1
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
2
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Mei S, Li D, Wang A, Zhu G, Zhou B, Li N, Qin Y, Zhang Y, Jiang S. The role of sialidase Neu1 in respiratory diseases. Respir Res 2024; 25:134. [PMID: 38500102 PMCID: PMC10949680 DOI: 10.1186/s12931-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.
Collapse
Affiliation(s)
- Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Dingding Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingwen Zhou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Qin
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Willett JDS, Gravel A, Dubuc I, Gudimard L, Dos Santos Pereira Andrade AC, Lacasse É, Fortin P, Liu JL, Cervantes JA, Galvez JH, Djambazian HHV, Zwaig M, Roy AM, Lee S, Chen SH, Ragoussis J, Flamand L. SARS-CoV-2 rapidly evolves lineage-specific phenotypic differences when passaged repeatedly in immune-naïve mice. Commun Biol 2024; 7:191. [PMID: 38365933 PMCID: PMC10873417 DOI: 10.1038/s42003-024-05878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The persistence of SARS-CoV-2 despite the development of vaccines and a degree of herd immunity is partly due to viral evolution reducing vaccine and treatment efficacy. Serial infections of wild-type (WT) SARS-CoV-2 in Balb/c mice yield mouse-adapted strains with greater infectivity and mortality. We investigate if passaging unmodified B.1.351 (Beta) and B.1.617.2 (Delta) 20 times in K18-ACE2 mice, expressing the human ACE2 receptor, in a BSL-3 laboratory without selective pressures, drives human health-relevant evolution and if evolution is lineage-dependent. Late-passage virus causes more severe disease, at organism and lung tissue scales, with late-passage Delta demonstrating antibody resistance and interferon suppression. This resistance co-occurs with a de novo spike S371F mutation, linked with both traits. S371F, an Omicron-characteristic mutation, is co-inherited at times with spike E1182G per Nanopore sequencing, existing in different within-sample viral variants at others. Both S371F and E1182G are linked to mammalian GOLGA7 and ZDHHC5 interactions, which mediate viral-cell entry and antiviral response. This study demonstrates SARS-CoV-2's tendency to evolve with phenotypic consequences, its evolution varying by lineage, and suggests non-dominant quasi-species contribution.
Collapse
Affiliation(s)
- Julian Daniel Sunday Willett
- Quantitative Life Sciences Ph.D. Program, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Annie Gravel
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Isabelle Dubuc
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Leslie Gudimard
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | | | - Émile Lacasse
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Paul Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Ju-Ling Liu
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Avila Cervantes
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Haig Hugo Vrej Djambazian
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Zwaig
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Anne-Marie Roy
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sally Lee
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shu-Huang Chen
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Louis Flamand
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Yang X, Kang J, Xing Z, Sun Y, Liu Z, Li N, Niu J. Bibliometric analysis of RNA vaccines for cancer. Hum Vaccin Immunother 2023:2231333. [PMID: 37464256 PMCID: PMC10361146 DOI: 10.1080/21645515.2023.2231333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer represents a challenging medical problem worldwide. Several exploratory studies have been conducted to overcome these limitations. RNA vaccines play an important role in cancer prevention and treatment. Recent studies have shown that RNA vaccines play an important role in cancer prevention. However, there are currently no relevant bibliometric studies. This study aimed to apply bibliometrics to summarize the knowledge structure and research hotspots regarding the role of RNA vaccines in cancer. Publications related to RNA vaccines in cancer were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace and R package "bibliometrix" were used to conduct this bibliometric analysis. A total of 1399 articles were included, comprising 803 original articles and 596 reviews. The number of studies on RNA vaccines against cancer has been increasing annually. China and the United States were the principal countries of origin of publications. Johannes Gutenberg University Mainz, NCI, and Duke University were the main organizations. Frontiers in Immunology is the leading journal in the field. Hot keywords included tumor antigens, lipid nanoparticles, emerging roles, and dendritic cells. This is the bibliometric study to summarize the research trends and development of RNA vaccines for cancer. This information will provide a reference for researchers studying RNA vaccines against cancer.
Collapse
Affiliation(s)
- Xue Yang
- Blood Sample Collection, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Kang
- Department of Urology, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Zhaohui Xing
- Department of Urology, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Yongtao Sun
- Department of CT, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Zhipeng Liu
- Department of CT, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Nannan Li
- Department of Plastic Surgery, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Jirui Niu
- Department of Urology, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Harless WW, Lewis B, Qorri B, Abdulkhalek S, Szewczuk MR. Novel Therapeutic Target Critical for SARS-CoV-2 Infectivity and Induction of the Cytokine Release Syndrome. Cells 2023; 12:cells12091332. [PMID: 37174732 PMCID: PMC10177205 DOI: 10.3390/cells12091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
We discovered a novel therapeutic target critical for SARS-CoV-2, cellular infectivity and the induction of the cytokine release syndrome. Here, we show that the mammalian enzyme neuraminidase-1 (Neu-1) is part of a highly conserved signaling platform that regulates the dimerization and activation of the ACE2 receptors and the Toll-like receptors (TLRs) implicated in the cytokine release syndrome (CRS). Activated Neu-1 cleaves glycosylated residues that provide a steric hindrance to both ACE2 and TLR dimerization, a process critical to both viral attachment to the receptor and entry into the cell and TLR activation. Blocking Neu-1 inhibited ACE2 receptor dimerization and internalization, TLR dimerization and activation, and the expression of several key inflammatory molecules implicated in the CRS and death from ARDS. Treatments that target Neu-1 are predicted to be highly effective against infection with SARS-CoV-2, given the central role played by this enzyme in viral cellular entry and the induction of the CRS.
Collapse
Affiliation(s)
| | - Beth Lewis
- ENCYT Technologies Inc., Membertou, NS B1S 0H1, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Samar Abdulkhalek
- Faculty of Health Sciences, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|