1
|
Yang B, Cheng Z, Luo L, Cheng K, Gan S, Shi Y, Liu C, Wang D. Comparative analysis of codon usage patterns of Plasmodium helical interspersed subtelomeric (PHIST) proteins. Front Microbiol 2023; 14:1320060. [PMID: 38156001 PMCID: PMC10752978 DOI: 10.3389/fmicb.2023.1320060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Plasmodium falciparum is a protozoan parasite that causes the most severe form of malaria in humans worldwide, which is predominantly found in sub-Saharan Africa, where it is responsible for the majority of malaria-related deaths. Plasmodium helical interspersed subtelomeric (PHIST) proteins are a family of proteins, with a conserved PHIST domain, which are typically located at the subtelomeric regions of the Plasmodium falciparum chromosomes and play crucial roles in the interaction between the parasite and its human host, such as cytoadherence, immune evasion, and host cell remodeling. However, the specific utilization of synonymous codons by PHIST proteins in Plasmodium falciparum is still unknown. Methods Codon usage bias (CUB) refers to the unequal usage of synonymous codons during translation, resulting in over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact various cellular processes, including protein expression levels and genetic variation. To investigate this, the CUB of 88 PHIST protein coding sequences (CDSs) from 5 subgroups were analyzed in this study. Results The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis identified a higher occurrence of AT-ended codons (AGA and UUA) in PHIST proteins of Plasmodium falciparum. The average effective number of codons (ENC) for these PHIST proteins was 36.69, indicating a weak codon preference among them, as it was greater than 35. Additionally, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) revealed the influence of base composition and codon usage indices on codon usage bias, with GC1 having a significant impact in this study. Furthermore, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis provided additional evidence that natural selection plays a crucial role in determining codon bias in PHIST proteins. Conclusion In conclusion, this study has enhanced our understanding of the characteristics of codon usage and genetic evolution in PHIST proteins, thereby providing data foundation for further research on antimalarial drugs or vaccines.
Collapse
Affiliation(s)
- Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Ziwen Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Like Luo
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Kuo Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
2
|
Wang D, Yang B. Analysis of codon usage bias of thioredoxin in apicomplexan protozoa. Parasit Vectors 2023; 16:431. [PMID: 37990340 PMCID: PMC10664530 DOI: 10.1186/s13071-023-06002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Apicomplexan protozoa are a diverse group of obligate intracellular parasites causing many diseases that affect humans and animals, such as malaria, toxoplasmosis, and cryptosporidiosis. Apicomplexan protozoa possess unique thioredoxins (Trxs) that have been shown to regulate various cellular processes including metabolic redox regulation, parasite survival, and host immune evasion. However, it is still unknown how synonymous codons are used by apicomplexan protozoa Trxs. METHODS Codon usage bias (CUB) is the unequal usage of synonymous codons during translation which leads to the over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact a variety of cellular processes including protein expression levels and genetic variation. This study analyzed the CUB of 32 Trx coding sequences (CDS) from 11 apicomplexan protozoa. RESULTS The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in Cryptosporidium spp. and Plasmodium spp., while the Eimeria spp., Babesia spp., Hammondia hammondi, Neospora caninum, and Toxoplasma gondii tended to end in G/C. The average effective number of codon (ENC) value of these apicomplexan protozoa is 46.59, which is > 35, indicating a weak codon preference among apicomplexan protozoa Trxs. Furthermore, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) indicated the influence of base composition and codon usage indices on CUB. Additionally, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis further demonstrated that natural selection plays an important role in apicomplexan protozoa Trxs codon bias. CONCLUSIONS In conclusion, this study increased the understanding of codon usage characteristics and genetic evolution of apicomplexan protozoa Trxs, which expanded new ideas for vaccine and drug research.
