1
|
Lin Y, Coppo R, Onuma K, Endo H, Kondo J, Iwabuchi S, Hashimoto S, Itatani Y, Obama K, Inoue M. Growth pattern of de novo small clusters of colorectal cancer is regulated by Notch signaling at detachment. Cancer Sci 2024; 115:3648-3659. [PMID: 39300760 PMCID: PMC11531966 DOI: 10.1111/cas.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer cell clusters have a higher capacity for metastasis than single cells, suggesting cancer cell clusters have biological properties different from those of single cells. The nature of de novo cancer cell clusters that are newly formed from tumor masses is largely unknown. Herein, we generated small cell clusters from colorectal cancer organoids and tracked the growth patterns of the clusters up to four cells. Growth patterns were classified into actively growing and poorly growing spheroids (PG). Notch signaling was robustly activated in small clusters immediately after dissociation, and Notch signaling inhibition markedly increased the proportion of PG spheroids. Only a limited number of PG spheroids grew under growth-permissive conditions in vitro, but xenograft tumors derived from Notch inhibited clusters showed growth rates comparable to those of untreated spheroids. Thus, de novo clusters are composed of cells with interchangeable growth fates, which are regulated in a context-dependent manner by Notch signaling.
Collapse
Affiliation(s)
- Yi‐Kai Lin
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Roberto Coppo
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Kunishige Onuma
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Hiroko Endo
- Department of BiochemistryOsaka International Cancer InstituteOsakaJapan
- Present address:
Carna Biosciences Inc.HyogoJapan
| | - Jumpei Kondo
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Present address:
Division of Health Sciences, Department of Molecular Biology and Clinical InvestigationGraduate School of Medicine, Osaka UniversityOsakaJapan
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Inoue
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
2
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
3
|
Tabata S, Endo H, Makinoshima H, Soga T, Inoue M. The γ-glutamyl cycle serves as an amino acids supply system in colorectal cancer organoids under chronic hypoxia. Biochem Biophys Res Commun 2024; 714:149977. [PMID: 38663093 DOI: 10.1016/j.bbrc.2024.149977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Malignant tumors are characterized by a hypoxic microenvironment, and metabolic reprogramming is necessary to ensure energy production and oxidative stress resistance. Although the microenvironmental properties of tumors vary under acute and chronic hypoxia, studies on chronic hypoxia-induced metabolic changes are limited. In the present study, we performed a comprehensive metabolic analysis in a chronic hypoxia model using colorectal cancer (CRC) organoids, and identified an amino acid supply system through the γ-glutamyl cycle, a glutathione recycling pathway. We analyzed the metabolic changes caused by hypoxia over time and observed that chronic hypoxia resulted in an increase in 5-oxoproline and a decrease in oxidized glutathione (GSSG) compared to acute hypoxia. These findings suggest that chronic hypoxia induces metabolic changes in the γ-glutamyl cycle. Moreover, inhibition of the γ-glutamyl cycle via γ-glutamyl cyclotransferase (GGCT) and γ-glutamyl transferase 1 (GGT1) knockdown significantly reversed chronic hypoxia-induced upregulation of 5-oxoproline and several amino acids. Notably, GGT1 knockdown downregulated the intracellular levels of γ-glutamyl amino acids. Conclusively, these results indicate that the γ-glutamyl cycle serves as an amino acid supply system in CRC under chronic hypoxia, which provides fresh insight into cancer metabolism under chronic hypoxia.
Collapse
Affiliation(s)
- Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Tsuruoka, 997-0052, Japan; Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, 997-0052, Japan; Shonai Regional Industry Promotion Center, Tsuruoka, 997-0052, Japan; Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan.
