1
|
Wozniak M, Czyz M. Exploring oncogenic roles and clinical significance of EZH2: focus on non-canonical activities. Ther Adv Med Oncol 2025; 17:17588359241306026. [PMID: 39776536 PMCID: PMC11705335 DOI: 10.1177/17588359241306026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. EZH2 is frequently mutated and/or its expression is deregulated in various cancer types. The cancer sensitivity to inhibitors of EZH2 enzymatic activity and state-of-the-art approaches to deplete EZH2 with chemical degraders are discussed. This review also presents the clinical trials in various phases that evaluate the use of EZH2 inhibitors, both as monotherapy and in combination with other agents for the treatment of patients with diverse types of cancers.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland
| |
Collapse
|
2
|
Vatapalli R, Rossi AP, Chan HM, Zhang J. Cancer epigenetic therapy: recent advances, challenges, and emerging opportunities. Epigenomics 2025; 17:59-74. [PMID: 39601374 DOI: 10.1080/17501911.2024.2430169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Epigenetic dysregulation is an important nexus in the development and maintenance of human cancers. This review provides an overview of how understanding epigenetic dysregulation in cancers has led to insights for novel cancer therapy development. Over the past two decades, significant strides have been made in drug discovery efforts targeting cancer epigenetic mechanisms, leading to successes in clinical development and approval of cancer epigenetic therapeutics. This article will discuss the current therapeutic rationale guiding the discovery and development of epigenetic therapeutics, key learnings from clinical experiences and new opportunities on the horizon.
Collapse
Affiliation(s)
- Rajita Vatapalli
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Alex P Rossi
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
- Biology, Flare Therapeutics, Cambridge, MA, USA
| | - Ho Man Chan
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| | - Jingwen Zhang
- AstraZeneca, Oncology Research and Development, Waltham, MA, USA
| |
Collapse
|
3
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Tang Q, Leng S, Tan Y, Cheng H, Liu Q, Wang Z, Xu Y, Zhu L, Wang C. Chitosan/dextran-based organohydrogel delivers EZH2 inhibitor to epigenetically reprogram chemo/immuno-resistance in unresectable metastatic melanoma. Carbohydr Polym 2024; 346:122645. [PMID: 39245506 DOI: 10.1016/j.carbpol.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Melanoma either intrinsically possesses resistance or rapidly acquires resistance to anti-tumor therapy, which often leads to local recurrence or distant metastasis after resection. In this study, we found histone 3 lysine 27 (H3K27) demethylated by an inhibitor of histone methyltransferase EZH2 could epigenetically reverse the resistance to chemo-drug paclitaxel (PTX), or enhance the efficacy of immune checkpoint inhibitor anti-TIGIT via downregulating TIGIT ligand CD155. Next, to address the complexity in the combination of multiple bioactive molecules with distinct therapeutic properties, we developed a polysaccharides-based organohydrogel (OHG) configured with a heterogenous network. Therein, hydroxypropyl chitosan (HPC)-stabilized emulsions for hydrophobic drug entrapment were crosslinked with oxidized dextran (Odex) to form a hydrophilic gel matrix to facilitate antibody accommodation, which demonstrated a tunable sustained release profile by optimizing emulsion/gel volume ratios. As results, local injection of OHG loaded with EZH2 inhibitor UNC1999, PTX and anti-TIGIT did not only synergistically enhance the cytotoxicity of PTX, but also reprogrammed the immune resistance via bi-directionally blocking TIGIT/CD155 axis, leading to the recruitment of cytotoxic effector cells into tumor and conferring a systemic immune memory to prevent lung metastasis. Hence, this polysaccharides-based OHG represents a potential in-situ epigenetic-, chemo- and immunotherapy platform to treat unresectable metastatic melanoma.
Collapse
Affiliation(s)
- Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China
| | - Yinqiu Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China
| | - Huan Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong 523710, PR China
| | - Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, No.245, People East Road, Kunming 650051, PR China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China.
| | - Linyu Zhu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China.
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Department of neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, PR China.
| |
Collapse
|
5
|
Zhou X, Man M, Cui M, Zhou X, Hu Y, Liu Q, Deng Y. Relationship between EZH2 expression and prognosis of patients with hepatocellular carcinoma using a pathomics predictive model. Heliyon 2024; 10:e38562. [PMID: 39640777 PMCID: PMC11619983 DOI: 10.1016/j.heliyon.2024.e38562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) is overexpressed in hepatocellular carcinoma, promoting tumorigenesis and correlating with poor prognosis. Traditional histopathological examinations are insufficient to accurately predict hepatocellular carcinoma (HCC) survival; however, pathomics models can predict EZH2 expression and HCC prognosis. This study aimed to investigate the relationship between pathomics features and EZH2 expression for predicting overall survival of patients with HCC. Methods We analyzed 267 patients with HCC from the Cancer Genome Atlas database, with available pathological images and gene expression data. RNA sequencing data were divided into high and low EZH2 expression groups for prognosis and survival analysis. Pathological image features were screened using mRMR_RFE. A pathological model was constructed using a gradient boosting machine (GBM) algorithm, and efficiency evaluation and survival analysis of the model were performed. The R package "survminer" took the pathomics score (PS) cutoff value of 0.4628 to divide the patients into two groups: high and low PS expression. Survival analyses included Kaplan-Meier curve analysis, univariate and multivariate Cox regression analyses, and interaction tests. Potential pathomechanisms were explored through enrichment, differential, immune cell infiltration abundance, and gene mutation analyses. Result EZH2 was highly expressed in tumor samples but poorly expressed in normal tissue samples. Univariate and multivariate Cox regression analyses revealed that EZH2 was an independent risk factor for HCC (hazard ratio [HR], 2.792 and 3.042, respectively). Seven imaging features were selected to construct a pathomics model to predict EZH2. Decision curve analysis showed that the model had high clinical utility. Multivariate Cox regression analysis showed that high PS expression was an independent risk factor for HCC prognosis (HR, 2.446). The Kaplan-Meier curve showed that high PS expression was a risk factor for overall survival. Conclusion EZH2 expression can affect the prognosis of patients with liver cancer. Our pathological model could predict EZH2 expression and prognosis of patients with HCC with high accuracy and robustness, making it a new and potentially valuable tool.
Collapse
Affiliation(s)
- Xulin Zhou
- Department of Oncology, Hefei BOE Hospital, Hefei, PR China
| | - Muran Man
- Department of Oncology, People's Hospital of Shizhong District, Zaozhuang City, Shandong Province, PR China
| | - Min Cui
- Affiliated Hospital Of Jining Medical University (Shanxian Central Hospital), Heze City, Shandong Province, PR China
| | - Xiang Zhou
- People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, Xinjiang, CN, PR China
| | - Yan Hu
- Department of Oncology, Hefei BOE Hospital, Hefei, PR China
| | - Qinghua Liu
- Department of Oncology, Deyang People's Hospital, Deyang, Sichuan, CN, PR China
| | - Youxing Deng
- Department of Oncology, Hefei BOE Hospital, Hefei, PR China
| |
Collapse
|
6
|
Dang T, Guan X, Cui L, Ruan Y, Chen Z, Zou H, Lan Y, Liu C, Zhang Y. Epigenetics and immunotherapy in colorectal cancer: progress and promise. Clin Epigenetics 2024; 16:123. [PMID: 39252116 PMCID: PMC11385519 DOI: 10.1186/s13148-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor with the third and second highest incidence and mortality rates among various malignant tumors. Despite significant advancements in the present therapy for CRC, the majority of CRC cases feature proficient mismatch repair/microsatellite stability and have no response to immunotherapy. Therefore, the search for new treatment options holds immense importance in the diagnosis and treatment of CRC. In recent years, clinical research on immunotherapy combined with epigenetic therapy has gradually increased, which may bring hope for these patients. This review explores the role of epigenetic regulation in exerting antitumor effects through its action on immune cell function and highlights the potential of certain epigenetic genes that can be used as markers of immunotherapy to predict therapeutic efficacy. We also discuss the application of epigenetic drug sensitization immunotherapy to develop new treatment options combining epigenetic therapy and immunotherapy.
