1
|
Li X, Wen X, Tang W, Wang C, Chen Y, Yang Y, Zhang Z, Zhao Y. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. CELL REPORTS METHODS 2024; 4:100904. [PMID: 39536758 PMCID: PMC11705769 DOI: 10.1016/j.crmeth.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glucose metabolism has been well understood for many years, but some intriguing questions remain regarding the subcellular distribution, transport, and functions of glycolytic metabolites. To address these issues, a living cell metabolic monitoring technology with high spatiotemporal resolution is needed. Genetically encoded fluorescent sensors can achieve specific, sensitive, and spatiotemporally resolved metabolic monitoring in living cells and in vivo, and dozens of glucose metabolite sensors have been developed recently. Here, we highlight the importance of tracking specific intermediate metabolites of glycolysis and glycolytic flux measurements, monitoring the spatiotemporal dynamics, and quantifying metabolite abundance. We then describe the working principles of fluorescent protein sensors and summarize the existing biosensors and their application in understanding glucose metabolism. Finally, we analyze the remaining challenges in developing high-quality biosensors and the huge potential of biosensor-based metabolic monitoring at multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xueyi Wen
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
3
|
Bustamante-Marin X, Devlin KL, McDonell SB, Dave O, Merlino JL, Grindstaff EJ, Ho AN, Rezeli ET, Coleman MF, Hursting SD. Regulation of IGF1R by MicroRNA-15b Contributes to the Anticancer Effects of Calorie Restriction in a Murine C3-TAg Model of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:4320. [PMID: 37686596 PMCID: PMC10486801 DOI: 10.3390/cancers15174320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
Calorie restriction (CR) inhibits triple-negative breast cancer (TNBC) progression in several preclinical models in association with decreased insulin-like growth factor 1 (IGF1) signaling. To investigate the impact of CR on microRNAs (miRs) that target the IGF1/IGF1R pathway, we used the spontaneous murine model of TNBC, C3(1)/SV40 T-antigen (C3-TAg). In C3-TAg mice, CR reduced body weight, IGF1 levels, and TNBC progression. We evaluated the tumoral expression of 10 miRs. CR increased the expression of miR-199a-3p, miR-199a-5p, miR-486, and miR-15b. However, only miR-15b expression correlated with tumorigenicity in the M28, M6, and M6C C3-TAg cell lines of TNBC progression. Overexpressing miR-15b reduced the proliferation of mouse (M6) and human (MDA-MB-231) cell lines. Serum restriction alone or in combination with low levels of recombinant IGF1 significantly upregulated miR-15b expression and reduced Igf1r in M6 cells. These effects were reversed by the pharmacological inhibition of IGFR with BMS754807. In silico analysis using miR web tools predicted that miR-15b targets genes associated with IGF1/mTOR pathways and the cell cycle. Our findings suggest that CR in association with reduced IGF1 levels could upregulate miR-15b to downregulate Igf1r and contribute to the anticancer effects of CR. Thus, miR-15b may be a therapeutic target for mimicking the beneficial effects of CR against TNBC.
Collapse
Affiliation(s)
- Ximena Bustamante-Marin
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Kaylyn L. Devlin
- School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shannon B. McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Om Dave
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Emma J. Grindstaff
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alyssa N. Ho
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Erika T. Rezeli
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
GLUT4 translocation and dispersal operate in multiple cell types and are negatively correlated with cell size in adipocytes. Sci Rep 2022; 12:20535. [PMID: 36446811 PMCID: PMC9708847 DOI: 10.1038/s41598-022-24736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
The regulated translocation of the glucose transporter, GLUT4, to the surface of adipocytes and muscle is a key action of insulin. This is underpinned by the delivery and fusion of GLUT4-containing vesicles with the plasma membrane. Recent studies have revealed that a further action of insulin is to mediate the dispersal of GLUT4 molecules away from the site of GLUT4 vesicle fusion with the plasma membrane. Although shown in adipocytes, whether insulin-stimulated dispersal occurs in other cells and/or is exhibited by other proteins remains a matter of debate. Here we show that insulin stimulates GLUT4 dispersal in the plasma membrane of adipocytes, induced pluripotent stem cell-derived cardiomyocytes and HeLa cells, suggesting that this phenomenon is specific to GLUT4 expressed in all cell types. By contrast, insulin-stimulated dispersal of TfR was not observed in HeLa cells, suggesting that the mechanism may be unique to GLUT4. Consistent with dispersal being an important physiological mechanism, we observed that insulin-stimulated GLUT4 dispersal is reduced under conditions of insulin resistance. Adipocytes of different sizes have been shown to exhibit distinct metabolic properties: larger adipocytes exhibit reduced insulin-stimulated glucose transport compared to smaller cells. Here we show that both GLUT4 delivery to the plasma membrane and GLUT4 dispersal are reduced in larger adipocytes, supporting the hypothesis that larger adipocytes are refractory to insulin challenge compared to their smaller counterparts, even within a supposedly homogeneous population of cells.
Collapse
|
5
|
Bremner SK, Al Shammari WS, Milligan RS, Hudson BD, Sutherland C, Bryant NJ, Gould GW. Pleiotropic effects of Syntaxin16 identified by gene editing in cultured adipocytes. Front Cell Dev Biol 2022; 10:1033501. [PMID: 36467416 PMCID: PMC9716095 DOI: 10.3389/fcell.2022.1033501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 08/01/2023] Open
Abstract
Adipocytes play multiple roles in the regulation of glucose metabolism which rely on the regulation of membrane traffic. These include secretion of adipokines and serving as an energy store. Central to their energy storing function is the ability to increase glucose uptake in response to insulin, mediated through translocation of the facilitative glucose transporter GLUT4 to the cell surface. The trans-Golgi reticulum localized SNARE protein syntaxin 16 (Sx16) has been identified as a key component of the secretory pathway required for insulin-regulated trafficking of GLUT4. We used CRISPR/Cas9 technology to generate 3T3-L1 adipocytes lacking Sx16 to understand the role of the secretory pathway on adipocyte function. GLUT4 mRNA and protein levels were reduced in Sx16 knockout adipocytes and insulin stimulated GLUT4 translocation to the cell surface was reduced. Strikingly, neither basal nor insulin-stimulated glucose transport were affected. By contrast, GLUT1 levels were upregulated in Sx16 knockout cells. Levels of sortilin and insulin regulated aminopeptidase were also increased in Sx16 knockout adipocytes which may indicate an upregulation of an alternative GLUT4 sorting pathway as a compensatory mechanism for the loss of Sx16. In response to chronic insulin stimulation, Sx16 knockout adipocytes exhibit elevated insulin-independent glucose transport and significant alterations in lactate metabolism. We further show that the adipokine secretory pathways are impaired in Sx16 knockout cells. Together this demonstrates a role for Sx16 in the control of glucose transport, the response to elevated insulin, cellular metabolic profiles and adipocytokine secretion.
Collapse
Affiliation(s)
- Shaun K. Bremner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Woroud S. Al Shammari
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Roderick S. Milligan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Brian D. Hudson
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Calum Sutherland
- Department of Cellular Medicine, Ninewells Hospital, University of Dundee, Glasgow, United Kingdom
| | - Nia J. Bryant
- Department of Biology, University of York, York, United Kingdom
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|