light on their distinct biochemical profiles. Understanding the morphological differences between Trichodesmium colonies is crucial because they impact nutrient uptake, organic molecule production, and carbon and nitrogen export, and subsequently influence ocean biogeochemical cycles. As such, our study serves as an important initial assessment of metabolite differences between distinct Trichodesmium colony types, identifying features that can serve as ideal candidates for future targeted metabolomic studies.
Collapse
Affiliation(s)
- Karl J. Romanowicz
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Futing Zhang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Siyuan Wang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yeala Shaked
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Rene M. Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Qiu GW, Zheng WC, Yang HM, Wang YY, Qi X, Huang D, Dai GZ, Shi H, Price NM, Qiu BS. Phosphorus deficiency alleviates iron limitation in Synechocystis cyanobacteria through direct PhoB-mediated gene regulation. Nat Commun 2024; 15:4426. [PMID: 38789507 PMCID: PMC11126600 DOI: 10.1038/s41467-024-48847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Iron and phosphorus are essential nutrients that exist at low concentrations in surface waters and may be co-limiting resources for phytoplankton growth. Here, we show that phosphorus deficiency increases the growth of iron-limited cyanobacteria (Synechocystis sp. PCC 6803) through a PhoB-mediated regulatory network. We find that PhoB, in addition to its well-recognized role in controlling phosphate homeostasis, also regulates key metabolic processes crucial for iron-limited cyanobacteria, including ROS detoxification and iron uptake. Transcript abundances of PhoB-targeted genes are enriched in samples from phosphorus-depleted seawater, and a conserved PhoB-binding site is widely present in the promoters of the target genes, suggesting that the PhoB-mediated regulation may be highly conserved. Our findings provide molecular insights into the responses of cyanobacteria to simultaneous iron/phosphorus nutrient limitation.
Collapse
Affiliation(s)
- Guo-Wei Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wen-Can Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hao-Ming Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yu-Ying Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xing Qi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Da Huang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neil M Price
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Québec, H3A 1B1, Canada
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
3
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
4
|
Quantitative Analysis of the Trade-Offs of Colony Formation for Trichodesmium. Microbiol Spectr 2022; 10:e0202522. [PMID: 36374046 PMCID: PMC9769814 DOI: 10.1128/spectrum.02025-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is considerable debate about the benefits and trade-offs for colony formation in a major marine nitrogen fixer, Trichodesmium. To quantitatively analyze the trade-offs, we developed a metabolic model based on carbon fluxes to compare the performance of Trichodesmium colonies and free trichomes under different scenarios. Despite reported reductions in carbon fixation and nitrogen fixation rates for colonies relative to free trichomes, we found that model colonies can outperform individual cells in several cases. The formation of colonies can be advantageous when respiration rates account for a high proportion of the carbon fixation rate. Negative external influence on vital rates, such as mortality due to predation or micronutrient limitations, can also create a net benefit for colony formation relative to individual cells. In contrast, free trichomes also outcompete colonies in many scenarios, such as when respiration rates are equal for both colonies and individual cells or when there is a net positive external influence on rate processes (i.e., optimal environmental conditions regarding light and temperature or high nutrient availability). For both colonies and free trichomes, an increase in carbon fixation relative to nitrogen fixation rates would increase their relative competitiveness. These findings suggest that the formation of colonies in Trichodesmium might be linked to specific environmental and ecological circumstances. Our results provide a road map for empirical studies and models to evaluate the conditions under which colony formation in marine phytoplankton can be sustained in the natural environment. IMPORTANCE Trichodesmium is a marine filamentous cyanobacterium that fixes nitrogen and is an important contributor to the global nitrogen cycle. In the natural environment, Trichodesmium can exist as individual cells (trichomes) or as colonies (puffs and tufts). In this paper, we try to answer a longstanding question in marine microbial ecology: how does colony formation benefit the survival of Trichodesmium? To answer this question, we developed a carbon flux model that utilizes existing published rates to evaluate whether and when colony formation can be sustained. Enhanced respiration rates, influential external factors such as environmental conditions and ecological interactions, and variable carbon and nitrogen fixation rates can all create scenarios for colony formation to be a viable strategy. Our results show that colony formation is an ecologically beneficial strategy under specific conditions, enabling Trichodesmium to be a globally significant organism.
