1
|
Doi H, Nakano T, Sakakura K, Akisawa K, Okuwaki K, Hirano Y, Yamamoto E, Yasuoka K, Ohshima S, Katagiri T, Mochizuki Y. Large-Scale FMO-MP2 Calculations of the Spike Protein Droplet Model. J Comput Chem 2025; 46:e70052. [PMID: 39894970 PMCID: PMC11788466 DOI: 10.1002/jcc.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
The spike protein of SARS-CoV-2 is a challenging target for theoretical approaches. Here we report a benchmark calculation of the spike protein droplet model by the fragment molecular orbital (FMO) at the second-order Møller-Plesset perturbation (MP2) level on the supercomputer Fugaku. One hundred structure samples from molecular dynamics (MD) simulations were used for both the closed and open forms of this protein (PDB IDs 6XLU and 6XM0 respectively). The number of total fragments is about 20,000, and the job time per structure was about 2 h on 8 racks of Fugaku.
Collapse
Affiliation(s)
- Hideo Doi
- Department of Chemistry and Research Center for Smart Molecules, Faculty of ScienceRikkyo UniversityTokyoJapan
| | - Tatsuya Nakano
- Department of HPC SupportResearch Organization for Information Science and TechnologyKobeJapan
| | | | - Kazuki Akisawa
- Department of Chemistry and Research Center for Smart Molecules, Faculty of ScienceRikkyo UniversityTokyoJapan
| | - Koji Okuwaki
- Department of Chemistry and Research Center for Smart Molecules, Faculty of ScienceRikkyo UniversityTokyoJapan
- JSOL Corp., KUDAN‐KAIKAN TERRACETokyoJapan
| | - Yoshinori Hirano
- Department of Mechanical EngineeringKeio UniversityYokohamaKanagawaJapan
| | - Eiji Yamamoto
- Department of System Design EngineeringKeio UniversityYokohamaKanagawaJapan
| | - Kenji Yasuoka
- Department of Mechanical EngineeringKeio UniversityYokohamaKanagawaJapan
| | - Satoshi Ohshima
- Research Institute for Information Technology, Kyushu UniversityFukuokaJapan
| | | | - Yuji Mochizuki
- Department of Chemistry and Research Center for Smart Molecules, Faculty of ScienceRikkyo UniversityTokyoJapan
- Institute of Industrial Science, the University of TokyoTokyoJapan
| |
Collapse
|
2
|
Long Y, Dimde M, Adler JM, Vidal RM, Povolotsky TL, Nickl P, Achazi K, Trimpert J, Kaufer BB, Haag R, Nie C. Sulfated Cellulose Nanofiber Hydrogel with Mucus-Like Activities for Virus Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67504-67513. [PMID: 39582136 DOI: 10.1021/acsami.4c17998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Mucus is the first defense barrier against viruses in the human immune system. Inspired by the mucus structure, we designed a highly sulfated hydrogel to bind viruses and prevent infection of the underlying cells. The hydrogel was formed by gelation of sulfated cellulose nanofiber (SCNF) with Ca2+. SCNF exhibited a mucin-like nanofiber structure with high numbers of sulfated groups. Based on the electrostatic interactions with a virus, SCNF could efficiently inhibit herpes simplex virus-1 (HSV-1) infection with a half-maximal inhibitory concentration (IC50) of 0.43 μg/mL, which is comparable to that of heparin (IC50 = 0.30 μg/mL). Benefiting from the multiporous structure and sulfate groups, the Ca2+-SCNF hydrogel could efficiently trap HSV-1 and inhibit the virus from attacking the underlying cells in a transwell model. Furthermore, SCNF also inhibited SARS-CoV-2 infection in a similar experimental setting. By integrating the advantages of high and broad-spectrum virus inhibitory activity as well as low toxicity, it is believed that the Ca2+-SCNF hydrogel can promote the development of highly biocompatible and efficient antiviral material with "binding and inhibition" capability and other diverse strategies.
