1
|
López Riquelme I, Martínez García S, Serrano Ordónez A, Martínez Pilar L. Germline mutations predisposing to melanoma and associated malignancies and syndromes: a narrative review. Int J Dermatol 2024. [PMID: 39651613 DOI: 10.1111/ijd.17602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
The pathogenesis of melanoma is influenced by a complex combination of environmental factors and individual genetic susceptibility. Familial melanoma refers to cases where there are two first-degree relatives with a melanoma diagnosis. Less strict definitions include second-degree relatives or even three or more of any degree from the same family, although this is not clearly defined in the literature. The term hereditary melanoma is reserved for sporadic or familial melanomas linked to high-risk genes with high penetrance. The first genes related to melanoma were CDKN2A and CDK4, but recently, other genes, mostly tumor suppressor genes, have been described. Internal malignancies, particularly pancreatic cancer, have also been associated with melanoma. Recent studies suggest that there could be a link between melanoma and other neoplasms and tumor predisposition syndromes. This review presents an updated overview of familial melanoma criteria and genes involved in melanoma pathogenesis, emphasizing their clinicopathological aspects and other associated malignancies.
Collapse
Affiliation(s)
- Irene López Riquelme
- Dermatology Department, Hospital Regional Universitario de Málaga, Malaga, Spain
| | | | - Ana Serrano Ordónez
- Dermatology Department, Hospital Regional Universitario de Málaga, Malaga, Spain
| | | |
Collapse
|
2
|
Villa-Gonzalez JM, Carrera Revilla S, Lombardero Gutiérrez L, Gardeazabal García J. Retrospective study of germline variants in patients with hereditary melanoma study criteria in a real clinical practice setting. Clin Exp Dermatol 2024; 49:1532-1536. [PMID: 38833603 DOI: 10.1093/ced/llae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Five to twelve per cent of melanoma cases show aggregation of melanomas or other related tumours within the same family or individual. Genes such as CDKN2A or BAP1, among others, have been associated with this condition. OBJECTIVES To describe the epidemiology and clinical characteristics of patients in whom a germline genetic study was performed due to suspected hereditary melanoma. METHODS This was a retrospective descriptive study that included patients from Cruces University Hospital who underwent a germline genetic analysis for hereditary melanoma from 2016 to 2023, having met any of the following criteria: (i) presence of two or more melanomas in the same individual; (ii) a melanoma and a pancreatic cancer in the same individual; (iii) presence of a melanoma in an individual and one or more first- or second-degree relatives with melanoma or pancreatic cancer; (iv) first- or second-degree relative of an individual with a known deleterious variant in genes associated with melanoma predisposition; or (v) incidental discovery of deleterious variants in genes associated with predisposition to melanoma, within hereditary cancer panels carried out for reasons other than melanoma. RESULTS In total, 59 families were included, comprising 69 patients (64% women). Among these, 8% of families (13% of patients) presented pathogenic/likely pathogenic (P/LP) variants: 6% of families (6% of patients), excluding criteria (iv) and (v), showed P/LP variants in CDKN2A, and 2% of families (1% of patients) presented P/LP variants in BAP1, BRCA2 and TERF2IP. CONCLUSIONS The frequencies of P/LP variants in CDKN2A are similar to those previously described. This study could contribute to the knowledge of the characteristics of patients who meet genetic study criteria for hereditary melanoma in a setting of real-world clinical practice.
Collapse
Affiliation(s)
| | - Sergio Carrera Revilla
- Genetic Counselling, Department of Medical Oncology, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Lara Lombardero Gutiérrez
- Genetic Counselling, Department of Medical Oncology, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | | |
Collapse
|
3
|
Sargen MR, Barnhill RL, Elder DE, Swetter SM, Prieto VG, Ko JS, Bahrami A, Gerami P, Karunamurthy A, Pappo AS, Schuchter LM, LeBoit PE, Yeh I, Kirkwood JM, Jen M, Dunkel IJ, Durham MM, Christison-Lagay ER, Austin MT, Aldrink JH, Mehrhoff C, Hawryluk EB, Chu EY, Busam KJ, Sondak V, Messina J, Puig S, Colebatch AJ, Coughlin CC, Berrebi KG, Laetsch TW, Mitchell SG, Seynnaeve B. Evaluation and Surgical Management of Pediatric Cutaneous Melanoma and Atypical Spitz and Non-Spitz Melanocytic Tumors (Melanocytomas): A Report From Children's Oncology Group. J Clin Oncol 2024:JCO2401154. [PMID: 39365959 DOI: 10.1200/jco.24.01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE The purpose of this study was to develop recommendations for the diagnostic evaluation and surgical management of cutaneous melanoma (CM) and atypical Spitz tumors (AST) and non-Spitz melanocytic tumors (melanocytomas) in pediatric (age 0-10 years) and adolescent (age 11-18 years) patients. METHODS A Children's Oncology Group-led panel with external, multidisciplinary CM specialists convened to develop recommendations on the basis of available data and expertise. RESULTS Thirty-three experts from multiple specialties (cutaneous/medical/surgical oncology, dermatology, and dermatopathology) established recommendations with supporting data from 87 peer-reviewed publications. RECOMMENDATIONS (1) Excisional biopsies with 1-3 mm margins should be performed when feasible for clinically suspicious melanocytic neoplasms. (2) Definitive surgical treatment for CM, including wide local excision and sentinel lymph node biopsy (SLNB), should follow National Comprehensive Cancer Network Guidelines in the absence of data from pediatric-specific surgery trials and/or cohort studies. (3) Accurate classification of ASTs as benign or malignant is more likely with immunohistochemistry and next-generation sequencing. (4) It may not be possible to classify some ASTs as likely/definitively benign or malignant after clinicopathologic and/or molecular correlation, and these Spitz tumors of uncertain malignant potential should be excised with 5 mm margins. (5) ASTs favored to be benign should be excised with 1- to 3-mm margins if transected on biopsy. (6) Re-excision is not necessary if the AST does not extend to the biopsy margin(s) when complete/excisional biopsy was performed. (7) SLNB should not be performed for Spitz tumors unless a diagnosis of CM is favored on clinicopathologic evaluation. (8) Non-Spitz melanocytomas have a presumed increased risk for progression to CM and should be excised with 1- to 3-mm margins if transected on biopsy. (9) Re-excision of non-Spitz melanocytomas is not necessary if the lesion is completely excised on biopsy.