Collapse
Affiliation(s)
- Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Ya Lan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| |
Collapse
|
7
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
8
|
Sen T, Takahashi N, Chakraborty S, Takebe N, Nassar AH, Karim NA, Puri S, Naqash AR. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat Rev Clin Oncol 2024; 21:610-627. [PMID: 38965396 DOI: 10.1038/s41571-024-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody-drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naoko Takebe
- Developmental Therapeutics Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Amin H Nassar
- Division of Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagla A Karim
- Inova Schar Cancer Institute Virginia, Fairfax, VA, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/ TSET Phase 1 program, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Paolini RL, Souroullas GP. The Cell Cycle: a Key to Unlock EZH2-targeted Therapy Resistance. Cancer Discov 2024; 14:903-905. [PMID: 38826100 DOI: 10.1158/2159-8290.cd-24-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
SUMMARY In this issue, a study by Kazansky and colleagues explored resistance mechanisms after EZH2 inhibition in malignant rhabdoid tumors (MRT) and epithelioid sarcomas (ES). The study identified genetic alterations in EZH2 itself, along with alterations that converge on RB1-E2F-mediated cell-cycle control, and demonstrated that inhibition of cell-cycle kinases, such as Aurora Kinase B (AURKB) could bypass EZH2 inhibitor resistance to enhance treatment efficacy. See related article by Kazansky et al., p. 965 (6).
Collapse
Affiliation(s)
- Rachel L Paolini
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - George P Souroullas
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Division of Oncology, Molecular Oncology Section, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Comprehensive Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
10
|
Zhou L, Yu CW. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment. Pharmacol Res 2024; 204:107205. [PMID: 38719195 DOI: 10.1016/j.phrs.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen receptors, progesterone receptors and lacks HER2 overexpression. This absence of critical molecular targets poses significant challenges for conventional therapies. Immunotherapy, remarkably immune checkpoint blockade, offers promise for TNBC treatment, but its efficacy remains limited. Epigenetic dysregulation, including altered DNA methylation, histone modifications, and imbalances in regulators such as BET proteins, plays a crucial role in TNBC development and resistance to treatment. Hypermethylation of tumor suppressor gene promoters and the imbalance of histone methyltransferases such as EZH2 and histone deacetylases (HDACs) profoundly influence tumor cell proliferation, survival, and metastasis. In addition, epigenetic alterations critically shape the tumor microenvironment (TME), including immune cell composition, cytokine signaling, and immune checkpoint expression, ultimately contributing to immune evasion. Targeting these epigenetic mechanisms with specific inhibitors such as EZH2 and HDAC inhibitors in combination with immunotherapy represents a compelling strategy to remodel the TME, potentially overcoming immune evasion and enhancing therapeutic outcomes in TNBC. This review aims to comprehensively elucidate the current understanding of epigenetic modulation in TNBC, its influence on the TME, and the potential of combining epigenetic therapies with immunotherapy to overcome the challenges posed by this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Linlin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chen-Wei Yu
- Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
12
|
Li X, Tian S, Shi H, Ta N, Ni X, Bai C, Zhu Z, Chen Y, Shi D, Huang H, Chen L, Hu Z, Qu L, Fang Y, Bai C. The golden key to open mystery boxes of SMARCA4-deficient undifferentiated thoracic tumor: focusing immunotherapy, tumor microenvironment and epigenetic regulation. Cancer Gene Ther 2024; 31:687-697. [PMID: 38347129 PMCID: PMC11101339 DOI: 10.1038/s41417-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
SMARCA4-deficient undifferentiated thoracic tumor is extremely invasive. This tumor with poor prognosis is easily confused with SMARCA4-deficent non-small cell lung cancer or sarcoma. Standard and efficient treatment has not been established. In this review, we summarized the etiology, pathogenesis and diagnosis, reviewed current and proposed innovative strategies for treatment and improving prognosis. Immunotherapy, targeting tumor microenvironment and epigenetic regulator have improved the prognosis of cancer patients. We summarized clinicopathological features and immunotherapy strategies and analyzed the progression-free survival (PFS) and overall survival (OS) of patients with SMARCA4-UT who received immune checkpoint inhibitors (ICIs). In addition, we proposed the feasibility of epigenetic regulation in the treatment of SMARCA4-UT. To our knowledge, this is the first review that aims to explore innovative strategies for targeting tumor microenvironment and epigenetic regulation and identify potential benefit population for immunotherapy to improve the prognosis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Sen Tian
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| | - Na Ta
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Xiang Ni
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Chenguang Bai
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhanli Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Yilin Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Dongchen Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Longpei Chen
- Department of Oncology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhenhong Hu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Lei Qu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Yao Fang
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| |
Collapse
|
13
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Shi MX, Ding X, Tang L, Cao WJ, Su B, Zhang J. PROTAC EZH2 degrader-1 overcomes the resistance of podophyllotoxin derivatives in refractory small cell lung cancer with leptomeningeal metastasis. BMC Cancer 2024; 24:504. [PMID: 38644473 PMCID: PMC11034131 DOI: 10.1186/s12885-024-12244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration. METHODS The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line. After subcutaneous inoculation of H128-Mut into nude mice, H128-LM and H128-BPM (brain parenchymal metastasis) cell lines were primarily cultured from LM and BPM tissues individually, and employed to in vitro drug testing. The SCLC-LM mouse model was established by inoculating H128-LM into nude mice via carotid artery and subjected to in vivo drug testing. RNA-seq and immunoblotting were conducted to uncover the molecular targets for LM. RESULTS The SCLC-LM mouse model was successfully established, confirmed by in vivo live imaging and histological examination. The upregulated genes included EZH2, SLC44A4, VEGFA, etc. in both BPM and LM cells, while SLC44A4 was particularly upregulated in LM cells. When combined with PROTAC EZH2 degrader-1, the drug sensitivity of cisplatin, etoposide (VP16), and teniposide (VM26) for H128-LM was significantly increased in vitro. The in vivo drug trials with SCLC-LM mouse model demonstrated that PROTAC EZH2 degrader-1 plus VM26 or cisplatin/ VP16 inhibited H128-LM tumour significantly compared to VM26 or cisplatin/ VP16 alone (P < 0.01). CONCLUSION The SCLC-LM model effectively simulates the pathophysiological process of SCLC metastasis to the leptomeninges. PROTAC EZH2 degrader-1 overcomes chemoresistance in SCLC, suggesting its potential therapeutic value for SCLC LM.