Collapse
Affiliation(s)
- Yanping Long
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Mathias Dimde
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Freie Universität Berlin, Fabeckstraße 36A, 14195 Berlin, Germany
| | - Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Ricardo Martin Vidal
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Tatyana L Povolotsky
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Philip Nickl
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Chuanxiong Nie
- Institute for Chemistry und Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Maciel-Guerra A, Babaarslan K, Baker M, Rahman A, Hossain M, Sadique A, Alam J, Uzzaman S, Ferdous Rahman Sarker M, Sultana N, Islam Khan A, Ara Begum Y, Hassan Afrad M, Senin N, Hossain Habib Z, Shirin T, Qadri F, Dottorini T. Core and accessory genomic traits of Vibrio cholerae O1 drive lineage transmission and disease severity. Nat Commun 2024; 15:8231. [PMID: 39313510 PMCID: PMC11420230 DOI: 10.1038/s41467-024-52238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence and spreading ability. However, our understanding of the genomic determinants influencing lineage transmission and disease severity remains incomplete. Here, we developed a computational framework using machine-learning, genome scale metabolic modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with virulence, motility and bacteriophage resistance functions. We also found a strong correlation between V. cholerae genomic traits and disease severity, with some traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a complex interplay between transcription regulation, protein interaction and stability, and metabolic networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera spread.
Collapse
Affiliation(s)
- Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Kubra Babaarslan
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Salim Uzzaman
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Ferdous Rahman Sarker
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nasrin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mokibul Hassan Afrad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nicola Senin
- Department of Engineering, University of Perugia, 06125, Perugia, Italy
| | - Zakir Hossain Habib
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| |
Collapse
|
4
|
Zhu B, Lin H, Huang JS, Zhang W. Semi-Covariance Coefficient Analysis of Spike Proteins from SARS-CoV-2 and Its Variants Omicron, BA.5, EG.5, and JN.1 for Viral Infectivity, Virulence and Immune Escape. Viruses 2024; 16:1192. [PMID: 39205166 PMCID: PMC11360586 DOI: 10.3390/v16081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Semi-covariance has attracted significant attention in recent years and is increasingly employed to elucidate statistical phenomena exhibiting fluctuations, such as the similarity or difference in charge patterns of spike proteins among coronaviruses. In this study, by examining values above and below the average/mean based on the positive and negative charge patterns of amino acid residues in the spike proteins of SARS-CoV-2 and its current circulating variants, the proposed methods offer profound insights into the nonlinear evolving trends in those viral spike proteins. Our study indicates that the charge span value can predict the infectivity of the virus and the charge density can estimate the virulence of the virus, and both predicated infectivity and virulence appear to be associated with the capability of viral immune escape. This semi-covariance coefficient analysis may be used not only to predict the infectivity, virulence and capability of immune escape for coronaviruses but also to analyze the functionality of other viral proteins. This study improves our understanding of the trend of viral evolution in terms of viral infectivity, virulence or the capability of immune escape, which remains further validated by more future studies and statistical data.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Electrical and Computer engineering, Western University, London, ON N6A 5B9, Canada;
| | - Huancheng Lin
- School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jun Steed Huang
- School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, Building M54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
6
|
Luo L, Lv J. An evolutionary theory on virus mutation in COVID-19. Virus Res 2024; 344:199358. [PMID: 38508401 PMCID: PMC10979259 DOI: 10.1016/j.virusres.2024.199358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
With the rapid evolution of SARS-CoV-2, the emergence of new strains is an intriguing question. This paper presents an evolutionary theory to analyze the mutations of the virus and identify the conditions that lead to the generation of new strains. We represent the virus variants using a 4-letter sequence based on amino acid mutations on the spike protein and employ an n-distance algorithm to derive a variant phylogenetic tree. We show that the theoretically-derived tree aligns with experimental data on virus evolution. Additionally, we propose an A-X model, utilizing the set of existing mutation sites (A) and a set of randomly generated sites (X), to calculate the emergence of new strains. Our findings demonstrate that a sufficient number of random iterations can predict the generation of new macro-lineages when the number of sites in X is large enough. These results provide a crucial theoretical basis for understanding the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Liaofu Luo
- Faculty of Physical Science and Technology, Inner Mongolia University, 235 West College Road, Hohhot 010021, China.