Collapse
Affiliation(s)
- Michael R Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Unit of Formation and Research of Medicine University of Paris Cité, Paris, France
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Susan M Swetter
- Department of Dermatology/Pigmented Lesion and Melanoma Program, Stanford University Medical Center and Cancer Institute, Stanford, CA
| | - Victor G Prieto
- Departments of Anatomic Pathology and Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer S Ko
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pedram Gerami
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Lynn M Schuchter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Philip E LeBoit
- Departments of Dermatology and Pathology, Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA
| | - John M Kirkwood
- University of Pittsburgh Medical Center Hillman Cancer Center Melanoma Program, Pittsburgh, PA
| | - Melinda Jen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Section of Pediatric Dermatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Megan M Durham
- Department of Surgery, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | - Emily R Christison-Lagay
- Division of Pediatric Surgery, Yale School of Medicine, Yale New-Haven Children's Hospital, New Haven, CT
| | - Mary T Austin
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Casey Mehrhoff
- Huntsman Cancer Institute, University of Utah Hospital, Salt Lake City, UT
| | - Elena B Hawryluk
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
- Dermatology Program, Department of Allergy and Immunology, Boston Children's Hospital, Boston, MA
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus J Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vernon Sondak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jane Messina
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew J Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Carrie C Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine in St Louis, St Louis, MO
| | - Kristen G Berrebi
- Departments of Dermatology and Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Sarah G Mitchell
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA
| | - Brittani Seynnaeve
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
4
|
Zheng C, Sarin KY. Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance. Cancer Treat Res Commun 2024; 40:100837. [PMID: 39137473 DOI: 10.1016/j.ctarc.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including CDKN2A, CDK4, BAP1, and POT1, are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as MC1R, MITF, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.
Collapse
Affiliation(s)
- Chenming Zheng
- Stanford University Department of Dermatology, Redwood City, CA, USA
| | - Kavita Y Sarin
- Stanford University Department of Dermatology, Redwood City, CA, USA.
| |
Collapse
|
5
|
Funchain P, Ni Y, Heald B, Bungo B, Arbesman M, Behera TR, McCormick S, Song JM, Kennedy LB, Nielsen SM, Esplin ED, Nizialek E, Ko J, Diaz-Montero CM, Gastman B, Stratigos AJ, Artomov M, Tsao H, Arbesman J. Germline cancer susceptibility in individuals with melanoma. J Am Acad Dermatol 2024; 91:265-272. [PMID: 38513832 DOI: 10.1016/j.jaad.2023.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 03/23/2024]
Abstract
BACKGROUND Prior studies have estimated a small number of individuals with melanoma (2%-2.5%) have germline cancer predisposition, yet a recent twin study suggested melanoma has the highest hereditability among cancers. OBJECTIVE To determine the incidence of hereditary melanoma and characterize the spectrum of cancer predisposition genes that may increase the risk of melanoma. METHODS Four hundred individuals with melanoma and personal or family history of cancers underwent germline testing of >80 cancer predisposition genes. Comparative analysis of germline data was performed on 3 additional oncologic and dermatologic data sets. RESULTS Germline pathogenic/likely pathogenic (P/LP) variants were identified in 15.3% (61) individuals with melanoma. Most variants (41, 67%) involved genes considered unrelated to melanoma (BLM, BRIP1, CHEK2, MLH1, MSH2, PMS2, RAD51C). A third (20, 33%) were in genes previously associated with familial melanoma (BAP1, BRCA2, CDKN2A, MITF, TP53). Nearly half (30, 46.9%) of P/LP variants were in homologous repair deficiency genes. Validation cohorts demonstrated P/LP rates of 10.6% from an unselected oncologic cohort, 15.8% from a selected commercial testing cohort, and 14.5% from a highly selected dermatologic study. LIMITATIONS Cohorts with varying degrees of selection, some retrospective. CONCLUSION Germline predisposition in individuals with melanoma is common, with clinically actionable findings diagnosed in 10.6% to 15.8%.
