1
|
Díaz de León-Martínez L, Flores-Rangel G, Alcántara-Quintana LE, Mizaikoff B. A Review on Long COVID Screening: Challenges and Perspectives Focusing on Exhaled Breath Gas Sensing. ACS Sens 2024. [PMID: 39680873 DOI: 10.1021/acssensors.4c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Long COVID (LC) is a great global health concern, affecting individuals recovering from SARS-CoV-2 infection. The persistent and varied symptoms across multiple organs complicate diagnosis and management, and an incomplete understanding of the condition hinders advancements in therapeutics. Current diagnostic methods face challenges related to standardization and completeness. To overcome this, new technologies such as sensor-based electronic noses are being explored for LC assessment, offering a noninvasive screening approach via volatile organic compounds (VOC) sensing in exhaled breath. Although specific LC-associated VOCs have not been fully characterized, insights from COVID-19 research suggest their potential as biomarkers. Additionally, AI-driven chemometrics are promising in identifying and predicting outcomes; despite challenges, AI-driven technologies hold the potential to enhance LC evaluation, providing rapid and accurate diagnostics for improved patient care and outcomes. This review underscores the importance of emerging and sensing technologies and comprehensive diagnostic strategies to address screening and treatment challenges in the face of LC.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Breathlabs Inc., Spring, Texas 77386, United States
| | - Gabriela Flores-Rangel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Luz E Alcántara-Quintana
- Unidad de Innovación en Diagnóstico Celular y Molecular, Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a sección, 78120, San Luis Potosí, México
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Hahn-Schikard, Sedanstrasse 14, 89077 Ulm, Germany
| |
Collapse
|
2
|
Charles M, Ruszkiewicz D, Eckbo E, Bryce E, Zurberg T, Meister A, Aksu L, Navas L, Myers R. The science behind the nose: correlating volatile organic compound characterisation with canine biodetection of COVID-19. ERJ Open Res 2024; 10:00007-2024. [PMID: 38770004 PMCID: PMC11103684 DOI: 10.1183/23120541.00007-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 05/22/2024] Open
Abstract
Background The SARS-CoV-2 pandemic stimulated the advancement and research in the field of canine scent detection of COVID-19 and volatile organic compound (VOC) breath sampling. It remains unclear which VOCs are associated with positive canine alerts. This study aimed to confirm that the training aids used for COVID-19 canine scent detection were indeed releasing discriminant COVID-19 VOCs detectable and identifiable by gas chromatography (GC-MS). Methods Inexperienced dogs (two Labradors and one English Springer Spaniel) were trained over 19 weeks to discriminate between COVID-19 infected and uninfected individuals and then independently validated. Getxent tubes, impregnated with the odours from clinical gargle samples, used during the canines' maintenance training process were also analysed using GC-MS. Results Three dogs were successfully trained to detect COVID-19. A principal components analysis model was created and confirmed the ability to discriminate between VOCs from positive and negative COVID-19 Getxent tubes with a sensitivity of 78% and a specificity of 77%. Two VOCs were found to be very predictive of positive COVID-19 cases. When comparing the dogs with GC-MS, F1 and Matthew's correlation coefficient, correlation scores of 0.69 and 0.37 were observed, respectively, demonstrating good concordance between the two methods. Interpretation This study provides analytical confirmation that canine training aids can be safely and reliably produced with good discrimination between positive samples and negative controls. It is also a further step towards better understanding of canine odour discrimination of COVID-19 as the scent of interest and defining what VOC elements the canines interpret as "essential".