Collapse
Affiliation(s)
- Min-Xing Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xi Ding
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Liang Tang
- Department of Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Wei-Jun Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China.
| | - Bo Su
- Department of Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China.
| | - Jie Zhang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
15
|
Song Y, Jin Z, Li ZM, Liu Y, Li L, He C, Su H, Zhou H, Li K, Hao S, Zuo X, Wu J, Li D, Wu M, Sun X, Qi J, Cai Z, Li Z, Li Y, Huang Y, Shen J, Xiao Z, Zhu J. Enhancer of Zeste Homolog 2 Inhibitor SHR2554 in Relapsed or Refractory Peripheral T-cell Lymphoma: Data from the First-in-Human Phase I Study. Clin Cancer Res 2024; 30:1248-1255. [PMID: 38190117 DOI: 10.1158/1078-0432.ccr-23-2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
PURPOSE Patients with peripheral T-cell lymphomas (PTCL) in the relapsed or refractory (r/r) setting have only a limited number of therapies available, and the prognosis is extremely poor. SHR2554 is an oral inhibitor against EZH2, a rational therapeutic target for lymphomas. PATIENTS AND METHODS This was a multicenter, two-part, phase I study of SHR2554 in r/r mature lymphoid neoplasms. In part I, 350 mg twice daily was established as the recommended phase II dose (RP2D) based on the findings during dose escalation and expansion; subsequently, selected lymphoma subtypes were recruited in clinical expansion cohorts to receive SHR2554 at RP2D. Here, we provide an in-depth assessment of SHR2554 at RP2D in subpopulation with r/r PTCL. RESULTS Twenty-eight patients were included for analysis (17 angioimmunoblastic T-cell lymphoma and 11 not otherwise specified). Eighteen (64%) patients had received ≥2 lines of previous anticancer therapies. The objective response rate was 61% [95% confidence interval (CI), 41-78]. Responses were still ongoing in 59% (10/17) of the responders; estimated median duration of response was 12.3 months (95% CI, 7.4-not reached). Median progression-free survival was 11.1 months (95% CI, 5.3-22.0), and 12-month overall survival rate was 92% (95% CI, 72-98). The most common grade 3 or 4 treatment-related adverse events were decreased platelet count [nine (32%)] as well as decreased white blood cell count, decreased neutrophil count, and anemia [four (14%) for each]. No treatment-related deaths were reported. CONCLUSIONS This extended follow-up analysis further supports SHR2554 as a therapeutic opportunity for patients with r/r PTCL.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhengming Jin
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi-Ming Li
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanyan Liu
- Lymphatic Comprehensive Internal Medicine Ward, Henan Cancer Hospital, Zhengzhou, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chuan He
- Department of Hematopathology, West China Hospital Sichuan University, Chengdu, China
| | - Hang Su
- Department of Lymphoma, The Fifth Medical Center of the People's Liberation Army General Hospital, Beijing, China
| | - Hui Zhou
- Department of Lymphoma & Hematology (Children's Tumor Center), Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunyan Li
- Early Clinical Trial Center, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelan Zuo
- Department of Hematopathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuhua Sun
- Department of Lymphoma and Head and Neck Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junyuan Qi
- Good Clinical Practice Ward, Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zengjun Li
- Department of Lymphology and Hematology, Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yijing Li
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yanhua Huang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jie Shen
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zhenyu Xiao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
16
|
Huang H, Deng X, Yu L, Huang H, Wang Z, Hong H, Lin T. EZH1/2 alteration as a potential biomarker for immune checkpoint inhibitors across multiple cancer types. J Transl Med 2023; 21:913. [PMID: 38102713 PMCID: PMC10724995 DOI: 10.1186/s12967-023-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Huageng Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Le Yu
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Zhao Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Huangming Hong
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Tongyu Lin
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
18
|
Musella M, Manduca N, Maccafeo E, Sistigu A. Epigenetics behind tumor immunology: a mini review. Oncogene 2023; 42:2932-2938. [PMID: 37604925 DOI: 10.1038/s41388-023-02791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Immunogenic- and immune-therapies have become hot spots in the treatment of cancer. Although promising, these strategies are frequently associated with innate or acquired resistance, calling for combined targeting of immune inhibitory signals. Epigenetic therapy is attracting considerable attention as a combination partner for immune-based therapies due to its role in molding the state and fate of cancer and immune cells in the tumor microenvironment. Here, we describe epigenetic dysregulations in cancer, with a particular focus on those related to innate immune signaling and Type I interferons, and emphasize opportunities and current efforts to translate this knowledge into treatment regimens with improved clinical benefit.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168, Rome, Italy.
| |
Collapse
|
19
|
Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol Cancer 2023; 22:93. [PMID: 37291608 DOI: 10.1186/s12943-023-01800-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have emerged as a revolutionary cancer treatment modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However, the response rates to ICIs vary significantly among individuals and cancer types, with a notable proportion of patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing anti-tumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects. Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment that has the potential to improve the outcomes of cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
| |
Collapse
|
20
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Qiang N, Ao J, Nakamura M, Chiba T, Kusakabe Y, Kaneko T, Kurosugi A, Kogure T, Ma Y, Zhang J, Ogawa K, Kan M, Iwanaga T, Sakuma T, Kanayama K, Kanzaki H, Kojima R, Nakagawa R, Kondo T, Nakamoto S, Muroyama R, Kato J, Mimura N, Ma A, Jin J, Kato N. Alteration of the tumor microenvironment by pharmacological inhibition of EZH2 in hepatocellular carcinoma. Int Immunopharmacol 2023; 118:110068. [PMID: 37001386 DOI: 10.1016/j.intimp.2023.110068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive component 2 is overexpressed in a variety of cancers and recognized as a therapeutic target molecule. However, EZH2 possesses immunomodulatory functions in the tumor microenvironment (TME). The impact of EZH2 on TME of hepatocellular carcinoma (HCC) using immunocompetent mouse model was evaluated in the present study. UNC1999, an EZH2 inhibitor, impaired growth of the murine HCC cells (H22 cells) and induced apoptosis in a dose-dependent manner. Although UNC1999 significantly inhibited the growth of H22 cells-derived and Hepa1-6 cells-derived tumors in nonobese diabetic/severe combined immunodeficiency mice, its antitumor effect was diminished in allogenic BALB/c and C57BL/6 mice. Flow cytometric analyses of TME cells in BALB/c mice demonstrated a significant decrease in the number of interferon‑γ+ CD8+ T cells and regulatory T cells and a significant increase in the number of myeloid-derived suppressor cells (MDSCs). Administration of Gr-1 neutralizing antibody concomitant with UNC1999 restored antitumor effect accompanied by an increase in the number of CD8+ T cells followed by a decrease in the number of MDSCs. Chemokine antibody array demonstrated an enhanced expression of chemokines responsible for MDSCs recruitment such as C5a, CCL8, and CCL9. In conclusion, the study results demonstrated that EZH2 inhibitor contributed to attenuation of tumor immunity caused by TME arrangement. Combination therapy with EZH2 inhibitors and agents that reduce MDSCs might represent a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Na Qiang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuya Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akane Kurosugi
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadayoshi Kogure
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yaojia Ma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jiaqi Zhang
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoyasu Kan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Terunao Iwanaga
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takafumi Sakuma
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
23
|
Rosenthal AC, Munoz JL, Villasboas JC. Clinical advances in epigenetic therapies for lymphoma. Clin Epigenetics 2023; 15:39. [PMID: 36871057 PMCID: PMC9985856 DOI: 10.1186/s13148-023-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radiotherapy, including individualized treatment strategies, novel treatments based on monotherapies or combination therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy. RESULTS This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodgkin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain. CONCLUSION Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immunotherapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other cancer treatments to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Allison C Rosenthal
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Javier L Munoz
- Division of Hematology, Medical Oncology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - J C Villasboas
- Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
24
|
Al Khatib MHDO, Pinton G, Moro L, Porta C. Benefits and Challenges of Inhibiting EZH2 in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:1537. [PMID: 36900330 PMCID: PMC10000483 DOI: 10.3390/cancers15051537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer that is mainly associated with prior exposure to asbestos fibers. Despite being a rare cancer, its global rate is increasing and the prognosis remains extremely poor. Over the last two decades, despite the constant research of new therapeutic options, the combination chemotherapy with cisplatin and pemetrexed has remained the only first-line therapy for MPM. The recent approval of immune checkpoint blockade (ICB)-based immunotherapy has opened new promising avenues of research. However, MPM is still a fatal cancer with no effective treatments. Enhancer of zeste homolog 2 (EZH2) is a histone methyl transferase that exerts pro-oncogenic and immunomodulatory activities in a variety of tumors. Accordingly, a growing number of studies indicate that EZH2 is also an oncogenic driver in MPM, but its effects on tumor microenvironments are still largely unexplored. This review describes the state-of-the-art of EZH2 in MPM biology and discusses its potential use both as a diagnostic and therapeutic target. We highlight current gaps of knowledge, the filling of which will likely favor the entry of EZH2 inhibitors within the treatment options for MPM patients.
