1
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2025; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
3
|
Kongsomros S, Boonyarattanasoonthorn T, Phongphaew W, Kasorndorkbua C, Sunyakumthorn P, Im-Erbsin R, Lugo-Roman LA, Kongratanapasert T, Paha J, Manopwisedjaroen S, Kwankhao P, Supannapan K, Ngamkhae N, Srimongkolpithak N, Vivithanaporn P, Hongeng S, Thitithanyanont A, Khemawoot P. In vivo evaluation of Andrographis paniculata and Boesenbergia rotunda extract activity against SARS-CoV-2 Delta variant in Golden Syrian hamsters: Potential herbal alternative for COVID-19 treatment. J Tradit Complement Med 2024; 14:598-610. [PMID: 39850600 PMCID: PMC11752117 DOI: 10.1016/j.jtcme.2024.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 01/25/2025] Open
Abstract
The ongoing COVID-19 pandemic has triggered extensive research, mainly focused on identifying effective therapeutic agents, specifically those targeting highly pathogenic SARS-CoV-2 variants. This study aimed to investigate the in vivo antiviral efficacy and anti-inflammatory activity of herbal extracts derived from Andrographis paniculata and Boesenbergia rotunda, using a Golden Syrian hamster model infected with Delta, a representative variant associated with severe COVID-19. Hamsters were intranasally inoculated with the SARS-CoV-2 Delta variant and orally administered either vehicle control, B. rotunda, or A. paniculata extract at a dosage of 1000 mg/kg/day. Euthanasia was conducted on days 1, 3, and 7 post-inoculation, with 4 animals per group. The results demonstrated that oral administration of A. paniculata extract significantly alleviated both lethality and infection severity compared with the vehicle control and B. rotunda extract. However, neither extract exhibited direct antiviral activity in terms of reducing viral load in the lungs. Nonetheless, A. paniculata extract treatment significantly reduced IL-6 protein levels in the lung tissue (7278 ± 868.4 pg/g tissue) compared to the control (12,495 ± 1118 pg/g tissue), indicating there was a decrease in local inflammation. This finding is evidenced by the ability of A. paniculata extract to reduce histological lesions in the lungs of infected hamsters. Furthermore, both extracts significantly decreased IL-6 and IP-10 mRNA expression in peripheral blood mononuclear cells of infected hamsters compared to the control group, suggesting systemic anti-inflammatory effects occurred. In conclusion, A. paniculata extract's potential therapeutic application for SARS-CoV-2 arises from its observed capacity to lessen inflammatory cytokine concentrations and mitigate lung pathology.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Tussapon Boonyarattanasoonthorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Chaiyan Kasorndorkbua
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Luis A. Lugo-Roman
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, 10400, Thailand
| | - Teetat Kongratanapasert
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Jiraporn Paha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pakakrong Kwankhao
- Chao Phya Abhaibhubejhr Hospital Foundation, Prachinburi, 25000, Thailand
| | | | - Nittaya Ngamkhae
- Chao Phya Abhaibhubejhr Hospital Foundation, Prachinburi, 25000, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| |
Collapse
|
4
|
Huang J, Ma Q, Su Z, Cheng X. Advancements in the Development of Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2024; 25:10820. [PMID: 39409149 PMCID: PMC11477007 DOI: 10.3390/ijms251910820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19, and so far, it has occurred five noteworthy variants of concern (VOC). SARS-CoV-2 invades cells by contacting its Spike (S) protein to its receptor on the host cell, angiotensin-converting enzyme 2 (ACE2). However, the high frequency of mutations in the S protein has limited the effectiveness of existing drugs against SARS-CoV-2 variants, particularly the Omicron variant. Therefore, it is critical to develop drugs that have highly effective antiviral activity against both SARS-CoV-2 and its variants in the future. This review provides an overview of the mechanism of SARS-CoV-2 infection and the current progress on anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Junjie Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| | - Qianqian Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| |
Collapse
|
5
|
Pérez-Vargas J, Lemieux G, Thompson CAH, Désilets A, Ennis S, Gao G, Gordon DG, Schulz AL, Niikura M, Nabi IR, Krajden M, Boudreault PL, Leduc R, Jean F. Nanomolar anti-SARS-CoV-2 Omicron activity of the host-directed TMPRSS2 inhibitor N-0385 and synergistic action with direct-acting antivirals. Antiviral Res 2024; 225:105869. [PMID: 38548023 DOI: 10.1016/j.antiviral.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