Collapse
Affiliation(s)
- Marthe Charles
- Division of Medical Microbiology, Vancouver Coastal Health, Vancouver, BC, Canada
- University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Dorota Ruszkiewicz
- University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
- British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Eric Eckbo
- Division of Medical Microbiology, Vancouver Coastal Health, Vancouver, BC, Canada
- University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Elizabeth Bryce
- Division of Medical Microbiology, Vancouver Coastal Health, Vancouver, BC, Canada
- Quality and Patient Safety, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Teresa Zurberg
- Quality and Patient Safety, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Austin Meister
- University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Lâle Aksu
- Quality and Patient Safety, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Leonardo Navas
- Quality and Patient Safety, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Renelle Myers
- University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
- British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
3
|
Ruehrmund L, Fuchs P, Bartels J, Remy R, Klemenz AC, Kemnitz N, Trefz P, Sukul P, Miekisch W, Schubert JK. Protocol for visualizing complex volatile metabolomics data in clinical setups using EDaViS software. STAR Protoc 2024; 5:102808. [PMID: 38170664 PMCID: PMC10797205 DOI: 10.1016/j.xpro.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Here, we present a protocol for using Early Data Visualization Script, a user-friendly software tool to visualize complex volatile metabolomics data in clinical setups. We describe steps for tabulating data and adjusting visual output to visualize complex time-resolved volatile omics data using simple charts and graphs. We then demonstrate possible modifications by detailing procedures for the adaptation of four basic functions. For complete details on the use and execution of this protocol, please refer to Sukul et al. (2022)1 and Remy et al. (2022).2.
Collapse
Affiliation(s)
- Leo Ruehrmund
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Patricia Fuchs
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany.
| | - Julia Bartels
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Rasmus Remy
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Ann-Christin Klemenz
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Nele Kemnitz
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Phillip Trefz
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (RoMBAT), Dept. of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Centre, 18057 Rostock, Germany
| |
Collapse
|
4
|
Kemnitz N, Fuchs P, Remy R, Ruehrmund L, Bartels J, Klemenz AC, Trefz P, Miekisch W, Schubert JK, Sukul P. Effects of Contagious Respiratory Pathogens on Breath Biomarkers. Antioxidants (Basel) 2024; 13:172. [PMID: 38397770 PMCID: PMC10886173 DOI: 10.3390/antiox13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
5
|
Modak AS. Why have only a handful of breath tests made the transition from R&D to clinical practice? J Breath Res 2023; 18:012001. [PMID: 37850653 DOI: 10.1088/1752-7163/acff7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Affiliation(s)
- Anil S Modak
- Independent Researcher, Mebane, NC 27302, United States of America
| |
Collapse
|
6
|
Sukul P, Richter A, Junghanss C, Schubert JK, Miekisch W. Origin of breath isoprene in humans is revealed via multi-omic investigations. Commun Biol 2023; 6:999. [PMID: 37777700 PMCID: PMC10542801 DOI: 10.1038/s42003-023-05384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Plants, animals and humans metabolically produce volatile isoprene (C5H8). Humans continuously exhale isoprene and exhaled concentrations differ under various physio-metabolic and pathophysiological conditions. Yet unknown metabolic origin hinders isoprene to reach clinical practice as a biomarker. Screening 2000 individuals from consecutive mass-spectrometric studies, we herein identify five healthy German adults without exhaled isoprene. Whole exome sequencing in these adults reveals only one shared homozygous (European prevalence: <1%) IDI2 stop-gain mutation, which causes losses of enzyme active site and Mg2+-cofactor binding sites. Consequently, the conversion of isopentenyl diphosphate to dimethylallyl diphosphate (DMAPP) as part of the cholesterol metabolism is prevented in these adults. Targeted sequencing depicts that the IDI2 rs1044261 variant (p.Trp144Stop) is heterozygous in isoprene deficient blood-relatives and absent in unrelated isoprene normal adults. Wild-type IDI1 and cholesterol metabolism related serological parameters are normal in all adults. IDI2 determines isoprene production as only DMAPP sources isoprene and unlike plants, humans lack isoprene synthase and its enzyme homologue. Human IDI2 is expressed only in skeletal-myocellular peroxisomes and instant spikes in isoprene exhalation during muscle activity underpins its origin from muscular lipolytic cholesterol metabolism. Our findings translate isoprene as a clinically interpretable breath biomarker towards potential applications in human medicine.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