Collapse
Affiliation(s)
- Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brandie Heald
- Genomic Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Invitae Corporation, South San Francisco, California
| | - Brandon Bungo
- Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michelle Arbesman
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Tapas R Behera
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shelley McCormick
- Center Cancer Risk Assessment, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Jung Min Song
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Hematology/Oncology, MetroHealth, Cleveland, Ohio
| | | | | | | | - Emily Nizialek
- Department of Medical Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Jennifer Ko
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Claudia M Diaz-Montero
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brian Gastman
- Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Alexander J Stratigos
- Department of Dermatology-Venereology, A. Sygros Hospital Medical School, University of Athens, Athens, Greece
| | | | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Joshua Arbesman
- Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
6
|
Ferrara G, Paiella S, Settanni G, Frizziero M, Rosina P, Viassolo V. Prevalence of CDKN2A, CDK4, POT1, BAP1, MITF, ATM, and TERT Pathogenic Variants in a Single-Center Retrospective Series of Patients With Melanoma and Personal or Family History Suggestive of Genetic Predisposition. Dermatol Pract Concept 2024; 14:dpc.1403a120. [PMID: 39122510 PMCID: PMC11314473 DOI: 10.5826/dpc.1403a120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Approximately 20%-45% of familial melanoma (FM) cases are associated with genetic predisposition. OBJECTIVES This single-center retrospective study aimed to assess the frequency of pathogenic variants (PV) in the main melanoma-predisposing genes in patients with cutaneous melanoma and investigate the clinical predictors of genetic predisposition. METHODS Patients included were those diagnosed with cutaneous melanoma at the Dermatology Unit of the University Hospital of Verona, Italy, from 2000 to 2022, presenting at least one of the followings: multiple melanomas (≥ 3); personal/family history of pancreatic cancer (PC) (up to 2nd-degree relatives); ≥ 2 1st-degree relatives with melanoma; ≥ 1 1st-degree relatives with early-onset (<45 years) melanoma and tested for CDKN2A, CDK4, POT1, BAP1, MITF, ATM, and TERT. RESULTS During the study period, 35 out of 1320 patients (2.7%) underwent genetic testing. Four patients (11.4%) harbored a PV in a melanoma-predisposing gene, three in CDKN2A (8.6%), and one in MITF (2.9%). Variants currently classified as being of unknown clinical significance (VUS) were detected in CDKN2A (N = 1), MITF (N = 1), and ATM (N = 2). Family history of PC and ≥5 melanomas, personal history of ≥50 nevi, and ≥4 melanomas were significantly associated with PV in tested genes (P < 0.05). CONCLUSIONS The prevalence of PV in predisposing genes in FM was lower than previously reported in Italian registries. Possible reasons include deleterious variants in untested intermediate/low-penetrance genes or yet-to-be-discovered high-penetrance genes and environmental risk factors. A family history of PC, a high number of nevi and melanomas predict a monogenic predisposition to melanoma.
Collapse
Affiliation(s)
- Giada Ferrara
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Salvatore Paiella
- Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Giulio Settanni
- Pathology Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Melissa Frizziero
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, UK
| | - Paolo Rosina
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - Valeria Viassolo
- Medical Genetics, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
7
|
Iida N, Muranaka Y, Park JW, Sekine S, Copeland NG, Jenkins NA, Shiraishi Y, Oshima M, Takeda H. Sleeping Beauty transposon mutagenesis in mouse intestinal organoids identifies genes involved in tumor progression and metastasis. Cancer Gene Ther 2024; 31:527-536. [PMID: 38177308 DOI: 10.1038/s41417-023-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kang-won National University, Chuncheon-si, Republic of Korea
| | - Shigeki Sekine
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy A Jenkins
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
- Nano-Life Science Institute, Kanazawa University, Ishikawa, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer genes and genomes unit, Cancer Research Institute, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
8
|
Hessler-Waning M, Heinecke G. Diagnosis and Management of Common Inflammatory Skin Diseases in Older Adults. Clin Geriatr Med 2024; 40:11-23. [PMID: 38000855 DOI: 10.1016/j.cger.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Inflammatory skin conditions affect people of all ages, genders, and races. These common conditions are frequent causes of visits to the dermatologist. The geriatric population is often afflicted by these conditions because many are chronic and relapsing diseases. These inflammatory conditions include but are not limited to psoriasis, atopic dermatitis, contact dermatitis, seborrheic dermatitis, rosacea, and Grover disease. Chronic inflammatory skin conditions place a large burden on the health care system in the United States and have many associated comorbidities. This article discusses these inflammatory dermatoses that affect the geriatric population and common therapeutic options.