SARS-CoV-2 Omicron subvariants with increased transmissibility and immune evasion are spreading globally with alarming persistence. Whether the mutations and evolution of spike (S) Omicron subvariants alter the viral hijacking of human TMPRSS2 for viral entry remains to be elucidated. This is particularly important to investigate because of the large number and diversity of mutations of S Omicron subvariants reported since the emergence of BA.1. Here we report that human TMPRSS2 is a molecular determinant of viral entry for all the Omicron clinical isolates tested in human lung cells, including ancestral Omicron subvariants (BA.1, BA.2, BA.5), contemporary Omicron subvariants (BQ.1.1, XBB.1.5, EG.5.1) and currently circulating Omicron BA.2.86. First, we used a co-transfection assay to demonstrate the endoproteolytic cleavage by TMPRSS2 of spike Omicron subvariants. Second, we found that N-0385, a highly potent TMPRSS2 inhibitor, is a robust entry inhibitor of virus-like particles harbouring the S protein of Omicron subvariants. Third, we show that N-0385 exhibits nanomolar broad-spectrum antiviral activity against live Omicron subvariants in human Calu-3 lung cells and primary patient-derived bronchial epithelial cells. Interestingly, we found that N-0385 is 10-20 times more potent than the repositioned TMPRSS2 inhibitor, camostat, against BA.5, EG.5.1, and BA.2.86. We further found that N-0385 shows broad synergistic activity with clinically approved direct-acting antivirals (DAAs), i.e., remdesivir and nirmatrelvir, against Omicron subvariants, demonstrating the potential therapeutic benefits of a multi-targeted treatment based on N-0385 and DAAs.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Gabriel Lemieux
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Connor A H Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Désilets
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Guang Gao
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Danielle G Gordon
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika Lea Schulz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, V5Z 4R4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Cummings MJ, Bakamutumaho B, Lutwama JJ, Owor N, Che X, Astorkia M, Postler TS, Kayiwa J, Kiconco J, Muwanga M, Nsereko C, Rwamutwe E, Nayiga I, Kyebambe S, Haumba M, Bosa HK, Ocom F, Watyaba B, Kikaire B, Tomoiaga AS, Kisaka S, Kiwanuka N, Lipkin WI, O'Donnell MR. COVID-19 immune signatures in Uganda persist in HIV co-infection and diverge by pandemic phase. Nat Commun 2024; 15:1475. [PMID: 38368384 PMCID: PMC10874401 DOI: 10.1038/s41467-024-45204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024] Open
Abstract
Little is known about the pathobiology of SARS-CoV-2 infection in sub-Saharan Africa, where severe COVID-19 fatality rates are among the highest in the world and the immunological landscape is unique. In a prospective cohort study of 306 adults encompassing the entire clinical spectrum of SARS-CoV-2 infection in Uganda, we profile the peripheral blood proteome and transcriptome to characterize the immunopathology of COVID-19 across multiple phases of the pandemic. Beyond the prognostic importance of myeloid cell-driven immune activation and lymphopenia, we show that multifaceted impairment of host protein synthesis and redox imbalance define core biological signatures of severe COVID-19, with central roles for IL-7, IL-15, and lymphotoxin-α in COVID-19 respiratory failure. While prognostic signatures are generally consistent in SARS-CoV-2/HIV-coinfection, type I interferon responses uniquely scale with COVID-19 severity in persons living with HIV. Throughout the pandemic, COVID-19 severity peaked during phases dominated by A.23/A.23.1 and Delta B.1.617.2/AY variants. Independent of clinical severity, Delta phase COVID-19 is distinguished by exaggerated pro-inflammatory myeloid cell and inflammasome activation, NK and CD8+ T cell depletion, and impaired host protein synthesis. Combining these analyses with a contemporary Ugandan cohort of adults hospitalized with influenza and other severe acute respiratory infections, we show that activation of epidermal and platelet-derived growth factor pathways are distinct features of COVID-19, deepening translational understanding of mechanisms potentially underlying SARS-CoV-2-associated pulmonary fibrosis. Collectively, our findings provide biological rationale for use of broad and targeted immunotherapies for severe COVID-19 in sub-Saharan Africa, illustrate the relevance of local viral and host factors to SARS-CoV-2 immunopathology, and highlight underemphasized yet therapeutically exploitable immune pathways driving COVID-19 severity.