Collapse
Affiliation(s)
- MHD Ouis Al Khatib
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| |
Collapse
|
25
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
26
|
Zhang L, Jin J, Qin W, Jiang J, Bao W, Sun MA. Inhibition of EZH2 Causes Retrotransposon Derepression and Immune Activation in Porcine Lung Alveolar Macrophages. Int J Mol Sci 2023; 24:2394. [PMID: 36768720 PMCID: PMC9917017 DOI: 10.3390/ijms24032394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Alveolar macrophages (AMs) form the first defense line against various respiratory pathogens, and their immune response has a profound impact on the outcome of respiratory infection. Enhancer of zeste homolog 2 (EZH2), which catalyzes the trimethylation of H3K27 for epigenetic repression, has gained increasing attention for its immune regulation function, yet its exact function in AMs remains largely obscure. Using porcine 3D4/21 AM cells as a model, we characterized the transcriptomic and epigenomic alterations after the inhibition of EZH2. We found that the inhibition of EZH2 causes transcriptional activation of numerous immune genes and inhibits the subsequent infection by influenza A virus. Interestingly, specific families of transposable elements, particularly endogenous retrovirus elements (ERVs) and LINEs which belong to retrotransposons, also become derepressed. While some of the derepressed ERV families are pig-specific, a few ancestral families are known to be under EZH2-mediated repression in humans. Given that derepression of ERVs can promote innate immune activation through "viral mimicry", we speculate that ERVs may also contribute to the coinciding immune activation in AMs after the inhibition of EZH2. Overall, this study improves the understanding of the EZH2-related immune regulation in AMs and provides novel insights into the epigenetic regulation of retrotransposons in pigs.
Collapse
Affiliation(s)
- Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jian Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weiyun Qin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Jiang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Fukano M, Alzial G, Lambert R, Deblois G. Profiling the Epigenetic Landscape of the Tumor Microenvironment Using Chromatin Immunoprecipitation Sequencing. Methods Mol Biol 2023; 2614:313-348. [PMID: 36587133 DOI: 10.1007/978-1-0716-2914-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer cells within a tumor exhibit phenotypic plasticity that allows adaptation and survival in hostile tumor microenvironments. Reprogramming of epigenetic landscapes can support tumor progression within a specific microenvironment by influencing chromatin accessibility and modulating cell identity. The profiling of epigenetic landscapes within various tumor cell populations has significantly improved our understanding of tumor progression and plasticity. This protocol describes an integrated approach using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) optimized to profile genome-wide post-translational modifications of histone tails in tumors. Essential tools amenable to ChIP-seq to isolate tumor cell populations of interest from the tumor microenvironment are also presented to provide a comprehensive approach to perform heterogeneous epigenetic landscape profiling of the tumor microenvironment.
Collapse
Affiliation(s)
- Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Gabriel Alzial
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC, Canada.
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Faculty of Pharmacy, University of Montréal, Montréal, QC, Canada.
| |
Collapse
|
28
|
Tao S, Liang S, Zeng T, Yin D. Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition. Front Immunol 2023; 13:1043667. [PMID: 36685594 PMCID: PMC9845774 DOI: 10.3389/fimmu.2022.1043667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes most primary liver cancers and is one of the most lethal and life-threatening malignancies globally. Unfortunately, a substantial proportion of HCC patients are identified at an advanced stage that is unavailable for curative surgery. Thus, palliative therapies represented by multi-tyrosine kinase inhibitors (TKIs) sorafenib remained the front-line treatment over the past decades. Recently, the application of immune checkpoint inhibitors (ICIs), especially targeting the PD-1/PD-L1/CTLA-4 axis, has achieved an inspiring clinical breakthrough for treating unresectable solid tumors. However, many HCC patients with poor responses lead to limited benefits in clinical applications, which has quickly drawn researchers' attention to the regulatory mechanisms of immune checkpoints in HCC immune evasion. Evasion of immune surveillance by cancer is attributed to intricate reprogramming modulation in the tumor microenvironment. Currently, more and more studies have found that epigenetic modifications, such as chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels, may contribute significantly to remodeling the tumor microenvironment to avoid immune clearance, affecting the efficacy of immunotherapy for HCC. This review summarizes the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discusses the mechanisms of underlying epigenetic therapies available for surmounting immune resistance. Finally, we summarize the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.
Collapse
Affiliation(s)
- Shengwei Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
29
|
Zhang C, Wang L, Xu C, Xu H, Wu Y. Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Front Pharmacol 2023; 14:1079924. [PMID: 36959853 PMCID: PMC10027765 DOI: 10.3389/fphar.2023.1079924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic strategies of multiple types of malignancies including lymphoma. However, efficiency of ICIs varies dramatically among different lymphoma subtypes, and durable response can only be achieved in a minority of patients, thus requiring unveiling the underlying mechanisms of ICI resistance to optimize the individualized regimens and improve the treatment outcomes. Recently, accumulating evidence has identified potential prognostic factors for ICI therapy, including tumor mutation burden and tumor microenvironment (TME). Given the distinction between solid tumors and hematological malignancies in terms of TME, we here review the clinical updates of ICIs for lymphoma, and focus on the underlying mechanisms for resistance induced by TME, which play important roles in lymphoma and remarkably influence its sensitivity to ICIs. Particularly, we highlight the value of multiple cell populations (e.g., tumor infiltrating lymphocytes, M2 tumor-associated macrophages, and myeloid-derived suppressor cells) and metabolites (e.g., indoleamine 2, 3-dioxygenase and adenosine) in the TME as prognostic biomarkers for ICI response, and also underline additional potential targets in immunotherapy, such as EZH2, LAG-3, TIM-3, adenosine, and PI3Kδ/γ.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiming Wang
- Shenzhen Bay Laboratory, Center for transnational medicine, Shenzhen, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| |
Collapse
|
30
|
