1
|
Wang J, Liu Y, Chen X, Li M, Zhu Y. Protocol for identifying and comparing molecular prognosis subtypes of IgAN using R. STAR Protoc 2024; 5:103138. [PMID: 38878284 PMCID: PMC11234001 DOI: 10.1016/j.xpro.2024.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
By providing a comprehensive view of protein dynamics, quantitative proteomics has emerged as a powerful tool for a better understanding of disease mechanisms. Here, we present a general workflow for identifying and comparing molecular subtypes of disease using proteomics data using R software. We describe steps for data preprocessing, feature selection, determination of subtypes, and functional interpretation of subtypes. These analyses can help us understand the nature of heterogeneous diseases, which is crucial for accurate diagnosis and personalized treatment. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Juan Wang
- Anhui Medical University, Hefei, Anhui 230000, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yi Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xizhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Yunping Zhu
- Anhui Medical University, Hefei, Anhui 230000, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
2
|
Zhang X, Wang H, Li J, Zhou F, Zhao M, Su T. Sunitinib-induced endocapillary proliferative glomerulonephritis with IgA2 deposit in addition to thrombotic microangiopathy: a case report. BMC Nephrol 2024; 25:284. [PMID: 39215250 PMCID: PMC11365231 DOI: 10.1186/s12882-024-03732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sunitinib, a multi-targeted tyrosine kinase inhibitor, is used as a second-line therapy for gastrointestinal stromal tumors (GIST) resistant to imatinib. However, its impact on the vascular endothelial growth factor (VEGF) pathway can lead to significant toxicities, including hypertension and thrombotic microangiopathy (TMA). CASE PRESENTATION This case report describes a unique instance of a patient with metastatic GIST who developed endocapillary proliferative glomerulonephritis (EPGN) with IgA2 deposits and TMA following sunitinib treatment. The patient presented with severe hypertension, nephrotic syndrome, and acute kidney injury. Renal biopsy confirmed the diagnosis, revealing IgA2 deposits, which are not commonly associated with TMA. Discontinuation of sunitinib led to a rapid improvement in renal function and proteinuria. The potential mechanisms underlying sunitinib-induced glomerular injury may involve the blockade of VEGFR-1, affecting immune cell recruitment and function, and the disruption of the nitric oxide and endothelin systems, leading to endothelial damage and immune dysregulation. Management of these toxicities requires a personalized approach, with options ranging from symptomatic relief to drug discontinuation. The use of endothelin receptor antagonists and other therapeutic alternatives for GIST management is discussed. CONCLUSIONS This case highlights the complex interplay between the therapeutic effects of sunitinib and its potential renal and cardiovascular toxicities, emphasizing the need for close monitoring and effective management strategies to optimize patient outcomes.
Collapse
Affiliation(s)
- Xin Zhang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Nephrology, Peking University, Beijing, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hui Wang
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of Beijing, Beijing, People's Republic of China
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Peking University Cancer Hospital and Institute, People's Republic of China
| | - Fude Zhou
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Nephrology, Peking University, Beijing, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Minghui Zhao
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
- Institute of Nephrology, Peking University, Beijing, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tao Su
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China.
- Institute of Nephrology, Peking University, Beijing, People's Republic of China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Ministry of Education of China, Beijing, People's Republic of China.
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China.