Collapse
Affiliation(s)
- Matthew J Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maider Astorkia
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jocelyn Kiconco
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | | | - Irene Nayiga
- Entebbe Regional Referral Hospital, Entebbe, Uganda
| | | | - Mercy Haumba
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Henry Kyobe Bosa
- Uganda Peoples' Defence Forces, Kampala, Uganda
- Ministry of Health, Kampala, Uganda
| | | | - Benjamin Watyaba
- European and Developing Countries Clinical Trials Partnership-Eastern Africa Consortium for Clinical Research, Uganda Virus Research Institute, Entebbe, Uganda
| | - Bernard Kikaire
- European and Developing Countries Clinical Trials Partnership-Eastern Africa Consortium for Clinical Research, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Pediatrics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Alin S Tomoiaga
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Accounting, Business Analytics, Computer Information Systems, and Law, Manhattan College, New York, NY, USA
| | - Stevens Kisaka
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Noah Kiwanuka
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Max R O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Ouyang MJ, Ao Z, Olukitibi TA, Lawrynuik P, Shieh C, Kung SKP, Fowke KR, Kobasa D, Yao X. Oral Immunization with rVSV Bivalent Vaccine Elicits Protective Immune Responses, Including ADCC, against Both SARS-CoV-2 and Influenza A Viruses. Vaccines (Basel) 2023; 11:1404. [PMID: 37766083 PMCID: PMC10534613 DOI: 10.3390/vaccines11091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.
Collapse
Affiliation(s)
- Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Titus A. Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Peter Lawrynuik
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Christopher Shieh
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Sam K. P. Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada;
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| |
Collapse
|
8
|
Hameed NS, Arif IS, Al-Sudani BT. Preventive treatment of coronavirus disease-2019 virus using coronavirus disease-2019-receptor-binding domain 1C aptamer by suppress the expression of angiotensin-converting enzyme 2 receptor. J Adv Pharm Technol Res 2023; 14:185-190. [PMID: 37692001 PMCID: PMC10483903 DOI: 10.4103/japtr.japtr_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 09/12/2023] Open
Abstract
The cause of the worldwide coronavirus disease-2019 (COVID-19) pandemic is the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It is known to employ the same entry portal as SARS-CoV, which is the type 1 transmembrane angiotensin-converting enzyme 2 (ACE2) receptor. The receptor-binding domain (RBD) is located on the spike S-protein's S1 subunit of the spike glycoprotein. The most important and effective therapy method is inhibiting the interaction between the ACE2 receptor and the S-spike RBD. An aptamer is a small, single-chain oligonucleotide that binds strongly to the target molecule. Recently, a CoV-2-RBD-1C aptamer-based system with a 51-base hairpin structure was discovered to have substantial binding affinity against the SARS-CoV-2RBD with similar binding sites at ACE. In the current study, we will study the aptamer's effect as a SARS-CoV-2 spike blocker and inhibit its ACE2 receptors' binding by studying the toxicity of aptamer for this cell line by calcein assay and the inhibition test of CoV-2-RBD-1C aptamers on spike RBD-ACE2 binding. The results show the half-maximum inhibitory concentration of CoV-2-RBD-1C aptamer is 0.08188 μM. The inhibition effect of CoV-2-RBD-1C aptamer on spike RBD-ACE2 binding was determined at half-maximal effective concentration of 0.5 μM concentration. The percentage of spike-ACE2 binding inhibition in A549-hACE2 cells in the D614G variant after 30 s was 77%. This percentage is higher than D614 and N501Y and equals 55% and 65%, respectively, at 0.15 μM of CoV-2-RBD-1C aptamer. The CoV-2-RBD-1C aptamer prevents virus entrance through spike inhibition, which results in a 90% reduction in spike D614 virus transduction at 1.28 μM. In conclusion, the CoV-2-RBD-1C aptamer might be an effective treatment against COVID-19 infection because it directly affects the virus by blocking the S-spike of SARS-CoV-2 and preventing ACE2 receptor binding.
