1
|
Castiello MC, Brandas C, Capo V, Villa A. HyperIgE in hypomorphic recombination-activating gene defects. Curr Opin Immunol 2023; 80:102279. [PMID: 36529093 DOI: 10.1016/j.coi.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
2
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Merayo-Chalico J, Rajme-López S, Barrera-Vargas A, Alcocer-Varela J, Díaz-Zamudio M, Gómez-Martín D. Lymphopenia and autoimmunity: A double-edged sword. Hum Immunol 2016; 77:921-929. [DOI: 10.1016/j.humimm.2016.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023]
|
4
|
Genetics of allergy and allergic sensitization: common variants, rare mutations. Curr Opin Immunol 2015; 36:115-26. [PMID: 26386198 DOI: 10.1016/j.coi.2015.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
Abstract
Our understanding of the specific genetic lesions in allergy has improved in recent years due to identification of common risk variants from genome-wide association studies (GWAS) and studies of rare, monogenic diseases. Large-scale GWAS have identified novel susceptibility loci and provided information about shared genetics between allergy, related phenotypes and autoimmunity. Studies of monogenic diseases have elucidated critical cellular pathways and protein functions responsible for allergy. These complementary approaches imply genetic mechanisms involved in Th2 immunity, T-cell differentiation, TGFβ signaling, regulatory T-cell function and skin/mucosal function as well as yet unknown mechanisms associated with newly identified genes. Future studies, in combination with data on gene expression and epigenetics, are expected to increase our understanding of the pathogenesis of allergy.
Collapse
|
5
|
Todoric K, Koontz JB, Mattox D, Tarrant TK. Autoimmunity in immunodeficiency. Curr Allergy Asthma Rep 2013; 13:361-70. [PMID: 23591608 DOI: 10.1007/s11882-013-0350-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiencies (PID) comprise a diverse group of clinical disorders with varied genetic defects. Paradoxically, a substantial proportion of PID patients develop autoimmune phenomena in addition to having increased susceptibility to infections from their impaired immunity. Although much of our understanding comes from data gathered through experimental models, there are several well-characterized PID that have improved our knowledge of the pathways that drive autoimmunity. The goals of this review will be to discuss these immunodeficiencies and to review the literature with respect to the proposed mechanisms for autoimmunity within each put forth to date.
Collapse
Affiliation(s)
- Krista Todoric
- Division of Allergy and Immunology, Dept of Pediatrics, University of North Carolina Hospitals, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
6
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
7
|
Ploix CC, Noor S, Crane J, Masek K, Carter W, Lo DD, Wilson EH, Carson MJ. CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain Behav Immun 2011; 25:883-96. [PMID: 20868739 PMCID: PMC3032828 DOI: 10.1016/j.bbi.2010.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Injury, infection and autoimmune triggers increase CNS expression of the chemokine CCL21. Outside the CNS, CCL21 contributes to chronic inflammatory disease and autoimmunity by three mechanisms: recruitment of lymphocytes into injured or infected tissues, organization of inflammatory infiltrates into lymphoid-like structures and promotion of homeostatic CD4+ T-cell proliferation. To test if CCL21 plays the same role in CNS inflammation, we generated transgenic mice with astrocyte-driven expression of CCL21 (GFAP-CCL21 mice). Astrocyte-produced CCL21 was bioavailable and sufficient to support homeostatic CD4+ T-cell proliferation in cervical lymph nodes even in the absence of endogenous CCL19/CCL21. However, lymphocytes and glial-activation were not detected in the brains of uninfected GFAP-CCL21 mice, although CCL21 levels in GFAP-CCL21 brains were higher than levels expressed in inflamed Toxoplasma-infected non-transgenic brains. Following Toxoplasma infection, T-cell extravasation into submeningeal, perivascular and ventricular sites of infected CNS was not CCL21-dependent, occurring even in CCL19/CCL21-deficient mice. However, migration of extravasated CD4+, but not CD8+ T cells from extra-parenchymal CNS sites into the CNS parenchyma was CCL21-dependent. CD4+ T cells preferentially accumulated at perivascular, submeningeal and ventricular spaces in infected CCL21/CCL19-deficient mice. By contrast, greater numbers of CD4+ T cells infiltrated the parenchyma of infected GFAP-CCL21 mice than in wild-type or CCL19/CCL21-deficient mice. Together these data indicate that CCL21 expression within the CNS has the potential to contribute to T cell-mediated CNS pathology via: (a) homeostatic priming of CD4+ T-lymphocytes outside the CNS and (b) by facilitating CD4+ T-cell migration into parenchymal sites following pathogenic insults to the CNS.