Collapse
Affiliation(s)
- Monica Hessler-Waning
- Department of Dermatology, Saint Louis University, 1225 South Grand Avenue, St. Louis, MO 63110, USA
| | - Gillian Heinecke
- Department of Dermatology, Saint Louis University, 1225 South Grand Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Lendinez-Sanchez G, Diaz-Redondo T, Campos MI, Porta Pelayo J, Porta Pelayo JM, Muriel-López C. ATM Variant as a Cause of Hereditary Cutaneous Melanoma in a Spanish Family: Case Report. Case Rep Oncol 2024; 17:386-391. [PMID: 38415270 PMCID: PMC10898853 DOI: 10.1159/000536105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction Ataxia-Telangiectasia Mutated (ATM) is a cancer predisposition gene; carriers of germline pathogenic variants have an increased risk of developing malignancies, including breast, prostate, pancreatic, and ovarian cancer. Most ATM variants are of uncertain significance. Findings from genome-wide association studies (GWAS) suggest that ATM may be a low-risk melanoma susceptibility locus. Case Report We report the case of a Hispanic family whose members who have presented cutaneous melanoma have been found to be carriers for the ATM pathogenic variant c.3747-1G>C (rs730881364), one of whom was diagnosed at 24 years old. Discussion We describe for the first time the possible clinical association between ATM (c.3747-1G>C) and familial melanoma. In silico splice site analysis predicts that this alteration will weaken the native splice acceptor site and will result in the creation or strengthening of a novel splice acceptor site, assuming a variant that entails loss of functionality that is probably pathogenic and related to oncogenesis. However, we cannot exclude that cutaneous melanoma in both members and at an early age is the result of chance, environmental interaction, other uncontrolled external factors, or the interaction of other genetic alterations other than the ATM variant described in this study.
Collapse
Affiliation(s)
- Gonzalo Lendinez-Sanchez
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Tamara Diaz-Redondo
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Marcos Iglesias Campos
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | | | | | - Carolina Muriel-López
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| |
Collapse
|
10
|
Helgadottir H, Schultz K, Lapins J, Höiom V. Familial features affecting the melanoma risk in CDKN2A-negative melanoma families: a study based on the Swedish Cancer Registry. Acta Oncol 2023; 62:1967-1972. [PMID: 37801364 DOI: 10.1080/0284186x.2023.2265052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Karina Schultz
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lapins
- Department of Dermatology, Karolinska University Hospital, Stockholm
- Dermatology and Venereology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Pellegrini C, Cardelli L, Ghiorzo P, Pastorino L, Potrony M, García-Casado Z, Elefanti L, Stefanaki I, Mastrangelo M, Necozione S, Aguilera P, Rodríguez-Hernández A, Di Nardo L, Rocco T, Del Regno L, Badenas C, Carrera C, Malvehy J, Requena C, Bañuls J, Stratigos AJ, Peris K, Menin C, Calista D, Nagore E, Puig S, Landi MT, Fargnoli MC. High- and intermediate-risk susceptibility variants in melanoma families from the Mediterranean area: A multicentre cohort from the MelaNostrum Consortium. J Eur Acad Dermatol Venereol 2023; 37:2498-2508. [PMID: 37611275 PMCID: PMC10842987 DOI: 10.1111/jdv.19461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Most of large epidemiological studies on melanoma susceptibility have been conducted on fair skinned individuals (US, Australia and Northern Europe), while Southern European populations, characterized by high UV exposure and dark-skinned individuals, are underrepresented. OBJECTIVES We report a comprehensive pooled analysis of established high- and intermediate-penetrance genetic variants and clinical characteristics of Mediterranean melanoma families from the MelaNostrum Consortium. METHODS Pooled epidemiological, clinical and genetic (CDKN2A, CDK4, ACD, BAP1, POT1, TERT, and TERF2IP and MC1R genes) retrospective data of melanoma families, collected within the MelaNostrum Consortium in Greece, Italy and Spain, were analysed. Univariate methods and multivariate logistic regression models were used to evaluate the association of variants with characteristics of families and of affected and unaffected family members. Subgroup analysis was performed for each country. RESULTS We included 839 families (1365 affected members and 2123 unaffected individuals). Pathogenic/likely pathogenic CDKN2A variants were identified in 13.8% of families. The strongest predictors of melanoma were ≥2 multiple primary melanoma cases (OR 8.1; 95% CI 3.3-19.7), >3 affected members (OR 2.6; 95% CI 1.3-5.2) and occurrence of pancreatic cancer (OR 4.8; 95% CI 2.4-9.4) in the family (AUC 0.76, 95% CI 0.71-0.82). We observed low frequency variants in POT1 (3.8%), TERF2IP (2.5%), ACD (0.8%) and BAP1 (0.3%). MC1R common variants (≥2 variants and ≥2 RHC variants) were associated with melanoma risk (OR 1.4; 95% CI 1.0-2.0 and OR 4.3; 95% CI 1.2-14.6, respectively). CONCLUSIONS Variants in known high-penetrance genes explain nearly 20% of melanoma familial aggregation in Mediterranean areas. CDKN2A melanoma predictors were identified with potential clinical relevance for cancer risk assessment.