Collapse
Affiliation(s)
- Noor S. Hameed
- Department of Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Inam Sameh Arif
- Department of Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
9
|
Xia L, Yuan LZ, Hu YH, Liu JY, Hu GS, Qi RY, Zhang TY, Xiong HL, Zheng ZZ, Lin HW, Zhang JM, Yu C, Zhou M, Ma J, Cheng T, Chen RR, Guan Y, Xia NS, Liu W. A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19. Cell Mol Immunol 2023; 20:351-364. [PMID: 36864189 PMCID: PMC9979130 DOI: 10.1038/s41423-023-00985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Lun-Zhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ya-Hong Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruo-Yao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zao-Zao Zheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hong-Wei Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jia-Mo Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ri-Rong Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
10
|
Ouyang MJ, Ao Z, Olukitibi TA, Yao XJ. Protocol to evaluate the inflammatory response in human macrophages induced by SARS-CoV-2 spike-pseudotyped VLPs. STAR Protoc 2023; 4:102083. [PMID: 36853685 PMCID: PMC9842621 DOI: 10.1016/j.xpro.2023.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The excessive release of pro-inflammatory cytokines in COVID-19 patients is deleterious to organs. The contribution of SARS-CoV-2 spike protein (S) to the inflammatory response is essential to understand its pathogenesis and virulence. Here, we present a protocol to produce and characterize HIV- and SARS-CoV-2-based virus-like particles and then evaluate the inflammatory cytokines' protein and mRNA levels produced in human macrophages by S of SARS-CoV-2 original strain and Delta variant. This protocol is applicable in evaluating S from different emerging variants. For complete details on the use and execution of this protocol, please refer to Ao et al. (2022).1.
Collapse
Affiliation(s)
- Maggie Jing Ouyang
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Zhujun Ao
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Titus A Olukitibi
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xiao-Jian Yao
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
11
|
Yong CY, Liew WPP, Ong HK, Poh CL. Development of virus-like particles-based vaccines against coronaviruses. Biotechnol Prog 2022; 38:e3292. [PMID: 35932092 PMCID: PMC9537895 DOI: 10.1002/btpr.3292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most impactful coronaviruses in human history, especially the latter, which brings revolutionary changes to human vaccinology. Due to its high infectivity, the virus spreads rapidly throughout the world and was declared a pandemic in March 2020. A vaccine would normally take more than 10 years to be developed. As such, there is no vaccine available for SARS-CoV and MERS-CoV. Currently, 10 vaccines have been approved for emergency use by World Health Organization (WHO) against SARS-CoV-2. Virus-like particle (VLP)s are nanoparticles resembling the native virus but devoid of the viral genome. Due to their self-adjuvanting properties, VLPs have been explored extensively for vaccine development. However, none of the approved vaccines against SARS-CoV-2 was based on VLP and only 4% of the vaccine candidates in clinical trials were based on VLPs. In the current review, we focused on discussing the major advances in the development of VLP-based vaccine candidates against the SARS-CoV, MERS-CoV, and SARS-CoV-2, including those in clinical and pre-clinical studies, to give a comprehensive overview of the VLP-based vaccines against the coronaviruses.
Collapse
Affiliation(s)
- Chean Yeah Yong
- China‐ASEAN College of Marine SciencesXiamen University MalaysiaSepangSelangorMalaysia
| | - Winnie Pui Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health ScienceUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health ScienceUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life SciencesSunway UniversityBandar SunwaySelangorMalaysia
| |
Collapse
|
12
|
Forsyth CB, Zhang L, Bhushan A, Swanson B, Zhang L, Mamede JI, Voigt RM, Shaikh M, Engen PA, Keshavarzian A. The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10101996. [PMID: 36296272 PMCID: PMC9607240 DOI: 10.3390/microorganisms10101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the “Cytokine Storm”, which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or “Long COVID”. Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1–S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Barbara Swanson
- Department of Adult Health & Gerontological Nursing, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li Zhang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - João I. Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Robin M. Voigt
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Section of Gastroenterology, Rush Center for Integrated Microbiome and Chronobiology Research, Department of Anatomy and Cell Biology, Rush University Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
13
|
Ao Z, Ouyang MJ, Olukitibi TA, Warner B, Vendramelli R, Truong T, Meilleur C, Zhang M, Kung S, Fowke KR, Kobasa D, Yao X. A Recombinant VSV-Based Bivalent Vaccine Effectively Protects against Both SARS-CoV-2 and Influenza A Virus Infection. J Virol 2022; 96:e0133722. [PMID: 36069551 PMCID: PMC9517730 DOI: 10.1128/jvi.01337-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.
Collapse
Affiliation(s)
- Zhujun Ao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maggie J. Ouyang
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Titus A. Olukitibi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bryce Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Thang Truong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Courtney Meilleur
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Manli Zhang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|