Collapse
Affiliation(s)
| | - Shahani Noor
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, Graduate Program in Biomedical Sciences, University of California Riverside
| | - Janelle Crane
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Kokoechat Masek
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Whitney Carter
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - David D. Lo
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Emma H. Wilson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside,Correspondence should be directed to: Emma H. Wilson and Monica J. Carson, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92421, Tel: 951-827-2584, FAX: 951-827-5504, ,
| | - Monica J. Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside,Correspondence should be directed to: Emma H. Wilson and Monica J. Carson, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92421, Tel: 951-827-2584, FAX: 951-827-5504, ,
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Severe combined immunodeficiencies represent a heterogeneous group of genetic disorders affecting genes of both early and late steps in lymphocytes development, a process tightly controlled by thymic epithelial cells. Detailed analysis of thymic morphology aids to the assessment of the severity of the immune disorder and may be critical to the understanding of the role of the genetic defects in the pathophysiology of these diseases. In this review, we highlight recent advancements in the characterization of the thymic microenvironment in primary immunodeficiencies. RECENT FINDINGS Crosstalk between thymocytes and thymic epithelial cells is essential to preserve thymic architecture and function, and therefore to promote T-cell maturation and development of self-tolerance. Early severe defects in T-cell development result in profound abnormalities of thymic epithelial cells differentiation with loss of AIRE expression and severe reduction of thymic dendritic and T-regulatory cells. Differently, later defects in T-cell development that are permissive for normal thymocytes development allow cortico-medullary differentiation with partially preserved AIRE expression and dendritic/T-regulatory cells distribution. Hypomorphic mutations in the same genes partially permissive to T-cell development may result in a more complex phenotype with immunodysreactivity and peculiar thymic alterations. SUMMARY Although the molecular and genetic bases of primary immunodeficiencies directly aid to both diagnosis and management of the patients, the detailed analysis of thymic morphology critically contributes to unveil the pathophysiology of these diseases.
Collapse
|
9
|
Congenic mice confirm that collagen X is required for proper hematopoietic development. PLoS One 2010; 5:e9518. [PMID: 20209091 PMCID: PMC2831078 DOI: 10.1371/journal.pone.0009518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 02/06/2010] [Indexed: 12/21/2022] Open
Abstract
The link between endochondral skeletal development and hematopoiesis in the marrow was established in the collagen X transgenic (Tg) and null (KO) mice. Disrupted function of collagen X, a major hypertrophic cartilage matrix protein, resulted in skeletal and hematopoietic defects in endochondrally derived tissues. Manifestation of the disease phenotype was variable, ranging from perinatal lethality in a subset of mice, to altered lymphopoiesis and impaired immunity in the surviving mice. To exclude contribution of strain specific modifiers to this variable manifestation of the skeleto-hematopoietic phenotype, C57Bl/6 and DBA/2J collagen X congenic lines were established. Comparable disease manifestations confirmed that the skeleto-hematopoietic alterations are an inherent outcome of disrupted collagen X function. Further, colony forming cell assays, complete blood count analysis, serum antibody ELISA, and organ outgrowth studies established altered lymphopoiesis in all collagen X Tg and KO mice and implicated opportunistic infection as a contributor to the severe disease phenotype. These data support a model where endochondral ossification-specific collagen X contributes to the establishment of a hematopoietic niche at the chondro-osseous junction.
Collapse
|
10
|
Abstract
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Collapse
Affiliation(s)
- Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - Hidehiro Yamane
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| |
Collapse
|
11
|
Ktiouet S, Bertrand Y, Rival-Tringali AL, Kanitakis J, Malcus C, Poitevin F, Picard C, Claudy A, Faure M. Omenn syndrome due to mutation of the RAG2 gene. J Eur Acad Dermatol Venereol 2009; 23:1449-51. [PMID: 19470080 DOI: 10.1111/j.1468-3083.2009.03232.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Ozcan E, Notarangelo LD, Geha RS. Primary immune deficiencies with aberrant IgE production. J Allergy Clin Immunol 2009; 122:1054-62; quiz 1063-4. [PMID: 19084106 DOI: 10.1016/j.jaci.2008.10.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/13/2008] [Accepted: 10/22/2008] [Indexed: 12/18/2022]
Abstract
IgE antibodies play a central role in the pathogenesis of atopic diseases and in host immunity against parasitic infections. IgE has potent activities on mast cells and basophils. IgE class switching is a very tightly controlled process, and serum IgE levels are very low compared with other immunoglobulin isotypes. Transcription factors that activate or inhibit the IgE gene promoter, as well as T(H)1 and T(H)2 cytokines are important in the regulation of IgE levels. Hyper-IgE syndrome; Wiskott-Aldrich syndrome; immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX); Omenn syndrome; and atypical complete DiGeorge syndrome are primary immune deficiencies that are associated with elevated serum IgE levels. Increased IgE levels in IPEX, Wiskott-Aldrich syndrome and Omenn syndrome are likely related to increased T(H)2 cytokine production caused by decreased a number or function of CD4(+)CD25(+)forkhead box protein P3(+) regulatory T cells. The link between signal transducer and activator of transcription 3 mutations and elevated serum IgE levels in hyper-IgE syndrome is unclear. Insight into IgE regulation provided by the study of primary immune deficiencies with elevated IgE has important implications for allergic diseases.