Collapse
|
5
|
Koedooder C, Landou E, Zhang F, Wang S, Basu S, Berman-Frank I, Shaked Y, Rubin-Blum M. Metagenomes of Red Sea Subpopulations Challenge the Use of Marker Genes and Morphology to Assess Trichodesmium Diversity. Front Microbiol 2022; 13:879970. [PMID: 35707175 PMCID: PMC9189399 DOI: 10.3389/fmicb.2022.879970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Trichodesmium are filamentous cyanobacteria of key interest due to their ability to fix carbon and nitrogen within an oligotrophic marine environment. Their blooms consist of a dynamic assemblage of subpopulations and colony morphologies that are hypothesized to occupy unique niches. Here, we assessed the poorly studied diversity of Trichodesmium in the Red Sea, based on metagenome-assembled genomes (MAGs) and hetR gene-based phylotyping. We assembled four non-redundant MAGs from morphologically distinct Trichodesmium colonies (tufts, dense and thin puffs). Trichodesmium thiebautii (puffs) and Trichodesmium erythraeum (tufts) were the dominant species within these morphotypes. While subspecies diversity is present for both T. thiebautii and T. erythraeum, a single T. thiebautii genotype comprised both thin and dense puff morphotypes, and we hypothesize that this phenotypic variation is likely attributed to gene regulation. Additionally, we found the rare non-diazotrophic clade IV and V genotypes, related to Trichodesmium nobis and Trichodesmium miru, respectively that likely occurred as single filaments. The hetR gene phylogeny further indicated that the genotype in clade IV could represent the species Trichodesmium contortum. Importantly, we show the presence of hetR paralogs in Trichodesmium, where two copies of the hetR gene were present within T. thiebautii genomes. This may lead to the overestimation of Trichodesmium diversity as one of the copies misidentified T. thiebautii as Trichodesmium aureum. Taken together, our results highlight the importance of re-assessing Trichodesmium taxonomy while showing the ability of genomics to capture the complex diversity and distribution of Trichodesmium populations.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Etai Landou
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ilana Berman-Frank
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | | |
Collapse
|
6
|
Aerosol Nutrients and Their Biological Influence on the Northwest Pacific Ocean (NWPO) and Its Marginal Seas. BIOLOGY 2022; 11:biology11060842. [PMID: 35741363 PMCID: PMC9219953 DOI: 10.3390/biology11060842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary With intensifying human activities in the past decades, East Asia has recorded increasingly severe air pollution and become the second largest aerosol source on earth. The large quantity of aerosol emissions is not only a major health threat to humans, but can also be transported for a long distance and deposited in downwind seas and oceans. The aerosol contains major ions, heavy metals, and organic matters that are important external nutrients in upper oceans and potentially influence marine microbes and biogeochemical cycles. Therefore, the role of atmospheric deposition to oceans has received growing attention in recent years. In this paper, the current state of knowledge on the atmospheric nutrients and the biological effect of East Asian aerosol deposition on the northwest Pacific Ocean are reviewed, which could help us better understand the comprehensive influence of East Asian aerosols on marine ecosystems, and give insights into future research directions, especially under the future scenarios of changing human activities and climate. Abstract Atmospheric deposition is recognized as a significant source of nutrients in the surface ocean. The East Asia region is among the largest sources of aerosol emissions in the world, due to its large industrial, agricultural, and energy production. Thus, East Asian aerosols contain a large proportion of anthropogenic particles that are characterized by small size, complex composition, and high nutrient dissolution, resulting in important influences on marine microbes and biogeochemical cycles in the downwind areas of the northwest Pacific Ocean (NWPO). By using remote sensing, modeling, and incubation experimental methods, enhanced primary production due to the East Asian aerosol input has been observed in the NWPO, with subsequent promotion and inhibition impacts on different phytoplankton taxa. Changes of bacterial activity and diversity also occur in response to aerosol input. The impact of East Asian aerosol loadings is closely related to the amount and composition of the aerosol deposition as well as the hydrological condition of the receiving seawater. Here, we review the current state of knowledge on the atmospheric nutrients and the effects of the East Asian aerosols on microbes in the NWPO region. Future research perspectives are also proposed.
Collapse
|