Collapse
Affiliation(s)
- C Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - L Cardelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetica dei Tumori rari, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - L Pastorino
- IRCCS Ospedale Policlinico San Martino, Genetica dei Tumori rari, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - M Potrony
- Department of Biochemistry and Molecular Genetics, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Z García-Casado
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, València, Spain
| | - L Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - I Stefanaki
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Mastrangelo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - S Necozione
- Epidemiology Unit, Department of Life, Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
| | - P Aguilera
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | | | - L Di Nardo
- UOC Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - T Rocco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Dermatology Unit, Ospedale San Salvatore, L'Aquila, Italy
| | - L Del Regno
- UOC Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Badenas
- Department of Biochemistry and Molecular Genetics, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Carrera
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - J Malvehy
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - C Requena
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - J Bañuls
- Department of Dermatology, Hospital General Universitario de Alicante, Alicante, Spain
| | - A J Stratigos
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - K Peris
- UOC Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - D Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - E Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - S Puig
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - M T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - M C Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Dermatology Unit, Ospedale San Salvatore, L'Aquila, Italy
| |
Collapse
|
12
|
Waseh S, Lee JB. Advances in melanoma: epidemiology, diagnosis, and prognosis. Front Med (Lausanne) 2023; 10:1268479. [PMID: 38076247 PMCID: PMC10703395 DOI: 10.3389/fmed.2023.1268479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 06/30/2024] Open
Abstract
Unraveling the multidimensional complexities of melanoma has required concerted efforts by dedicated community of researchers and clinicians battling against this deadly form of skin cancer. Remarkable advances have been made in the realm of epidemiology, classification, diagnosis, and therapy of melanoma. The treatment of advanced melanomas has entered the golden era as targeted personalized therapies have emerged that have significantly altered the mortality rate. A paradigm shift in the approach to melanoma classification, diagnosis, prognosis, and staging is underway, fueled by discoveries of genetic alterations in melanocytic neoplasms. A morphologic clinicopathologic classification of melanoma is expected to be replaced by a more precise molecular based one. As validated, convenient, and cost-effective molecular-based tests emerge, molecular diagnostics will play a greater role in the clinical and histologic diagnosis of melanoma. Artificial intelligence augmented clinical and histologic diagnosis of melanoma is expected to make the process more streamlined and efficient. A more accurate model of prognosis and staging of melanoma is emerging based on molecular understanding melanoma. This contribution summarizes the recent advances in melanoma epidemiology, classification, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Shayan Waseh
- Department of Dermatology, Temple University Hospital, Philadelphia, PA, United States
| | - Jason B. Lee
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Soares de Sá BC, Moredo LF, Torrezan GT, Fidalgo F, de Araújo ÉSS, Formiga MN, Duprat JP, Carraro DM. Characterization of Potential Melanoma Predisposition Genes in High-Risk Brazilian Patients. Int J Mol Sci 2023; 24:15830. [PMID: 37958811 PMCID: PMC10649559 DOI: 10.3390/ijms242115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Increased genetic risk for melanoma can occur in the context of germline pathogenic variants in high-penetrance genes, such as CDKN2A and CDK4, risk variants in low- to moderate-penetrance genes (MC1R and MITF), and possibly due to variants in emerging genes, such as ACD, TERF2IP, and TERT. We aimed to identify germline variants in high- and low- to moderate-penetrance melanoma risk genes in Brazilian patients with clinical criteria for familial melanoma syndrome. We selected patients with three or more melanomas or melanoma patients from families with three tumors (melanoma and pancreatic cancer) in first- or second-degree relatives. Genetic testing was performed with a nine-gene panel (ACD, BAP1, CDK4, CDKN2A, POT1, TERT, TERF2IP, MC1R, and MITF). In 36 patients, we identified 2 (5.6%) with germline pathogenic variants in CDKN2A and BAP1 and 4 (11.1%) with variants of uncertain significance in the high-penetrance genes. MC1R variants were found in 86.5%, and both red hair color variants and unknown risk variants were enriched in patients compared to a control group. The low frequency of germline pathogenic variants in the high-penetrance genes and the high prevalence of MC1R variants found in our cohort show the importance of the MC1R genotype in determining the risk of melanoma in the Brazilian melanoma-prone families.
Collapse
Affiliation(s)
- Bianca Costa Soares de Sá
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo 01529-001, Brazil; (B.C.S.d.S.); (L.F.M.); (J.P.D.)
| | - Luciana Facure Moredo
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo 01529-001, Brazil; (B.C.S.d.S.); (L.F.M.); (J.P.D.)
| | - Giovana Tardin Torrezan
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, 440 Taguá St., São Paulo 01508-010, Brazil
| | - Felipe Fidalgo
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
| | - Érica Sara Souza de Araújo
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
| | | | - João Pereira Duprat
- Skin Cancer Department, A.C. Camargo Cancer Center, São Paulo 01529-001, Brazil; (B.C.S.d.S.); (L.F.M.); (J.P.D.)