Zeng J, Sun L, Huang J, Yang X, Hu W. Enhancer of zeste homolog 2 is a negative prognostic biomarker and correlated with immune infiltrates in meningioma. Front Neurosci 2022; 16:1076530. [PMID: 36532284 PMCID: PMC9748184 DOI: 10.3389/fnins.2022.1076530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/14/2022] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2), an important epigenetic regulator, that mainly regulates histone H3 lysine 27 trimethylation (H3K27me3) through histone methyltransferase, and participates in promoting the development of tumors. At present, the loss of H3K27me3 expression in meningioma is a poor prognostic factor, but the research of EZH2 in meningioma is rare. Therefore, we aim to explore the expression of EZH2 in the meningioma and its correlation with the prognosis and immune microenvironment and lay the foundation for the subsequently potential targeted therapy and immunotherapy for meningioma. METHODS Tissue microarray immunohistochemistry staining was performed on 276 meningioma samples from Sun Yat-sen University Cancer Center. Expression levels of EZH2, H3K27me3, Ki67, programmed cell death protein 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), CD4, CD8, CD20, FOXP3, CD68, and CD163 were evaluated. Cox regression analyses were performed, and the Kaplan-Meier (KM) method was used to construct survival curves. In addition, we use biological information methods to analyze the mRNA expression of EZH2 and its relationship with the prognosis and immune microenvironment in the gene expression omnibus (GEO) database. RESULTS Enhancer of zeste homolog 2 expression is concentrated in World Health Organization (WHO) grades 2 and 3 meningiomas (8.3+ and 33.3%+). We found that EZH2 expression was associated with a worse prognosis in meningioma (P < 0.001), the same results were confirmed in the GEO database (P < 0.001). Both EZH2 expression and H3K27me3 deletion (P = 0.035) predicted a worse prognosis, but EZH2 has no correlation with H3K27me3 expression. EZH2 expression was closely associated with increased Ki67 index (P < 0.001). In addition, EZH2 was associated with the immune microenvironment and positively correlated with PD-L1 expression (P < 0.001). CONCLUSION Enhancer of zeste homolog 2 is a new prognostic biomarker in meningioma. It correlates with PD-L1 expression and closely related to tumor immunosuppression. Our research can provide a reference for the potential targeted therapy and immunotherapy of meningioma in the future.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Sun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaming Huang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
31
|
Yamagishi M. The role of epigenetics in T-cell lymphoma. Int J Hematol 2022; 116:828-836. [PMID: 36239901 DOI: 10.1007/s12185-022-03470-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
Malignant lymphomas are a group of diseases with epigenomic abnormalities fundamental to pathogenesis and pathophysiology. They are characterized by a high frequency of abnormalities related to DNA methylation regulators (DNMT3A, TET2, IDH2, etc.) and histone modifiers (EZH2, HDAC, KMT2D/MLL2, CREBBP, EP300, etc.). These epigenomic abnormalities directly amplify malignant clones. They also originate from a hematopoietic stem cell-derived cell lineage triggered by epigenomic changes. These characteristics are linked to their high affinity for epigenomic therapies. Hematology has led disease epigenetics in the areas of basic research, clinical research, and drug discovery. However, epigenomic regulation is generally recognized as a complex system, and gaps exist between basic and clinical research. To provide an overview of the status and importance of epigenomic abnormalities in malignant lymphoma, this review first summarizes the concept and essential importance of the epigenome, then outlines the current status and future outlook of epigenomic abnormalities in malignant lymphomas.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
32
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
33
|
Analysis of the correlation between Zeste enhancer homolog 2 (EZH2) mRNA expression and the prognosis of mesothelioma patients and immune infiltration. Sci Rep 2022; 12:16583. [PMID: 36195655 PMCID: PMC9532413 DOI: 10.1038/s41598-022-21005-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Mesothelioma lies one of the most malignant tumors, in which the identification of the corresponding biomarkers is extremely critical. This study aims to investigate the prognostic value of enhancer homolog 2 (EZH2) mRNA expression in mesothelioma patients accompanied with its immune infiltration analysis. Gene expression, clinical information and enrichment analysis were obtained based on the Cancer Genome Atlas (TCGA), the immune infiltration analysis and bioinformatics analysis were performed. Clinical information and gene expression were obtained from 86 patients with mesothelioma based on TCGA database. Survival analysis, GSEA enrichment analysis, and immune infiltration analysis of EZH2 expression were carried out using R (version 3.6.3) (statistical analysis and visualization). The correlation of EZH2 expression with immune cell infiltration in mesothelioma was analyzed according to the TIMER database (Fig. https://cistrome.shinyapps.io/timer/). A univariate and multivariate analysis of general data obtained from the TCGA database was performed, involving age, gender, stage, pathological type, and whether they had received radiotherapy, the results indicated the association of high expression of EZH2 with poor prognosis in mesothelioma patients, with the worse prognosis in the High group (HR = 2.75, 95% CI 1.68–4.52, P < 0.010). Moreover, ROC curves showed that EZH2 expression predicted 1-year survival with an AUC of 0.740, 2-year survival with an AUC of 0.756, and 3-year survival with an AUC of 0.692, suggesting a robust predictive effect of EZH2 expression on prognosis. KEGG pathway analysis indicated five pathways showing the strongest positive correlation with EZH2 expression: cell cycle, DNA replication, Cell adhesion molecules cams, Primary immuno deficiency, Tsate transduction, and five pathways showing the strongest negative correlation with EZH2 expression: Glycolysis gluconeogenesis, Drug metabolism, cytochrome P450, retinol metabolism, fatty acid metabolism ribosome. We investigated the correlation between EZH2 expression and the level of immune infiltration in mesothelioma tissues. The results indicated that EZH2 expression played a critical role in immune infiltration, of which the high expression was correlated with the reduced number of NK cells, Mast cells, and Th17 cells. Moreover, mesothelioma patients with high EZH2 expression differ from those with low EZH2 expression in their tumor immune microenvironment. EZH2, as a new prognostic biomarker for mesothelioma, contributes to elucidating how changes in the immune environment promote the development of mesothelioma. Further analysis, EZH2 may serve as a biological test to predict the prognosis of mesothelioma.
Collapse
|
34
|
Morschhauser F, Salles G, Batlevi CL, Tilly H, Chaidos A, Phillips T, Burke J, Melnick A. Taking the EZ way: Targeting enhancer of zeste homolog 2 in B-cell lymphomas. Blood Rev 2022; 56:100988. [PMID: 35851487 PMCID: PMC10372876 DOI: 10.1016/j.blre.2022.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is an epigenetic regulator that controls the normal biology of germinal B cells. Overexpression or mutation of EZH2 is associated with malignant transformation in a number of B-cell malignancies; thus, EZH2 inhibitors are an attractive therapeutic option for these targets. Several EZH2 inhibitors have entered clinical trials, but there remains an important question as to how EZH2 inhibitor mechanism of action differs in patients with mutant and wild-type EZH2. This review discusses the EZH2-driven mechanisms that lead to the development of B-cell lymphomas and act as therapeutic targets. Another key area of investigation is whether EZH2 inhibitors will work synergistically with existing immunomodulatory drugs and chemotherapy regimens. In summary, EZH2 inhibitors show potential as treatment for a range of B-cell lymphomas, and numerous clinical evaluations are currently underway.
Collapse
Affiliation(s)
- Franck Morschhauser
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France.
| | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hervé Tilly
- Department of Hematology, INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Aristeidis Chaidos
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London & Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Tycel Phillips
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - John Burke
- US Oncology Hematology Research Program, Rocky Mountain Cancer Centers, Aurora, CO, USA
| | | |
Collapse
|
35
|
Song Y, Liu Y, Li ZM, Li L, Su H, Jin Z, Zuo X, Wu J, Zhou H, Li K, He C, Zhou J, Qi J, Hao S, Cai Z, Li Y, Wang W, Zhang X, Zou J, Zhu J. SHR2554, an EZH2 inhibitor, in relapsed or refractory mature lymphoid neoplasms: a first-in-human, dose-escalation, dose-expansion, and clinical expansion phase 1 trial. Lancet Haematol 2022; 9:e493-e503. [PMID: 35772429 DOI: 10.1016/s2352-3026(22)00134-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dysregulation of EZH2 has a crucial role in lymphomagenesis. We did a first-in-human study to assess the safety, pharmacokinetics, pharmacodynamics, and preliminary clinical activity of SHR2554, an oral EZH2 inhibitor, in patients with relapsed or refractory mature lymphoid neoplasms, including B-cell lymphomas, T-cell lymphomas, and classical Hodgkin lymphoma. METHODS This was a multicentre, dose-escalation, dose-expansion, and clinical expansion phase 1 study done at 13 hospitals in China. Eligible patients had histologically or cytologically confirmed mature lymphoid neoplasms that had relapsed or were refractory to standard systemic therapies or had no standard-of-care. The study included a dose-escalation phase, at doses of SHR2554 from 50 mg to 800 mg twice daily; a dose-expansion phase, at two selected doses; and a subsequent clinical expansion phase at the recommended phase 2 dose in selected tumours. Primary endpoints were the safety, maximum tolerated dose, and recommended phase 2 dose. Objective response rate was a secondary endpoint. Safety and activity were assessed in all patients who received at least one dose of SHR2554 and had at least one post-baseline evaluation. This study is registered with ClinicalTrials.gov, NCT03603951, and follow-up is ongoing. FINDINGS Between Aug 14, 2018, and July 13, 2021, 113 patients received SHR2554. At data cutoff (Sept 10, 2021), the median follow-up duration was 7·0 months (IQR 3·7-12·0). 71 (63%) patients were men and 42 (37%) were women, 110 (97%) were of Han ethnicity and 3 (3%) of other ethnicities, and 53 (47%) had received three or more lines of previous anticancer therapies. Dose-limiting toxicities occurred in two (67%) of three patients who received 400 mg SHR2554 twice daily and one (17%) of six patients who received 350 mg SHR2554 twice daily. The maximum tolerated dose and recommended phase 2 dose was determined to be 350 mg twice daily. The most common grade 3 or 4 treatment-related adverse events in all 113 patients were decreased platelet count (20 [18%]), decreased neutrophil count (ten [9%]), decreased white blood cell count (nine [8%]), and anaemia (seven [6%]). 18 (16%) patients had serious treatment-related adverse events. Two patients (2%) died due to treatment-related adverse events: one (1%) due to skin infection and toxic epidermal necrolysis and one (1%) due to respiratory failure. 107 (95%) of the 113 enrolled patients had post-baseline assessments for tumour response and were included in the activity analysis. 46 (43%; 95% CI 33-53) of these 107 patients had an overall response. INTERPRETATION SHR2554 showed an acceptable safety profile and promising antitumour activity in patients with relapsed or refractory lymphomas, providing evidence for future investigations. FUNDING Jiangsu Hengrui Pharmaceuticals. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Carcinogenesis and Transitional Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanyan Liu
- Lymphatic Comprehensive Internal Medicine Ward, Henan Cancer Hospital, Zhengzhou, China
| | - Zhi-Ming Li
- Medical Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hang Su
- The Fifth Medical Centre of the People's Liberation Army General Hospital, Beijing, China
| | - Zhengming Jin
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuelan Zuo
- Department of Hematopathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Centre, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zhou
- Department of Lymphoma & Hematology (Children's Tumour Centre), Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunyan Li
- Early Clinical Trial Centre, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chuan He
- Department of Hematopathology, West China Hospital Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Junyuan Qi
- Good Clinical Practice Ward, Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Cai
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yijing Li
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Weiwei Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Xiaojing Zhang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Jianjun Zou
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Transitional Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
36
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
37
|
Shin DS, Park K, Garon E, Dubinett S. Targeting EZH2 to overcome the resistance to immunotherapy in lung cancer. Semin Oncol 2022; 49:306-318. [PMID: 35851153 DOI: 10.1053/j.seminoncol.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Unleashing the immune system to fight cancer has been a major breakthrough in cancer therapeutics since 2014 when anti-PD-1 antibodies (pembrolizumab and nivolumab) were approved for patients with metastatic melanoma. Therapeutic indications have rapidly expanded for many types of advanced cancer, including lung cancer. A variety of antibodies targeting the PD-1/PD-L1 checkpoint are contributing to this paradigm shift. The field now confronts two salient challenges: first, to improve the therapeutic outcome given the low response rate across the histologies; second, to identify biomarkers for improved patient selection. Pre-clinical and clinical studies are underway to evaluate combinatorial treatments to improve the therapeutic outcome paired with correlative studies to identify the factors associated with response and resistance. One of the emerging strategies is to combine epigenetic modifiers with immune checkpoint blockade (ICB) based on the evidence that targeting epigenetic elements can enhance anti-tumor immunity by reshaping the tumor microenvironment (TME). We will briefly review pleotropic biological functions of enhancer of zeste homolog 2 (EZH2), the enzymatic subunit of polycomb repressive complex 2 (PRC2), clinical developments of oral EZH2 inhibitors, and potentially promising approaches to combine EZH2 inhibitors and PD-1 blockade for patients with advanced solid tumors, focusing on lung cancer.
Collapse
Affiliation(s)
- Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Division of Hematology/Oncology, CA, USA; Member of Molecular Biology Institute, UCLA, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA.
| | - Kevin Park
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Edward Garon
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA
| | - Steven Dubinett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA, USA; Departments of Pathology, Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology University of California Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Division of Hematology/Oncology, CA, USA; Member of Molecular Biology Institute, UCLA, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA
| |
Collapse
|
38
|
Ishi Y, Zhang Y, Zhang A, Sasaki T, Piunti A, Suri A, Watanabe J, Abe K, He X, Katagi H, Bhalla P, Natsumeda M, Zou L, Shilatifard A, Hashizume R. Therapeutic Targeting of EZH2 and BET BRD4 in Pediatric Rhabdoid Tumors. Mol Cancer Ther 2022; 21:715-726. [PMID: 35247919 PMCID: PMC9081147 DOI: 10.1158/1535-7163.mct-21-0646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Aberrant activity of the H3K27 modifiers EZH2 and BRD4 is an important oncogenic driver for atypical teratoid/rhabdoid tumor (AT/RT), and each is potentially a possible therapeutic target for treating AT/RT. We, therefore, determined whether targeting distinct histone modifier activities was an effective approach for treating AT/RT. The effects of EZH2 and BRD4 inhibition on histone modification, cell proliferation, and cell invasion were analyzed by immunoblotting, MTS assay, colony formation assay, and cell invasion assay. RNA- and chromatin immunoprecipitation-sequencing were used to determine transcriptional and epigenetic changes in AT/RT cells treated with EZH2 and BRD4 inhibitors. We treated mice bearing human AT/RT xenografts with EZH2 and BRD4 inhibitors. Intracranial tumor growth was monitored by bioluminescence imaging, and the therapeutic response was evaluated by animal survival. AT/RT cells showed elevated levels of H3K27 trimethylation (H3K27me3) and H3K27 acetylation (H3K27ac), with expression of EZH2 and BRD4, and lack of SMARCB1 proteins. Targeted inhibition of EZH2 and BRD4 activities reduced cell proliferation and invasiveness of AT/RT in association with decreasing H3K27me3 and H3K27ac. Differential genomic occupancy of H3K27me3 and H3K27ac regulated specific gene expression in response to EZH2 and BRD4 inhibitions. A combination of EZH2 and BRD4 inhibition increased the therapeutic benefit in vitro and in vivo, outperforming either monotherapy. Overall, histones H3K27me3 and H3K27ac were elevated in AT/RT cells and distributed in distinct chromatin regions to regulate specific gene expression and to promote AT/RT growth. Targeting EZH2 and BRD4 activity is, therefore, a potential combination therapy for AT/RT.
Collapse
Affiliation(s)
- Yukitomo Ishi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Yongzhan Zhang
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ali Zhang
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Takahiro Sasaki
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Andrea Piunti
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Amreena Suri
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Jun Watanabe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Department of Neurological Surgery, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, Japan
| | - Kouki Abe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Xingyao He
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Hiroaki Katagi
- Department of Neurosurgical Surgery, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Pankaj Bhalla
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 300 East Superior Street, Chicago, IL, 60611, USA
| | - Manabu Natsumeda
- Department of Neurological Surgery, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, Japan
| | - Lihua Zou
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL, 60611, USA
- Neuro-Oncology and Stem Cells Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Chicago, IL, 60611, USA
| |
Collapse
|
39
|
Chen Z, Zhang X, Xing Z, Lv S, Huang L, Liu J, Ye S, Li X, Chen M, Zuo S, Tao Y, He Y. OLFM4 deficiency delays the progression of colitis to colorectal cancer by abrogating PMN-MDSCs recruitment. Oncogene 2022; 41:3131-3150. [PMID: 35487976 DOI: 10.1038/s41388-022-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
Chronic inflammatory bowel disease (IBD) is strongly associated with the development of colitis-associated tumorigenesis (CAT). Despite recent advances in the understanding of polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) responses in cancer, the mechanisms of these cells during this process remain largely uncharacterized. Here, we discovered a glycoprotein, olfactomedin-4 (OLFM4), was highly expressed in PMN-MDSCs from colitis to colorectal cancer (CRC), and its expression level and PMN-MDSC population positively correlated with the progression of IBD to CRC. Moreover, mice lacking OLFM4 in myeloid cells showed poor recruitment of PMN-MDSCs, impaired intestinal homeostasis, and delayed development from IBD to CRC, and increased response to anti-PD1 therapy. The main mechanism of OLFM4-mediated PMN-MDSC activity involved the NF-κB/PTGS2 pathway, through the binding of LGALS3, a galactoside-binding protein expressed on PMN-MDSCs. Our results showed that the OLFM4/NF-κB/PTGS2 pathway promoted PMN-MDSC recruitment, which played an essential role in the maintenance of intestinal homeostasis, but showed resistance to anti-PD1 therapy in CRC.