Collapse
Affiliation(s)
- Esra Ozcan
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Leaky severe combined immunodeficiency and aberrant DNA rearrangements due to a hypomorphic RAG1 mutation. Blood 2009; 113:2965-75. [PMID: 19126872 DOI: 10.1182/blood-2008-07-165167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAG1/2 endonuclease initiates programmed DNA rearrangements in progenitor lymphocytes by generating double-strand breaks at specific recombination signal sequences. This process, known as V(D)J recombination, assembles the vastly diverse antigen receptor genes from numerous V, D, and J coding segments. In vitro biochemical and cellular transfection studies suggest that RAG1/2 may also play postcleavage roles by forming complexes with the recombining ends to facilitate DNA end processing and ligation. In the current study, we examine the in vivo consequences of a mutant form of RAG1, RAG1-S723C, that is proficient for DNA cleavage, yet exhibits defects in postcleavage complex formation and end joining in vitro. We generated a knockin mouse model harboring the RAG1-S723C hypomorphic mutation and examined the immune system in this fully in vivo setting. RAG1-S723C homozygous mice exhibit impaired lymphocyte development and decreased V(D)J rearrangements. Distinct from RAG nullizygosity, the RAG1-S723C hypomorph results in aberrant DNA double-strand breaks within rearranging loci. RAG1-S723C also predisposes to thymic lymphomas associated with chromosomal translocations in a p53 mutant background, and heterozygosity for the mutant allele accelerates age-associated immune system dysfunction. Thus, our study provides in vivo evidence that implicates aberrant RAG1/2 activity in lymphoid tumor development and premature immunosenescence.
Collapse
|
14
|
Baker LA, Allis CD, Wang GG. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 2008; 647:3-12. [PMID: 18682256 PMCID: PMC2656448 DOI: 10.1016/j.mrfmmm.2008.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/04/2008] [Indexed: 12/14/2022]
Abstract
Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved "reader/effector" modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized "reader" modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., "writers" and "erasers") are already known to be involved in various human diseases, mutations in the modification-specific "reader" proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein "chromatin readers" stand as potential drug targets.
Collapse
Affiliation(s)
- Lindsey A. Baker
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - Gang G. Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| |
Collapse
|
15
|
Sweeney E, Campbell M, Watkins K, Hunter CA, Jacenko O. Altered endochondral ossification in collagen X mouse models leads to impaired immune responses. Dev Dyn 2008; 237:2693-704. [PMID: 18629872 DOI: 10.1002/dvdy.21594] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of collagen X function in hypertrophic cartilage undergoing endochondral ossification was previously linked to altered hematopoiesis in collagen X transgenic (Tg) and null (KO) mice (Jacenko et al., [2002] Am J Pathol 160:2019-2034). Mice displayed altered growth plates, diminished trabecular bone, and marrow hypoplasia with an aberrant lymphocyte profile throughout life. This study identifies altered B220+, CD4+, and CD8+ lymphocyte numbers, as well as CD4+/fox3P+ T regulatory cells in the collagen X mice. Additionally, diminished in vitro splenocyte responses to mitogens and an inability of mice to survive a challenge with Toxoplasma gondii, confirm impaired immune responses. In concert, ELISA and protein arrays identify aberrant levels of inflammatory, chemo-attractant, and matrix binding cytokines in collagen X mouse sera. These data link the disruption of collagen X function in the chondro-osseous junction to an altered hematopoietic stem cell niche in the marrow, resulting in impaired immune function.
Collapse
Affiliation(s)
- E Sweeney
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA
| | | | | | | | | |
Collapse
|
16
|
Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol 2008; 122:1082-6. [PMID: 18992930 DOI: 10.1016/j.jaci.2008.09.037] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/10/2008] [Indexed: 02/06/2023]
Abstract
Omenn syndrome (OS) was reported until recently as a distinct form (phenotype and genotype) of severe combined immunodeficiency (SCID). Similar to other patients with SCID, patients with OS present early in infancy with viral or fungal pneumonitis, chronic diarrhea, and failure to thrive. Unlike typical SCID, patients with OS have enlarged lymphoid tissue, severe erythroderma, increased IgE levels, and eosinophilia. The inflammation observed in these patients is believed to be triggered by clonally expanded T cells, which are predominantly of the T(H)2 type. These abnormal T cells, in the absence of proper regulation by other components of the immune system, secrete a host of cytokines that promote autoimmune as well as allergic inflammation. The emergence of these T-cell clones occurs in patients with hypomorphic mutations in recombination activating gene 1 or 2, but not in patients with deleterious mutations in these enzymes which render them inactive. Recently, OS was also identified in a growing list of other leaky SCIDs with mutations in RNA component of mitochondrial RNA processing endoribonuclease, adenosine deaminase, IL-2 receptor gamma, IL-7 receptor alpha, ARTEMIS, and DNA ligase 4. This new information revealed OS is a distinct inflammatory process that can be associated with genetically diverse leaky SCIDS.
Collapse
Affiliation(s)
- Anna Villa
- Istituto Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | |
Collapse
|