| | - Jun Lv
- College of Science, Inner Mongolia University of Technology, 49 Aymin Street, Hohhot 010051, China.
| |
Collapse
|
7
|
Božič A, Podgornik R. Changes in total charge on spike protein of SARS-CoV-2 in emerging lineages. BIOINFORMATICS ADVANCES 2024; 4:vbae053. [PMID: 38645718 PMCID: PMC11031363 DOI: 10.1093/bioadv/vbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Motivation Charged amino acid residues on the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to influence its binding to different cell surface receptors, its non-specific electrostatic interactions with the environment, and its structural stability and conformation. It is therefore important to obtain a good understanding of amino acid mutations that affect the total charge on the spike protein which have arisen across different SARS-CoV-2 lineages during the course of the virus' evolution. Results We analyse the change in the number of ionizable amino acids and the corresponding total charge on the spike proteins of almost 2200 SARS-CoV-2 lineages that have emerged over the span of the pandemic. Our results show that the previously observed trend toward an increase in the positive charge on the spike protein of SARS-CoV-2 variants of concern has essentially stopped with the emergence of the early omicron variants. Furthermore, recently emerged lineages show a greater diversity in terms of their composition of ionizable amino acids. We also demonstrate that the patterns of change in the number of ionizable amino acids on the spike protein are characteristic of related lineages within the broader clade division of the SARS-CoV-2 phylogenetic tree. Due to the ubiquity of electrostatic interactions in the biological environment, our findings are relevant for a broad range of studies dealing with the structural stability of SARS-CoV-2 and its interactions with the environment. Availability and implementation The data underlying the article are available in the Supplementary material.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
8
|
Božič A, Podgornik R. Evolutionary changes in the number of dissociable amino acids on spike proteins and nucleoproteins of SARS-CoV-2 variants. Virus Evol 2023; 9:vead040. [PMID: 37583936 PMCID: PMC10424713 DOI: 10.1093/ve/vead040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for target recognition, cellular entry, and endosomal escape of the virus. At the same time, it is the part of the virus that exhibits the greatest sequence variation across the many variants which have emerged during its evolution. Recent studies have indicated that with progressive lineage emergence, the positive charge on the spike protein has been increasing, with certain positively charged amino acids (AAs) improving the binding of the spike protein to cell receptors. We have performed a detailed analysis of dissociable AAs of more than 1400 different SARS-CoV-2 lineages, which confirms these observations while suggesting that this progression has reached a plateau with Omicron and its subvariants and that the positive charge is not increasing further. Analysis of the nucleocapsid protein shows no similar increase in positive charge with novel variants, which further indicates that positive charge of the spike protein is being evolutionarily selected for. Furthermore, comparison with the spike proteins of known coronaviruses shows that already the wild-type SARS-CoV-2 spike protein carries an unusually large amount of positively charged AAs when compared to most other betacoronaviruses. Our study sheds light on the evolutionary changes in the number of dissociable AAs on the spike protein of SARS-CoV-2, complementing existing studies and providing a stepping stone towards a better understanding of the relationship between the spike protein charge and viral infectivity and transmissibility.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, No. 3 Nanyitiao, Zhongguancun, Haidian District, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou, Zhejiang 325001, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000, Slovenia
| |
Collapse
|
9
|
Kim SH, Kearns FL, Rosenfeld MA, Votapka L, Casalino L, Papanikolas M, Amaro RE, Freeman R. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101346. [PMID: 37077408 PMCID: PMC10080732 DOI: 10.1016/j.xcrp.2023.101346] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lane Votapka
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| |
Collapse
|