Collapse
Affiliation(s)
- Ziyang Chen
- Department of Neurosurgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Department of Medical Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Jingping Liu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Shubiao Ye
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingxu Tao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Neurosurgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China. .,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Abstract
The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA; .,Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA; .,Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Li C, Song J, Guo Z, Gong Y, Zhang T, Huang J, Cheng R, Yu X, Li Y, Chen L, Ma X, Sun Y, Wang Y, Xue L. EZH2 Inhibitors Suppress Colorectal Cancer by Regulating Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022; 13:857808. [PMID: 35432300 PMCID: PMC9010515 DOI: 10.3389/fimmu.2022.857808] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
EZH2 inhibitors (EZH2i), a class of small-molecule inhibitors that target EZH2 to exert anti-tumor functions, have just been approved by the US Food and Drug Administration (FDA) in treatment of adults and adolescents with locally advanced or metastatic epithelioid sarcoma. The application of EZH2i in several solid tumors is still in different stages of clinical trials and needs to be further validated. As a key epigenetic regulator, besides its role in controlling the proliferation of tumor cells, EZH2 has been implicated in the regulation of various immune cells including macrophages. But there are still controversial research results at present. Colorectal cancer (CRC) is a common malignant tumor that highly expresses EZH2, which has the third highest incidence and is the second leading cause of cancer-related death worldwide. Studies have shown that the numbers of M2-type tumor-associated macrophages (TAMs) are highly associated with the progression and metastasis of CRC. In the current study, we aim to investigate how EZH2 modulates the polarization of macrophages in the tumor microenvironment (TME) of CRC, and compare the role of two different EZH2 inhibitors, EPZ6438 and GSK126. We applied a 3D culture method to demonstrate that EZH2i did indeed suppress the proliferation of CRC cells in vitro. In vivo, we found that the percentage of CD206+ macrophages of the TME was decreased under the treatment of EPZ6438, but it increased upon GSK126 treatment. Besides, in the co-culture system of macrophages and CRC cells, EPZ6438 led to significant elevation of M1 markers and reduction of M2 markers. Furthermore, mechanistic studies validated by ChIP-qPCR demonstrated that EZH2i inhibit EZH2-mediated H3K27me3 levels on the promoters of STAT3, an essential transcription factor for M1 macrophage polarization. Therefore, our data suggested that EZH2i not only suppress CRC cell proliferation directly, but also regulate macrophage by skewing M2 into effector M1 macrophage to exert a tumor suppressive effect. Moreover, our study provided new insight for better understanding of the role of two kinds of EZH2i: EPZ6438 and GSK126, which may pave the way in treating CRC by targeting cancer cells and immune cells via this epigenetic approach in the future.
Collapse
Affiliation(s)
- Chen Li
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jiagui Song
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Zhengyang Guo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yueqing Gong
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Tengrui Zhang
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jiaqi Huang
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Rui Cheng
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaotong Yu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yanfang Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Li Chen
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaojuan Ma
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Yan Wang,
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Yan Wang,
| |
Collapse
|
42
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
43
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
44
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
45
|
Sasa GBK, Xuan C, Chen M, Jiang Z, Ding X. Clinicopathological implications of lncRNAs, immunotherapy and DNA methylation in lung squamous cell carcinoma: a narrative review. Transl Cancer Res 2022; 10:5406-5429. [PMID: 35116387 PMCID: PMC8799054 DOI: 10.21037/tcr-21-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022]
Abstract
Objective To explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in lung squamous cell carcinoma (LUSC), emphasizing their exact roles in carcinogenesis and modes of action. Background LUSC is the second most prevalent form, accounting for around 30% of non-small cell lung cancer (NSCLC). To date, molecular-targeted treatments have significantly improved overall survival in lung adenocarcinoma patients but have had little effect on LUSC therapy. As a result, there is an urgent need to discover new treatments for LUSC that are based on existing genomic methods. Methods In this review, we summarized and analyzed recent research on the biological activities and processes of lncRNA, immunotherapy, and DNA methylation in the formation of LUSC. The relevant studies were retrieved using a thorough search of Pubmed, Web of Science, Science Direct, Google Scholar, and the university's online library, among other sources. Conclusions LncRNAs are the primary components of the mammalian transcriptome and are emerging as master regulators of a number of cellular processes, including the cell cycle, differentiation, apoptosis, and growth, and are implicated in the pathogenesis of a variety of cancers, including LUSC. Understanding their role in LUSC in detail may help develop innovative treatment methods and tactics for LUSC. Meanwhile, immunotherapy has transformed the LUSC treatment and is now considered the new standard of care. To get a better knowledge of LUSC biology, it is critical to develop superior modeling systems. Preclinical models, particularly those that resemble human illness by preserving the tumor immune environment, are essential for studying cancer progression and evaluating novel treatment targets. DNA methylation, similarly, is a component of epigenetic alterations that regulate cellular function and contribute to cancer development. By methylating the promoter regions of tumor suppressor genes, abnormal DNA methylation silences their expression. DNA methylation indicators are critical in the early detection of lung cancer, predicting therapy efficacy, and tracking treatment resistance. As such, this review seeks to explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in LUSC, emphasizing their exact roles in carcinogenesis and modes of action.
Collapse
Affiliation(s)
- Gabriel B K Sasa
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meiyue Chen
- The fourth affiliated hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Zhenggang Jiang
- Department of Science Research and Information Management, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
46
|
Enhancing Therapeutic Approaches for Melanoma Patients Targeting Epigenetic Modifiers. Cancers (Basel) 2021; 13:cancers13246180. [PMID: 34944799 PMCID: PMC8699560 DOI: 10.3390/cancers13246180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Melanoma is the least common but deadliest type of skin cancer. Melanomagenesis is driven by a series of mutations and epigenetic alterations in oncogenes and tumor suppressor genes that allow melanomas to grow, evolve, and metastasize. Epigenetic alterations can also lead to immune evasion and development of resistance to therapies. Although the standard of care for melanoma patients includes surgery, targeted therapies, and immune checkpoint blockade, other therapeutic approaches like radiation therapy, chemotherapy, and immune cell-based therapies are used for patients with advanced disease or unresponsive to the conventional first-line therapies. Targeted therapies such as the use of BRAF and MEK inhibitors and immune checkpoint inhibitors such as anti-PD-1 and anti-CTLA4 only improve the survival of a small subset of patients. Thus, there is an urgent need to identify alternative standalone or combinatorial therapies. Epigenetic modifiers have gained attention as therapeutic targets as they modulate multiple cellular and immune-related processes. Due to melanoma's susceptibility to extrinsic factors and reversible nature, epigenetic drugs are investigated as a therapeutic avenue and as adjuvants for targeted therapies and immune checkpoint inhibitors, as they can sensitize and/or reverse resistance to these therapies, thus enhancing their therapeutic efficacy. This review gives an overview of the role of epigenetic changes in melanoma progression and resistance. In addition, we evaluate the latest advances in preclinical and clinical research studying combinatorial therapies and discuss the use of epigenetic drugs such as HDAC and DNMT inhibitors as potential adjuvants for melanoma patients.