| | - Dirce Maria Carraro
- Clinical and Functional Genomics Group, International Research Center/CIPE, A.C. Camargo Cancer Center, 440 Taguá St., São Paulo 01508-010, Brazil; (G.T.T.); (F.F.); (É.S.S.d.A.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, 440 Taguá St., São Paulo 01508-010, Brazil
| |
Collapse
|
14
|
Roccuzzo G, Giordano S, Granato T, Cavallo F, Mastorino L, Avallone G, Pasini B, Quaglino P, Ribero S. Phenotypic and Dermoscopic Patterns of Familial Melanocytic Lesions: A Pilot Study in a Third-Level Center. Cancers (Basel) 2023; 15:3772. [PMID: 37568588 PMCID: PMC10416987 DOI: 10.3390/cancers15153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive skin cancer. It is estimated that 5% to 10% of the underlying mutations are hereditary and responsible for familial (or hereditary) melanoma. These patients are prone to the early development and higher risk of multiple melanomas. In recent years, an increasing number of genes have been identified thanks to genetic testing, allowing the subsequent surveillance of individuals at risk, yet it is still difficult to predict the presence of these mutations on a clinical basis. In this scenario, specific phenotypic and dermoscopic features could help clinicians in their identification. The aim of this work has been to correlate mutations to prevalent dermoscopic patterns, paving the way for reference models useful in clinical practice. In our cohort, out of 115 patients referred to genetic counseling for melanoma, 25 tested positive (21.7%) for critical mutations: CDKN2A (n = 12), MITF (n = 3), BAP1 (n = 1), MC1R (n = 3), PTEN (n = 1), TYR (n = 2), OCA2 (n = 1), and SLC45A2 (n = 2). The phenotype profiles obtained through the digital acquisition, analysis, and description of both benign and malignant pigmented lesions showed a predominance of the type II skin phenotype, with an elevated mean total nevus number (182 moles, range 75-390). As for dermoscopic features, specific mutation-related patterns were described in terms of pigmentation, areas of regression, and vascular structures. Although further studies with larger cohorts are needed, our work represents the beginning of a new approach to the study and diagnosis of familial melanoma, underlining the importance of clinical and dermoscopic patterns, which may constitute a reference model for each gene, enabling comparison.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Silvia Giordano
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Thomas Granato
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Francesco Cavallo
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Luca Mastorino
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Gianluca Avallone
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Barbara Pasini
- Medical Genetics Unit, AOU ‘Città Della Salute e Della Scienza’-‘Molinette’ Hospital, 10126 Turin, Italy;
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, 10126 Turin, Italy
| |
Collapse
|
15
|
Cakir A, Elcin G, Kilickap S, Gököz Ö, Taskiran ZE, Celik İ. Phenotypic and Genetic Features that Differ Between Hereditary and Sporadic Melanoma: Results of a Preliminary Study from a Single Center from Turkey. Dermatol Pract Concept 2023; 13:e2023146. [PMID: 37557112 PMCID: PMC10412028 DOI: 10.5826/dpc.1303a146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Most melanoma patients under our supervision lack characteristic phenotypic features for melanoma. In contrast, history of cancers other than melanoma and early age at onset were common. This observation was in favor of hereditary melanoma. OBJECTIVES To search for the phenotypic and genetic features that differ between sporadic and hereditary melanomas. METHODS In order to reveal phenotypic features, detailed physical exam was conducted to all melanoma patients (N = 43) and for genetic features. CDKN2A and MC1R mutations were detected with Sanger sequencing method. Assignment to hereditary and sporadic groups was done according to the "melanoma cancer syndrome assessment tool". Patients who were diagnosed before the age of 50 were also assigned to the hereditary melanoma group. RESULTS Thirty-one patients were assigned to the hereditary group and 12 to the sporadic group. Fair eye color was statistically significantly higher in the sporadic group (P = 0.000). CDKN2A was detected in only 1 patient in the hereditary group. MC1R mutations were found in 12 out of 13 (92.3%) in the hereditary group with a score =3 points, 13 out of 18 (72.2%) in the early age at onset group and 5 out of 12 (41.7%) in the sporadic group (P = 0.024). CONCLUSIONS Incidence of CDKN2A mutations in our hereditary group is in accordance with the reported incidences from Mediterranean countries. The difference between the hereditary and sporadic groups in terms of MC1R mutations supports the idea that MC1R genetic testing might help to determine patients with higher risk for hereditary melanoma.