7
|
Roquencourt C, Salvator H, Bardin E, Lamy E, Farfour E, Naline E, Devillier P, Grassin-Delyle S. Enhanced real-time mass spectrometry breath analysis for the diagnosis of COVID-19. ERJ Open Res 2023; 9:00206-2023. [PMID: 37727677 PMCID: PMC10505950 DOI: 10.1183/23120541.00206-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 09/21/2023] Open
Abstract
Background Although rapid screening for and diagnosis of coronavirus disease 2019 (COVID-19) are still urgently needed, most current testing methods are long, costly or poorly specific. The objective of the present study was to determine whether or not artificial-intelligence-enhanced real-time mass spectrometry breath analysis is a reliable, safe, rapid means of screening ambulatory patients for COVID-19. Methods In two prospective, open, interventional studies in a single university hospital, we used real-time, proton transfer reaction time-of-flight mass spectrometry to perform a metabolomic analysis of exhaled breath from adults requiring screening for COVID-19. Artificial intelligence and machine learning techniques were used to build mathematical models based on breath analysis data either alone or combined with patient metadata. Results We obtained breath samples from 173 participants, of whom 67 had proven COVID-19. After using machine learning algorithms to process breath analysis data and further enhancing the model using patient metadata, our method was able to differentiate between COVID-19-positive and -negative participants with a sensitivity of 98%, a specificity of 74%, a negative predictive value of 98%, a positive predictive value of 72% and an area under the receiver operating characteristic curve of 0.961. The predictive performance was similar for asymptomatic, weakly symptomatic and symptomatic participants and was not biased by COVID-19 vaccination status. Conclusions Real-time, noninvasive, artificial-intelligence-enhanced mass spectrometry breath analysis might be a reliable, safe, rapid, cost-effective, high-throughput method for COVID-19 screening.
Collapse
Affiliation(s)
| | - Hélène Salvator
- Exhalomics, Hôpital Foch, Suresnes, France
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- Laboratoire de Recherche en Pharmacologie Respiratoire – VIM Suresnes, UMR 0892, Université Paris-Saclay, Suresnes, France
| | - Emmanuelle Bardin
- Exhalomics, Hôpital Foch, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
- Institut Necker Enfants Malades, U1151, Paris, France
| | - Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, Suresnes, France
| | | | - Philippe Devillier
- Exhalomics, Hôpital Foch, Suresnes, France
- Laboratoire de Recherche en Pharmacologie Respiratoire – VIM Suresnes, UMR 0892, Université Paris-Saclay, Suresnes, France
| | - Stanislas Grassin-Delyle
- Exhalomics, Hôpital Foch, Suresnes, France
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation (2I), U1173, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| |
Collapse
|
8
|
Li J, Hannon A, Yu G, Idziak LA, Sahasrabhojanee A, Govindarajan P, Maldonado YA, Ngo K, Abdou JP, Mai N, Ricco AJ. Electronic Nose Development and Preliminary Human Breath Testing for Rapid, Non-Invasive COVID-19 Detection. ACS Sens 2023; 8:2309-2318. [PMID: 37224474 DOI: 10.1021/acssensors.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We adapted an existing, spaceflight-proven, robust "electronic nose" (E-Nose) that uses an array of electrical resistivity-based nanosensors mimicking aspects of mammalian olfaction to conduct on-site, rapid screening for COVID-19 infection by measuring the pattern of sensor responses to volatile organic compounds (VOCs) in exhaled human breath. We built and tested multiple copies of a hand-held prototype E-Nose sensor system, composed of 64 chemically sensitive nanomaterial sensing elements tailored to COVID-19 VOC detection; data acquisition electronics; a smart tablet with software (App) for sensor control, data acquisition and display; and a sampling fixture to capture exhaled breath samples and deliver them to the sensor array inside the E-Nose. The sensing elements detect the combination of VOCs typical in breath at parts-per-billion (ppb) levels, with repeatability of 0.02% and reproducibility of 1.2%; the measurement electronics in the E-Nose provide measurement accuracy and signal-to-noise ratios comparable to benchtop instrumentation. Preliminary clinical testing at Stanford Medicine with 63 participants, their COVID-19-positive or COVID-19-negative status determined by concomitant RT-PCR, discriminated between these two categories of human breath with a 79% correct identification rate using "leave-one-out" training-and-analysis methods. Analyzing the E-Nose response in conjunction with body temperature and other non-invasive symptom screening using advanced machine learning methods, with a much larger database of responses from a wider swath of the population, is expected to provide more accurate on-the-spot answers. Additional clinical testing, design refinement, and a mass manufacturing approach are the main steps toward deploying this technology to rapidly screen for active infection in clinics and hospitals, public and commercial venues, or at home.