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Wang T, Chen L, Zhao Y, Deng Y, Shen W, Li L, Yin Z, Zhang C, Cai G, Zhang M, Chen X. Cross-species single-cell analysis uncovers the immunopathological mechanisms associated with IgA nephropathy progression. JCI Insight 2024; 9:e173651. [PMID: 38716725 PMCID: PMC11141938 DOI: 10.1172/jci.insight.173651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
IgA nephropathy (IgAN) represents the main cause of renal failure, while the precise pathogenetic mechanisms have not been fully determined. Herein, we conducted a cross-species single-cell survey on human IgAN and mouse and rat IgAN models to explore the pathogenic programs. Cross-species single-cell RNA sequencing (scRNA-Seq) revealed that the IgAN mesangial cells (MCs) expressed high levels of inflammatory signatures CXCL12, CCL2, CSF1, and IL-34 and specifically interacted with IgAN macrophages via the CXCL12/CXCR4, CSF1/IL-34/CSF1 receptor, and integrin subunit alpha X/integrin subunit alpha M/complement C3 (C3) axes. IgAN macrophages expressed high levels of CXCR4, PDGFB, triggering receptor expressed on myeloid cells 2, TNF, and C3, and the trajectory analysis suggested that these cells derived from the differentiation of infiltrating blood monocytes. Additionally, protein profiling of 21 progression and 28 nonprogression IgAN samples revealed that proteins CXCL12, C3, mannose receptor C-type 1, and CD163 were negatively correlated with estimated glomerular filtration rate (eGFR) value and poor prognosis (30% eGFR as composite end point). Last, a functional experiment revealed that specific blockade of the Cxcl12/Cxcr4 pathway substantially attenuated the glomerulus and tubule inflammatory injury, fibrosis, and renal function decline in the mouse IgAN model. This study provides insights into IgAN progression and may aid in the refinement of IgAN diagnosis and the optimization of treatment strategies.
Collapse
Affiliation(s)
- Xizhao Chen
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Tiantian Wang
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinghua Zhao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wanjun Shen
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lin Li
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zhong Yin
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chaoran Zhang
- Department of Stomatology, The First Medical Center of People’s Liberation Army General Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
4
|
Shao F, Yao Y, Weng D, Wang R, Liu R, Zhang Y, Li E, Wang M, Tang Y, Ding Y, Xie Y. Causal association of plasma circulating metabolites with nephritis: a Mendelian randomization study. Front Nutr 2024; 11:1364841. [PMID: 38765814 PMCID: PMC11099270 DOI: 10.3389/fnut.2024.1364841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Background Nephritis is a pivotal catalyst in chronic kidney disease (CKD) progression. Although epidemiological studies have explored the impact of plasma circulating metabolites and drugs on nephritis, few have harnessed genetic methodologies to establish causal relationships. Methods Through Mendelian randomization (MR) in two substantial cohorts, spanning large sample sizes, we evaluated over 100 plasma circulating metabolites and 263 drugs to discern their causal effects on nephritis risk. The primary analytical tool was the inverse variance weighted (IVW) analysis. Our bioinformatic scrutiny of GSE115857 (IgA nephropathy, 86 samples) and GSE72326 (lupus nephritis, 238 samples) unveiled anomalies in lipid metabolism and immunological characteristics in nephritis. Thorough sensitivity analyses (MR-Egger, MR-PRESSO, leave-one-out analysis) were undertaken to verify the instrumental variables' (IVs) assumptions. Results Unique lipoprotein-related molecules established causal links with diverse nephritis subtypes. Notably, docosahexaenoic acid (DHA) emerged as a protective factor for acute tubulointerstitial nephritis (ATIN) (OR1 = 0.84, [95% CI 0.78-0.90], p1 = 0.013; OR2 = 0.89, [95% CI 0.82-0.97], p2 = 0.007). Conversely, multivitamin supplementation minus minerals notably increased the risk of ATIN (OR = 31.25, [95% CI 9.23-105.85], p = 0.004). Reduced α-linolenic acid (ALA) levels due to lipid-lowering drugs were linked to both ATIN (OR = 4.88, [95% CI 3.52-6.77], p < 0.001) and tubulointerstitial nephritis (TIN) (OR = 7.52, [95% CI 2.78-20.30], p = 0.042). While the non-renal drug indivina showed promise for TIN treatment, the use of digoxin, hydroxocobalamin, and liothyronine elevated the risk of chronic tubulointerstitial nephritis (CTIN). Transcriptome analysis affirmed that anomalous lipid metabolism and immune infiltration are characteristic of IgA nephropathy and lupus nephritis. The robustness of these causal links was reinforced by sensitivity analyses and leave-one-out tests, indicating no signs of pleiotropy. Conclusion Dyslipidemia significantly contributes to nephritis development. Strategies aimed at reducing plasma low-density lipoprotein levels or ALA supplementation may enhance the efficacy of existing lipid-lowering drug regimens for nephritis treatment. Renal functional status should also be judiciously considered with regard to the use of nonrenal medications.