Collapse
Affiliation(s)
- Dawei Wang
- Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Baoling Yang
- Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
3
|
Molteni C, Forni D, Cagliani R, Bravo IG, Sironi M. Evolution and diversity of nucleotide and dinucleotide composition in poxviruses. J Gen Virol 2023; 104. [PMID: 37792576 DOI: 10.1099/jgv.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Poxviruses (family Poxviridae) have long dsDNA genomes and infect a wide range of hosts, including insects, birds, reptiles and mammals. These viruses have substantial incidence, prevalence and disease burden in humans and in other animals. Nucleotide and dinucleotide composition, mostly CpG and TpA, have been largely studied in viral genomes because of their evolutionary and functional implications. We analysed here the nucleotide and dinucleotide composition, as well as codon usage bias, of a set of representative poxvirus genomes, with a very diverse host spectrum. After correcting for overall nucleotide composition, entomopoxviruses displayed low overall GC content, no enrichment in TpA and large variation in CpG enrichment, while chordopoxviruses showed large variation in nucleotide composition, no obvious depletion in CpG and a weak trend for TpA depletion in GC-rich genomes. Overall, intergenome variation in dinucleotide composition in poxviruses is largely accounted for by variation in overall genomic GC levels. Nonetheless, using vaccinia virus as a model, we found that genes expressed at the earliest times in infection are more CpG-depleted than genes expressed at later stages. This observation has parallels in betahepesviruses (also large dsDNA viruses) and suggests an antiviral role for the innate immune system (e.g. via the zinc-finger antiviral protein ZAP) in the early phases of poxvirus infection. We also analysed codon usage bias in poxviruses and we observed that it is mostly determined by genomic GC content, and that stratification after host taxonomy does not contribute to explaining codon usage bias diversity. By analysis of within-species diversity, we show that genomic GC content is the result of mutational biases. Poxvirus genomes that encode a DNA ligase are significantly AT-richer than those that do not, suggesting that DNA repair systems shape mutation biases. Our data shed light on the evolution of poxviruses and inform strategies for their genetic manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratoire MIVEGEC (Univ Montpellier CNRS, IRD), Centre National de la Recherche Scientifique, Montpellier, France
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
4
|
Guo X, Zou J, Yang K, Chang S, Zhang Y, Li Y, Wang Y. Non-adaptive evolution in codon usage of human-origin monkeypox virus. Comp Immunol Microbiol Infect Dis 2023; 100:102024. [PMID: 37487313 DOI: 10.1016/j.cimid.2023.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Monkeypox virus (Mpox) is a zoonotic infectious disease that threatens human and animal health, with a global outbreak of the low-pathogenic Mpox beginning from 2022. In this study, we analyzed the codon usage of Mpox between two clades, Clade-I and Clade-IIb-B, to understand changes in host adaptation. Clade-IIb-B of the Mpox genome underwent non-adaptive evolution making it less adapted to its host than Clade-I. The analysis of individual genes revealed that 48 genes exhibited non-adaptive mutation, while 38 genes underwent adaptive mutations. Genes involved in replication, transcription, and host-modulation exhibited a mix of adaptive and non-adaptive evolutionary patterns. This study also found that the mutations of Mpox led to changes in non-adaptative genes in different organs. Additionally, we found that codon usage of Mpox was less similar to that of up-regulated host genes and more similar to that of down-regulated host genes post-infection, indicating that codon usage affects host gene expression. Overall, the study highlights the non-adaptive changes in codon usage as a potential cause of differences in Mpox virulence and provides insights into the evolutionary and adaptive mechanisms of Mpox and its potential impact on pathogenicity and host adaptation.
Collapse
Affiliation(s)
- Xu Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junwei Zou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Kankan Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, PR China
| | - Shengbo Chang
- Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an 710071, PR China
| | - Yingying Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
5
|
Guo X, Zhang Y, Pan Y, Yang K, Tong X, Wang Y. Phylogenetic Analysis and Codon Usage Bias Reveal the Base of Feline and Canine Chaphamaparvovirus for Cross-Species Transmission. Animals (Basel) 2023; 13:2617. [PMID: 37627409 PMCID: PMC10451695 DOI: 10.3390/ani13162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Chaphamaparvoviruses (ChPVs) are ancient viruses that have been detected in a variety of hosts. In this study, through a phylogenetic analysis and the adaptability of ChPV to multiple hosts, we evaluated the basis for the ability of feline (FeChPV) and canine ChPV (CaChPV) for cross-species transmission. Phylogenetic analysis showed that FeChPV and CaChPV were closely related. Notably, two strains of ChPVs isolated from domestic cats and two from dogs clustered together with CaChPVs and FeChPVs, respectively, suggesting that the stringent boundaries between canine and feline ChPV may be broken. Further analysis revealed that CaChPV and FeChPV were more adapted to dogs than to cats. Mutation analysis identified several shared mutations in cross-species-transmissible strains. Furthermore, the VP structures of FeChPV and CaChPV exhibited a high degree of similarity across both cross-species-transmissible and non-cross-species-transmissible strains. However, it is crucial to note that these results are largely computational, and limitations exist in terms of the number and diversity of samples analyzed; the capacity for cross-species transmission should be approached with caution and elucidated in further studies.
Collapse
Affiliation(s)
- Xu Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kankan Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xinxin Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
7
|
Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology 2022; 568:56-71. [PMID: 35134624 PMCID: PMC8808327 DOI: 10.1016/j.virol.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Daniela Bottero
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina.
| |
Collapse
|