Collapse
Affiliation(s)
- Aysel Cakir
- Hacettepe University Faculty of Medicine, Department of Dermatology and Venerology, Ankara, Turkey
| | - Gonca Elcin
- Hacettepe University Faculty of Medicine, Department of Dermatology and Venerology, Ankara, Turkey
| | - Saadettin Kilickap
- Hacettepe University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| | - Özay Gököz
- Hacettepe University Faculty of Medicine, Department of Medical Pathology, Ankara, Turkey
| | - Zihni Ekim Taskiran
- Hacettepe University Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - İsmail Celik
- Hacettepe University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
| |
Collapse
|
16
|
Rare presentations can suggest more than one rare condition: Striking personal and family cancer history in a patient with both CDKN2A and BRCA1 pathogenic variants. JAAD Case Rep 2022; 31:42-45. [PMID: 36505034 PMCID: PMC9731975 DOI: 10.1016/j.jdcr.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
17
|
Clarysse K, Lacy K. Why, Who and How We Should Screen for Melanoma. CURRENT GENETIC MEDICINE REPORTS 2022. [DOI: 10.1007/s40142-022-00204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Yeap I, Becker T, Azimi F, Kernohan M. The management of hereditary melanoma, FAMMM syndrome and germline CDKN2A mutations: a narrative review. AUSTRALASIAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.34239/ajops.v5n2.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial atypical multiple mole melanoma (FAMMM) syndrome is a rare autosomal dominant disorder, in which patients present with a large number of melanocytic naevi and a strong history of malignant melanoma, usually at a young age. The most common genetic alteration, implicated in 40 per cent of FAMMM syndrome families, is a mutation of cyclin-dependent kinase inhibitor 2A (CDKN2A).1 CDKN2A encodes the tumour suppressor gene p16INK4a, a critical cell cycle inhibitor.2
The diagnosis and management of patients with FAMMM syndrome is relevant to the plastic surgeon who manages melanoma. However, clear guidelines on its diagnostic criteria and its relationship to associated but distinct syndromes, such as hereditary melanoma and B-K mole syndrome, are lacking in the extant literature.
The aim of this review is to clarify the diagnostic criteria and management principles for FAMMM syndrome. We propose a new system of classifying FAMMM syndrome patients as a subset of all patients with hereditary melanoma. We also present a management algorithm for these distinct patient groups (FAMMM syndrome, hereditary melanoma and germline CDKN2A mutations).
Collapse
|
19
|
Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractSkin cancer affects the lives of millions of people every year, as it is considered the most popular form of cancer. In the USA alone, approximately three and a half million people are diagnosed with skin cancer annually. The survival rate diminishes steeply as the skin cancer progresses. Despite this, it is an expensive and difficult procedure to discover this cancer type in the early stages. In this study, a threshold-based automatic approach for skin cancer detection, classification, and segmentation utilizing a meta-heuristic optimizer named sparrow search algorithm (SpaSA) is proposed. Five U-Net models (i.e., U-Net, U-Net++, Attention U-Net, V-net, and Swin U-Net) with different configurations are utilized to perform the segmentation process. Besides this, the meta-heuristic SpaSA optimizer is used to perform the optimization of the hyperparameters using eight pre-trained CNN models (i.e., VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small, NASNetMobile, and NASNetLarge). The dataset is gathered from five public sources in which two types of datasets are generated (i.e., 2-classes and 10-classes). For the segmentation, concerning the “skin cancer segmentation and classification” dataset, the best reported scores by U-Net++ with DenseNet201 as a backbone architecture are 0.104, $$94.16\%$$
94.16
%
, $$91.39\%$$
91.39
%
, $$99.03\%$$
99.03
%
, $$96.08\%$$
96.08
%
, $$96.41\%$$
96.41
%
, $$77.19\%$$
77.19
%
, $$75.47\%$$
75.47
%
in terms of loss, accuracy, F1-score, AUC, IoU, dice, hinge, and squared hinge, respectively, while for the “PH2” dataset, the best reported scores by the Attention U-Net with DenseNet201 as backbone architecture are 0.137, $$94.75\%$$
94.75
%
, $$92.65\%$$
92.65
%
, $$92.56\%$$
92.56
%
, $$92.74\%$$
92.74
%
, $$96.20\%$$
96.20
%
, $$86.30\%$$
86.30
%
, $$92.65\%$$
92.65
%
, $$69.28\%$$
69.28
%
, and $$68.04\%$$
68.04
%
in terms of loss, accuracy, F1-score, precision, sensitivity, specificity, IoU, dice, hinge, and squared hinge, respectively. For the “ISIC 2019 and 2020 Melanoma” dataset, the best reported overall accuracy from the applied CNN experiments is $$98.27\%$$
98.27
%
by the MobileNet pre-trained model. Similarly, for the “Melanoma Classification (HAM10K)” dataset, the best reported overall accuracy from the applied CNN experiments is $$98.83\%$$
98.83
%
by the MobileNet pre-trained model. For the “skin diseases image” dataset, the best reported overall accuracy from the applied CNN experiments is $$85.87\%$$
85.87
%
by the MobileNetV2 pre-trained model. After computing the results, the suggested approach is compared with 13 related studies.