| | - Hiroko Endo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, 997-0052, Japan; Shonai Regional Industry Promotion Center, Tsuruoka, 997-0052, Japan; Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Tsuruoka, 997-0052, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, 108-8345 Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Lee J, Mashima T, Kawata N, Yamamoto N, Morino S, Inaba S, Nakamura A, Kumagai K, Wakatsuki T, Takeuchi K, Yamaguchi K, Seimiya H. Pharmacologic Targeting of Histone H3K27 Acetylation/BRD4-dependent Induction of ALDH1A3 for Early-phase Drug Tolerance of Gastric Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1307-1320. [PMID: 38669046 PMCID: PMC11104289 DOI: 10.1158/2767-9764.crc-23-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Anticancer drug-tolerant persister (DTP) cells at an early phase of chemotherapy reshape refractory tumors. Aldehyde dehydrogenase 1 family member A3 (ALDH1A3) is commonly upregulated by various anticancer drugs in gastric cancer patient-derived cells (PDC) and promotes tumor growth. However, the mechanism underlying the generation of ALDH1A3-positive DTP cells remains elusive. Here, we investigated the mechanism of ALDH1A3 expression and a combination therapy targeting gastric cancer DTP cells. We found that gastric cancer tissues treated with neoadjuvant chemotherapy showed high ALDH1A3 expression. Chromatin immunoprecipitation (ChIP)-PCR and ChIP sequencing analyses revealed that histone H3 lysine 27 acetylation was enriched in the ALDH1A3 promoter in 5-fluorouracil (5-FU)-tolerant persister PDCs. By chemical library screening, we found that the bromodomain and extraterminal (BET) inhibitors OTX015/birabresib and I-BET-762/molibresib suppressed DTP-related ALDH1A3 expression and preferentially inhibited DTP cell growth. In DTP cells, BRD4, but not BRD2/3, was recruited to the ALDH1A3 promoter and BRD4 knockdown decreased drug-induced ALDH1A3 upregulation. Combination therapy with 5-FU and OTX015 significantly suppressed in vivo tumor growth. These observations suggest that BET inhibitors are efficient DTP cell-targeting agents for gastric cancer treatment. SIGNIFICANCE Drug resistance hampers the cure of patients with cancer. To prevent stable drug resistance, DTP cancer cells are rational therapeutic targets that emerge during the early phase of chemotherapy. This study proposes that the epigenetic regulation by BET inhibitors may be a rational therapeutic strategy to eliminate DTP cells.
Collapse
Affiliation(s)
- Jin Lee
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naomi Kawata
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yamamoto
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shun Morino
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Saori Inaba
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayane Nakamura
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Life and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Koshi Kumagai
- Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeru Wakatsuki
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Department of Life and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
5
|
Ahmad Zawawi SS, Salleh EA, Musa M. Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:409-431. [PMID: 38745769 PMCID: PMC11090692 DOI: 10.37349/etat.2024.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.
Collapse
Affiliation(s)
| | - Elyn Amiela Salleh
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
6
|
Masuda M, Iida K, Iwabuchi S, Tanaka M, Kubota S, Uematsu H, Onuma K, Kukita Y, Kato K, Kamiura S, Nakajima A, Coppo R, Kanda M, Yoshino K, Ueda Y, Morii E, Kimura T, Kondo J, Okada-Hatakeyama M, Hashimoto S, Inoue M. Clonal Origin and Lineage Ambiguity in Mixed Neuroendocrine Carcinoma of the Uterine Cervix. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:415-429. [PMID: 38103888 DOI: 10.1016/j.ajpath.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Small-cell neuroendocrine carcinoma (SCNEC) of the cervix is a rare disease characterized by a high incidence of mixed tumors with other types of cancer. The mechanism underlying this mixed phenotype is not well understood. This study established a panel of organoid lines from patients with SCNEC of the cervix and ultimately focused on one line, which retained a mixed tumor phenotype, both in vitro and in vivo. Histologically, both organoids and xenograft tumors showed distinct differentiation into either SCNEC or adenocarcinoma in some regions and ambiguous differentiation in others. Tracking single cells indicated the existence of cells with bipotential differentiation toward SCNEC and adenocarcinomas. Single-cell transcriptional analysis identified three distinct clusters: SCNEC-like, adenocarcinoma-like, and a cluster lacking specific differentiation markers. The expression of neuroendocrine markers was enriched in the SCNEC-like cluster but not exclusively. Human papillomavirus 18 E6 was enriched in the SCNEC-like cluster, which showed higher proliferation and lower levels of the p53 pathway. After treatment with anticancer drugs, the expression of adenocarcinoma markers increased, whereas that of SCNEC decreased. Using a reporter system for keratin 19 expression, changes in the differentiation of each cell were shown to be associated with the shift in differentiation induced by drug treatment. These data suggest that mixed SCNEC/cervical tumors have a clonal origin and are characterized by an ambiguous and flexible differentiation state.