Collapse
Affiliation(s)
- Jing Li
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Ami Hannon
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - George Yu
- Variable, Inc., Chattanooga, Tennessee 37406, United States
| | - Luke A Idziak
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | | | | | - Yvonne A Maldonado
- School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Khoa Ngo
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - John P Abdou
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Nghia Mai
- NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Antonio J Ricco
- NASA Ames Research Center, Moffett Field, California 94035, United States
| |
Collapse
|
9
|
Kisielinski K, Hirsch O, Wagner S, Wojtasik B, Funken S, Klosterhalfen B, Kanti Manna S, Prescher A, Sukul P, Sönnichsen A. Physio-metabolic and clinical consequences of wearing face masks-Systematic review with meta-analysis and comprehensive evaluation. Front Public Health 2023; 11:1125150. [PMID: 37089476 PMCID: PMC10116418 DOI: 10.3389/fpubh.2023.1125150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Background As face masks became mandatory in most countries during the COVID-19 pandemic, adverse effects require substantiated investigation. Methods A systematic review of 2,168 studies on adverse medical mask effects yielded 54 publications for synthesis and 37 studies for meta-analysis (on n = 8,641, m = 2,482, f = 6,159, age = 34.8 ± 12.5). The median trial duration was only 18 min (IQR = 50) for our comprehensive evaluation of mask induced physio-metabolic and clinical outcomes. Results We found significant effects in both medical surgical and N95 masks, with a greater impact of the second. These effects included decreased SpO2 (overall Standard Mean Difference, SMD = -0.24, 95% CI = -0.38 to -0.11, p < 0.001) and minute ventilation (SMD = -0.72, 95% CI = -0.99 to -0.46, p < 0.001), simultaneous increased in blood-CO2 (SMD = +0.64, 95% CI = 0.31-0.96, p < 0.001), heart rate (N95: SMD = +0.22, 95% CI = 0.03-0.41, p = 0.02), systolic blood pressure (surgical: SMD = +0.21, 95% CI = 0.03-0.39, p = 0.02), skin temperature (overall SMD = +0.80 95% CI = 0.23-1.38, p = 0.006) and humidity (SMD +2.24, 95% CI = 1.32-3.17, p < 0.001). Effects on exertion (overall SMD = +0.9, surgical = +0.63, N95 = +1.19), discomfort (SMD = +1.16), dyspnoea (SMD = +1.46), heat (SMD = +0.70), and humidity (SMD = +0.9) were significant in n = 373 with a robust relationship to mask wearing (p < 0.006 to p < 0.001). Pooled symptom prevalence (n = 8,128) was significant for: headache (62%, p < 0.001), acne (38%, p < 0.001), skin irritation (36%, p < 0.001), dyspnoea (33%, p < 0.001), heat (26%, p < 0.001), itching (26%, p < 0.001), voice disorder (23%, p < 0.03), and dizziness (5%, p = 0.01). Discussion Masks interfered with O2-uptake and CO2-release and compromised respiratory compensation. Though evaluated wearing durations are shorter than daily/prolonged use, outcomes independently validate mask-induced exhaustion-syndrome (MIES) and down-stream physio-metabolic disfunctions. MIES can have long-term clinical consequences, especially for vulnerable groups. So far, several mask related symptoms may have been misinterpreted as long COVID-19 symptoms. In any case, the possible MIES contrasts with the WHO definition of health. Conclusion Face mask side-effects must be assessed (risk-benefit) against the available evidence of their effectiveness against viral transmissions. In the absence of strong empirical evidence of effectiveness, mask wearing should not be mandated let alone enforced by law. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021256694, identifier: PROSPERO 2021 CRD42021256694.