Collapse
Affiliation(s)
- Fengling Shao
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yingling Yao
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Dunchu Weng
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Runzhi Wang
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ruiling Liu
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yongjia Zhang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Erhan Li
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Mengdi Wang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yuewu Tang
- Department of Nephrology, Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yajun Xie
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Chen J, Zhao L, Zhang L, Luo Y, Jiang Y, H P. The identification of signature genes and their relationship with immune cell infiltration in age-related macular degeneration. Mol Biol Rep 2024; 51:339. [PMID: 38393419 DOI: 10.1007/s11033-023-08969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/26/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a prevalent source of visual impairment among the elderly population, and its incidence has risen in tandem with the increasing longevity of humans. Despite the progress made with anti-VEGF therapy, clinical outcomes have proven to be unsatisfactory. METHOD We obtained differentially expressed genes (DEGs) of AMD patients and healthy controls from the GEO database. GO and KEGG analyses were used to enrich the DEGs. Weighted gene coexpression network analysis (WGCNA) was used to identify modules related to AMD. SVM, random forest, and least absolute shrinkage and selection operator (LASSO) were employed to screen hub genes. Gene set enrichment analysis (GSEA) was used to explore the pathways in which these hub genes were enriched. CIBERSORT was utilized to analyze the relationship between the hub genes and immune cell infiltration. Finally, Western blotting and RT‒PCR were used to explore the expression of hub genes in AMD mice. RESULTS We screened 1084 DEGs in GSE29801, of which 496 genes were upregulated. These 1084 DEGs were introduced into the WGCNA, and 94 genes related to AMD were obtained. Seventy-nine overlapping genes were obtained by the Venn plot. These 79 genes were introduced into three machine-learning methods to screen the hub genes, and the genes identified by the three methods were TNC, FAP, SREBF1, and TGF-β2. We verified their diagnostic function in the GSE29801 and GSE103060 datasets. Then, the hub gene co-enrichment pathways were obtained by GO and KEGG analyses. CIBERSORT analysis showed that these hub genes were associated with immune cell infiltration. Finally, we found increased expression of TNC, FAP, SREBF1, and TGF-β2 mRNA and protein in the retinas of AMD mice. CONCLUSION We found that four hub genes, namely, FAP, TGF-β2, SREBF1, and TNC, have diagnostic significance in patients with AMD and are related to immune cell infiltration. Finally, we determined that the mRNA and protein expression of these hub genes was upregulated in the retinas of AMD mice.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Long Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longbin Zhang
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Yiling Luo
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Yuling Jiang
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Peng H
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Duan ZY, Bu R, Liang S, Chen XZ, Zhang C, Zhang QY, Li JJ, Chen XM, Cai GY. Urinary miR-185-5p is a biomarker of renal tubulointerstitial fibrosis in IgA nephropathy. Front Immunol 2024; 15:1326026. [PMID: 38426107 PMCID: PMC10902439 DOI: 10.3389/fimmu.2024.1326026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Background For IgA nephropathy (IgAN), tubular atrophy/interstitial fibrosis is the most important prognostic pathological indicator in the mesangial and endocapillary hypercellularity, segmental sclerosis, interstitial fibrosis/tubular atrophy, and presence of crescents (MEST-C) score. The identification of non-invasive biomarkers for tubular atrophy/interstitial fibrosis would aid clinical monitoring of IgAN progression and improve patient prognosis. Methods The study included 188 patients with primary IgAN in separate confirmation and validation cohorts. The associations of miR-92a-3p, miR-425-5p, and miR-185-5p with renal histopathological lesions and prognosis were explored using Spearman correlation analysis and Kaplan-Meier survival curves. Bioinformatics analysis and dual