Collapse
Affiliation(s)
- Masamune Masuda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keita Iida
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mie Tanaka
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Kubota
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroyuki Uematsu
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kukita
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Kikuya Kato
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Shoji Kamiura
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Kanda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | | | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
7
|
Nikdouz A, Orso F. Emerging roles of 3D-culture systems in tackling tumor drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:788-804. [PMID: 38263982 PMCID: PMC10804388 DOI: 10.20517/cdr.2023.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Drug resistance that affects patients universally is a major challenge in cancer therapy. The development of drug resistance in cancer cells is a multifactor event, and its process involves numerous mechanisms that allow these cells to evade the effect of treatments. As a result, the need to understand the molecular mechanisms underlying cancer drug sensitivity is imperative. Traditional 2D cell culture systems have been utilized to study drug resistance, but they often fail to mimic the 3D milieu and the architecture of real tissues and cell-cell interactions. As a result of this, 3D cell culture systems are now considered a comprehensive model to study drug resistance in vitro. Cancer cells exhibit an in vivo behavior when grown in a three-dimensional environment and react to therapy more physiologically. In this review, we discuss the relevance of main 3D culture systems in the study of potential approaches to overcome drug resistance and in the identification of personalized drug targets with the aim of developing patient-specific treatment strategies that can be put in place when resistance emerges.
Collapse
Affiliation(s)
| | - Francesca Orso
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy
| |
Collapse
|
8
|
Coppo R, Kondo J, Onuma K, Inoue M. Tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. STAR Protoc 2023; 4:102395. [PMID: 37384521 PMCID: PMC10511865 DOI: 10.1016/j.xpro.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Patient-derived tumor organoids are three-dimensionally cultured cancer cells that enable a suitable platform for studying heterogeneity and plasticity of cancer. We present a protocol for tracking the growth fate of single cells and isolating slow-growing cells in human colorectal cancer organoids. We describe steps for organoid preparation and culturing using the cancer-tissue-originating spheroid method, maintaining cell-cell contact throughout. We then detail a single-cell-derived spheroid-forming and growth assay, confirming single-cell plating, monitoring growth over time, and isolating slow-growing cells. For complete details on the use and execution of this protocol, please refer to Coppo et al.1.
Collapse
Affiliation(s)
- Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Yan HHN, Chan AS, Lai FPL, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell 2023; 30:917-937. [PMID: 37315564 DOI: 10.1016/j.stem.2023.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Organoids derived from adult stem cells (ASCs) and pluripotent stem cells (PSCs) are important preclinical models for studying cancer and developing therapies. Here, we review primary tissue-derived and PSC-derived cancer organoid models and detail how they have the potential to inform personalized medical approaches in different organ contexts and contribute to the understanding of early carcinogenic steps, cancer genomes, and biology. We also compare the differences between ASC- and PSC-based cancer organoid systems, discuss their limitations, and highlight recent improvements to organoid culture approaches that have helped to make them an even better representation of human tumors.
Collapse
Affiliation(s)
- Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Frank Pui-Ling Lai
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
10
|
Nashimoto Y, Shishido S, Onuma K, Ino K, Inoue M, Shiku H. Oxygen metabolism analysis of a single organoid for non-invasive discrimination of cancer subpopulations with different growth capabilities. Front Bioeng Biotechnol 2023; 11:1184325. [PMID: 37274161 PMCID: PMC10232988 DOI: 10.3389/fbioe.2023.1184325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Heterogeneous nature is a pivotal aspect of cancer, rendering treatment problematic and frequently resulting in recurrence. Therefore, advanced techniques for identifying subpopulations of a tumour in an intact state are essential to develop novel screening platforms that can reveal differences in treatment response among subpopulations. Herein, we conducted a non-invasive analysis of oxygen metabolism on multiple subpopulations of patient-derived organoids, examining its potential utility for non-destructive identification of subpopulations. We utilised scanning electrochemical microscopy (SECM) for non-invasive analysis of oxygen metabolism. As models of tumours with heterogeneous subpopulations, we used patient-derived cancer organoids with a distinct growth potential established using the cancer tissue-originated spheroid methodology. Scanning electrochemical microscopy measurements enabled the analysis of the oxygen consumption rate (OCR) for individual organoids as small as 100 µm in diameter and could detect the heterogeneity amongst studied subpopulations, which was not observed in conventional colorectal cancer cell lines. Furthermore, our oxygen metabolism analysis of pre-isolated subpopulations with a slow growth potential revealed that oxygen consumption rate may reflect differences in the growth rate of organoids. Although the proposed technique currently lacks single-cell level sensitivity, the variability of oxygen metabolism across tumour subpopulations is expected to serve as an important indicator for the discrimination of tumour subpopulations and construction of novel drug screening platforms in the future.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Institute of Bioengineering and Biomaterials (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Shotaro Shishido
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | | | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Inoue
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|