Collapse
Affiliation(s)
- Kai Kisielinski
- Orthopaedic and Trauma Surgery, Clinical Medicine, Private Practice, Düsseldorf, Germany
| | - Oliver Hirsch
- Department of Psychology, Fachhochschule für Oekonomie und Management (FOM) University of Applied Sciences, Siegen, Germany
| | - Susanne Wagner
- Veterinary Medicine, Wagner Medical Science Liason (MSL) Management, Blankenfelde-Mahlow, Germany
| | - Barbara Wojtasik
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Gdansk, Poland
| | - Stefan Funken
- Internal Medicine, Clinical Medicine, Private Practice, Moers, Germany
| | | | - Soumen Kanti Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy (MOCA), Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Rostock, Germany
| | - Andreas Sönnichsen
- Internal Medicine, Clinical Medicine, Private Practice, Gesundheit für Österreich e.V. (Health for Austria), Vienna, Austria
| |
Collapse
|
10
|
Bruzzone C, Conde R, Embade N, Mato JM, Millet O. Metabolomics as a powerful tool for diagnostic, pronostic and drug intervention analysis in COVID-19. Front Mol Biosci 2023; 10:1111482. [PMID: 36876049 PMCID: PMC9975567 DOI: 10.3389/fmolb.2023.1111482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
COVID-19 currently represents one of the major health challenges worldwide. Albeit its infectious character, with onset affectation mainly at the respiratory track, it is clear that the pathophysiology of COVID-19 has a systemic character, ultimately affecting many organs. This feature enables the possibility of investigating SARS-CoV-2 infection using multi-omic techniques, including metabolomic studies by chromatography coupled to mass spectrometry or by nuclear magnetic resonance (NMR) spectroscopy. Here we review the extensive literature on metabolomics in COVID-19, that unraveled many aspects of the disease including: a characteristic metabotipic signature associated to COVID-19, discrimination of patients according to severity, effect of drugs and vaccination treatments and the characterization of the natural history of the metabolic evolution associated to the disease, from the infection onset to full recovery or long-term and long sequelae of COVID.
Collapse
Affiliation(s)
- Chiara Bruzzone
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - Ricardo Conde
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - José M. Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Sukul P, Trefz P, Schubert JK, Miekisch W. Advanced setup for safe breath sampling and patient monitoring under highly infectious conditions in the clinical environment. Sci Rep 2022; 12:17926. [PMID: 36289276 PMCID: PMC9606119 DOI: 10.1038/s41598-022-22581-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Being the proximal matrix, breath offers immediate metabolic outlook of respiratory infections. However, high viral load in exhalations imposes higher transmission risk that needs improved methods for safe and repeatable analysis. Here, we have advanced the state-of-the-art methods for real-time and offline mass-spectrometry based analysis of exhaled volatile organic compounds (VOCs) under SARS-CoV-2 and/or similar respiratory conditions. To reduce infection risk, the general experimental setups for direct and offline breath sampling are modified. Certain mainstream and side-stream viral filters are examined for direct and lab-based applications. Confounders/contributions from filters and optimum operational conditions are assessed. We observed immediate effects of infection safety mandates on breath biomarker profiles. Main-stream filters induced physiological and analytical effects. Side-stream filters caused only systematic analytical effects. Observed substance specific effects partly depended on compound's origin and properties, sampling flow and respiratory rate. For offline samples, storage time, -conditions and -temperature were crucial. Our methods provided repeatable conditions for point-of-care and lab-based breath analysis with low risk of disease transmission. Besides breath VOCs profiling in spontaneously breathing subjects at the screening scenario of COVID-19/similar test centres, our methods and protocols are applicable for moderately/severely ill (even mechanically-ventilated) and highly contagious patients at the intensive care.
Collapse
Affiliation(s)
- Pritam Sukul
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Phillip Trefz
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Jochen K. Schubert
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Wolfram Miekisch
- grid.10493.3f0000000121858338Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|