luciferase experiments were used to identify hub genes for miR-185-5p. The fibrotic phenotypes of tubular epithelial cells were evaluated in vivo and in HK-2 cells. Results miRNA sequencing and cohort validation revealed that the expression levels of miR-92a-3p, miR-425-5p, and miR-185-5p in urine were significantly increased among patients with IgAN; these levels could predict the extent of tubular atrophy/interstitial fibrosis in such patients. The combination of the three biomarkers resulted in an area under the receiver operating characteristic curve of 0.742. The renal prognosis was significantly worse in the miR-185-5p high expression group than in the low expression group (P=0.003). Renal tissue in situ hybridization, bioinformatics analysis, and dual luciferase experiments confirmed that miR-185-5p affects prognosis in patients with IgAN mainly by influencing expression of the target gene tight junction protein 1 (TJP1) in renal tubular epithelial cells. In vitro experiment revealed that an miR-185-5p mimic could reduce TJP1 expression in HK-2 cells, while increasing the levels of α-smooth muscle actin, fibronectin, collagen I, and collagen III; these changes promoted the transformation of renal tubular epithelial cells to a fibrotic phenotype. An miR-185-5p inhibitor can reverse the fibrotic phenotype in renal tubular epithelial cells. In a unilateral ureteral obstruction model, the inhibition of miR-185-5p expression alleviated tubular atrophy/interstitial fibrosis. Conclusion Urinary miR-185-5p, a non-invasive biomarker of tubular atrophy/interstitial fibrosis in IgAN, may promote the transformation of renal tubular epithelial cells to a fibrotic phenotype via TJP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guang-Yan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
7
|
Duval A, Caillard S, Frémeaux-Bacchi V. The complement system in IgAN: mechanistic context for therapeutic opportunities. Nephrol Dial Transplant 2023; 38:2685-2693. [PMID: 37385820 DOI: 10.1093/ndt/gfad140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The complement system plays a crucial role in innate immunity, providing essential defense against pathogens. However, uncontrolled or prolonged activation of the complement cascade can significantly contribute to kidney damage, especially in cases of glomerulonephritis. Immunoglobulin A nephropathy (IgAN), the most prevalent form of primary glomerulonephritis, has growing evidence supporting the involvement of complement alternative and lectin pathways. In fact, patients with IgAN experience complement activation within their kidney tissue, which may be involved in the development of glomerular damage and the progression of IgAN. Complement activation has emerged as a significant area of interest in IgAN, with numerous complement-targeting agents currently being explored within this field. Nevertheless, the exact mechanisms of complement activation and their role in IgAN progression require comprehensive elucidation. This review seeks to contextualize the proposed mechanisms of complement activation within the various stages ("hits") of IgAN pathogenesis, while also addressing the clinical implications and anticipated outcomes of complement inhibition in IgAN.
Collapse
Affiliation(s)
- Anna Duval
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
8
|
Klinkhammer BM, Boor P. Kidney fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 93:101206. [PMID: 37541106 DOI: 10.1016/j.mam.2023.101206] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
An increasing number of patients worldwide suffers from chronic kidney disease (CKD). CKD is accompanied by kidney fibrosis, which affects all compartments of the kidney, i.e., the glomeruli, tubulointerstitium, and vasculature. Fibrosis is the best predictor of progression of kidney diseases. Currently, there is no specific anti-fibrotic therapy for kidney patients and invasive renal biopsy remains the only option for specific detection and quantification of kidney fibrosis. Here we review emerging diagnostic approaches and potential therapeutic options for fibrosis. We discuss how translational research could help to establish fibrosis-specific endpoints for clinical trials, leading to improved patient stratification and potentially companion diagnostics, and facilitating and optimizing development of novel anti-fibrotic therapies for kidney patients.
Collapse
Affiliation(s)
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany; Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|