Collapse
|
47
|
Li J, Li Y, Wang Y, He X, Wang J, Cai W, Jia Y, Xiao D, Zhang J, Zhao M, Shen K, Li Z, Jia W, Wang K, Zhang Y, Su L, Zhu H, Hu D. Overexpression of miR-101 suppresses collagen synthesis by targeting EZH2 in hypertrophic scar fibroblasts. BURNS & TRAUMA 2021; 9:tkab038. [PMID: 34859108 PMCID: PMC8633590 DOI: 10.1093/burnst/tkab038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Indexed: 12/27/2022]
Abstract
Background MicroRNA-101 (miR-101) is a tumor suppressor microRNA (miRNA) and its loss is associated with the occurrence and progression of various diseases. However, the biological function and target of miR-101 in the pathogenesis of hypertrophic scars (HS) remains unknown. Methods We harvested HS and paired normal skin (NS) tissue samples from patients and cultured their fibroblasts (HSF and NSF, respectively). We used quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), enzyme-linked immunosorbent assays (ELISA) and Western blot analyses to measure mRNA levels and protein expression of miR-101, enhancer of zeste homolog 2 (EZH2), collagen 1 and 3 (Col1 and Col3) and α-smooth muscle actin (α-SMA) in different in vitro conditions. We also used RNA sequencing to evaluate the relevant signaling pathways and bioinformatics analysis and dual-luciferase reporter assays to predict miR-101 targets. We utilized a bleomycin-induced fibrosis mouse model in which we injected miR-101 mimics to evaluate collagen deposition in vivo. Results We found low expression of miR-101 in HS and HSF compared to NS and NSF. Overexpressing miR-101 decreased Col1, Col3 and α-SMA expression in HSF. We detected high expression of EZH2 in HS and HSF. Knockdown of EZH2 decreased Col1, Col3 and α-SMA in HSF. Mechanistically, miR-101 targeted the 3′-untranslated region (3′UTR) of EZH2, as indicated by the decreased expression of EZH2. Overexpressing EZH2 rescued miR-101-induced collagen repression. MiR-101 mimics effectively suppressed collagen deposition in the bleomycin-induced fibrosis mouse model. Conclusions Our data reveal that miR-101 targets EZH2 in HS collagen production, providing new insight into the pathological mechanisms underlying HS formation.
Collapse
Affiliation(s)
- Jie Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zichao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
48
|
Li Y, Li Y, Yu S, Qian L, Chen K, Lai H, Zhang H, Li Y, Zhang Y, Gu S, Meng Z, Huang S, Wang P. Circulating EVs long RNA-based subtyping and deconvolution enable prediction of immunogenic signatures and clinical outcome for PDAC. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:488-501. [PMID: 34631279 PMCID: PMC8479278 DOI: 10.1016/j.omtn.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Identification of clinically applicable molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) is crucial to improving patient outcomes. However, the traditional tissue-dependent transcriptional subtyping strategies are invasive and not amenable to routine clinical evaluation. In this study, we developed a circulating extracellular vesicle (cEV) long RNA (exLR)-based PDAC subtyping method and provided exLR-derived signatures for predicting immunogenic features and clinical outcomes in PDAC. We enrolled 426 individuals, among which 227 PDACs served as an internal cohort, 118 PDACs from two other medical centers served as an independent validation cohort, and 81 healthy individuals served as the control. ExLR sequencing was performed on all plasma samples. We found that PDAC could be categorized into three subtypes based on plasma exLR profiles. Each subpopulation showed its own molecular features and was associated with patient clinical prognosis. The immunocyte-derived cEV fractions were altered among PDAC subtypes and interconnected with tumor-infiltrating lymphocytes in cancerous tissue. Additionally, we found a significant concordance of immunoregulators between tissue and blood EVs, and we harvested potential PDAC therapeutic targets. Most importantly, we constructed a nine exLR-derived, tissue-applicable signature for prognostic assessment of PDAC. The circulating exLR-based features may offer an attractive platform for personalized treatment and predicting patient outcomes in multiple types of cancer.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Sijia Gu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 270 Dong An Road, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| |
Collapse
|
49
|
Mola S, Pinton G, Erreni M, Corazzari M, De Andrea M, Grolla AA, Martini V, Moro L, Porta C. Inhibition of the Histone Methyltransferase EZH2 Enhances Protumor Monocyte Recruitment in Human Mesothelioma Spheroids. Int J Mol Sci 2021; 22:ijms22094391. [PMID: 33922336 PMCID: PMC8122808 DOI: 10.3390/ijms22094391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a long latency period and dismal prognosis. Recently, tazemetostat (EPZ-6438), an inhibitor of the histone methyltransferase EZH2, has entered clinical trials due to the antiproliferative effects reported on MPM cells. However, the direct and indirect effects of epigenetic reprogramming on the tumor microenvironment are hitherto unexplored. To investigate the impact of tumor-associated macrophages (TAMs) on MPM cell responsiveness to tazemetostat, we developed a three-dimensional MPM spheroid model that recapitulates in vitro, both monocytes’ recruitment in tumors and their functional differentiation toward a TAM-like phenotype (Mo-TAMs). Along with an increased expression of genes for monocyte chemoattractants, inhibitory immune checkpoints, immunosuppressive and M2-like molecules, Mo-TAMs promote tumor cell proliferation and spreading. Prolonged treatment of MPM spheroids with tazemetostat enhances both the recruitment of Mo-TAMs and the expression of their protumor phenotype. Therefore, Mo-TAMs profoundly suppress the antiproliferative effects due to EZH2 inhibition in MPM cells. Overall, our findings indicate that TAMs are a driving force for MPM growth, progression, and resistance to tazemetostat; therefore, strategies of TAM depletion might be evaluated to improve the therapeutic efficacy of pharmacological inhibition of EZH2.
Collapse
Affiliation(s)
- Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (S.M.); (G.P.); (A.A.G.); (L.M.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (M.C.); (M.D.A.); (V.M.)
| | - Giulia Pinton
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (S.M.); (G.P.); (A.A.G.); (L.M.)
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Marco Corazzari
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (M.C.); (M.D.A.); (V.M.)
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (M.C.); (M.D.A.); (V.M.)
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10126 Turin, Italy
| | - Ambra A. Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (S.M.); (G.P.); (A.A.G.); (L.M.)
| | - Veronica Martini
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (M.C.); (M.D.A.); (V.M.)
- Department of Translational Medicine (DIMET), University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (S.M.); (G.P.); (A.A.G.); (L.M.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (S.M.); (G.P.); (A.A.G.); (L.M.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (M.C.); (M.D.A.); (V.M.)
- Correspondence: ; Tel.: +39-0321-375883; Fax: +39-0321-375821
| |
Collapse
|
50
|
Yang Y, Wang Y. Role of Epigenetic Regulation in Plasticity of Tumor Immune Microenvironment. Front Immunol 2021; 12:640369. [PMID: 33868269 PMCID: PMC8051582 DOI: 10.3389/fimmu.2021.640369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a pivotal role in contributing to the development, progression, and immune escape of various types of cancer. Compelling evidence highlights the feasibility of cancer therapy targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA methylation, histone post-translational modifications, and noncoding RNA-mediated regulation, regulate the expression of many human genes and have been reported to be accurate in the reprogramming of TIME according to vast majority of published results. Recently, mounting evidence has shown that the gut microbiome can also influence the colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived molecules. A tumor is a kind of heterogeneous disease with specificity in time and space, which is not only dependent on genetic regulation, but also regulated by epigenetics. This review summarizes the reprogramming of immune cells by epigenetic modifications in TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic approaches. We also discuss the ongoing studies and future areas of research that benefits to cancer eradication.
Collapse
Affiliation(s)
- Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|