Collapse
|
20
|
Rashid S, Gupta S, McCormick SR, Tsao H. New Insights into Melanoma Tumor Syndromes. JID INNOVATIONS 2022; 2:100152. [DOI: 10.1016/j.xjidi.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/14/2022] Open
|
21
|
Follow-up of primary melanoma patients with high risk of recurrence: recommendations based on evidence and consensus. Clin Transl Oncol 2022; 24:1515-1523. [PMID: 35349041 DOI: 10.1007/s12094-022-02822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
Abstract
In spite of the good prognosis of patients with early-stage melanoma, there is a substantial proportion of them that develop local or distant relapses. With the introduction of targeted and immune therapies for advanced melanoma, including at the adjuvant setting, early detection of recurrent melanoma and/or second primary lesions is crucial to improve clinical outcomes. However, there is a lack of universal guidelines regarding both frequency of surveillance visits and diagnostic imaging and/or laboratory evaluations. In this article, a multidisciplinary expert panel recommends, after careful review of relevant data in the field, a consensus- and experience-based follow-up strategy for melanoma patients, taking into account prognostic factors and biomarkers and the high-risk periods and patterns of recurrence in each (sub) stage of the disease. Apart from the surveillance intensity, healthcare professionals should focus on patients' education to perform regular self-examinations of the skin and palpation of lymph nodes.
Collapse
|
22
|
Hartmann T, Perron R, Razavi M. Utilization of Nanoparticles, Nanodevices, and Nanotechnology in the Treatment Course of Cutaneous Melanoma. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Hartmann
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Rebecca Perron
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Mehdi Razavi
- College of Medicine University of Central Florida Orlando FL 32827 USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster Department of Internal Medicine College of Medicine University of Central Florida Orlando FL 32827 USA
- Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
23
|
Grant CN, Rhee D, Tracy ET, Aldrink JH, Baertschiger RM, Lautz TB, Glick RD, Rodeberg DA, Ehrlich PF, Christison-Lagay E. Pediatric solid tumors and associated cancer predisposition syndromes: Workup, management, and surveillance. A summary from the APSA Cancer Committee. J Pediatr Surg 2022; 57:430-442. [PMID: 34503817 DOI: 10.1016/j.jpedsurg.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/PURPOSE Cancer predisposition syndromes (CPS) are a heterogeneous group of inherited disorders that greatly increase the risk of developing malignancies. CPS are particularly relevant to pediatric surgeons since nearly 10% of cancer diagnoses are due to inherited genetic traits, and CPS often contribute to cancer development during childhood. MATERIALS/METHODS The English language literature was searched for manuscripts, practice guidelines, and society statements on "cancer predisposition syndromes in children". Following review of these manuscripts and cross-referencing of their bibliographies, tables were created to summarize findings of the most common CPS associated with surgically treated pediatric solid malignancies. RESULTS Pediatric surgeons should be aware of CPS as the identification of one of these syndromes can completely change the management of certain tumors, such as WT. The most common CPS associated with pediatric solid malignancies are outlined, with an emphasis on those most often encountered by pediatric surgeons: neuroblastoma, Wilms' tumor, hepatoblastoma, and medullary thyroid cancer. Frequently associated non-tumor manifestations of these CPS are also included as a guide to increase surgeon awareness. Screening and management guidelines are outlined, and published genetic testing and counseling guidelines are included where available. CONCLUSION Pediatric surgeons play an important role as surgical oncologists and are often the first point of contact for children with solid tumors. In their role of delivering a diagnosis and developing a follow-up and treatment plan as part of a multidisciplinary team, familiarity with common CPS will ensure evidence-based practices are followed, including important principles such as organ preservation and intensified surveillance plans. This review defines and summarizes the CPS associated with common childhood solid tumors encountered by the pediatric surgeon, as well as common non-cancerous disease stigmata that may help guide diagnosis. TYPE OF STUDY Summary paper. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Christa N Grant
- Division of Pediatric Surgery, Penn State Children's Hospital, Milton S. Hershey Medical Center, Hershey, PA, United States.
| | - Daniel Rhee
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elisabeth T Tracy
- Division of Pediatric Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Reto M Baertschiger
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Timothy B Lautz
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, United States
| | - Richard D Glick
- Division of Pediatric Surgery, Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, NY, United States
| | - David A Rodeberg
- Division of Pediatric Surgery, East Carolina Medical Center, Greenville, NC, United States
| | - Peter F Ehrlich
- Division of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan, United States
| | - Emily Christison-Lagay
- Division of Pediatric Surgery, Yale-New Haven Children's Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
24
|
Abstract
Though melanocytic nevi are ubiquitous in the general population, they can also be key cutaneous manifestations of genetic syndromes. We describe genodermatoses associated with melanocytic nevi and discuss their clinical characteristics, cutaneous manifestations, underlying genetics, and, if applicable, guidelines for when genetic testing should be performed. We categorized these genodermatoses based on their association with congenital nevi, acquired nevi, or nevi whose first appearance is unknown. In many cases, the distinctive morphology or distribution of melanocytic nevi can be an important clue that an underlying genetic syndrome is present, allowing both the patient as well as family members to be screened for the more serious complications of their genetic disorder and receive education on potential preventative measures. As we continue to advance our understanding of how various genotypes give rise to the wide spectrum of phenotypes observed in these genodermatoses, we shall be able to better stratify risk and tailor our screening methods to clinically manage the heterogeneous manifestations of genodermatoses among these patients.
Collapse
Affiliation(s)
- Julie Y Ramseier
- Department of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Sara H Perkins
- Department of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520.
| |
Collapse
|
25
|
Newcomer K, Robbins KJ, Perone J, Hinojosa FL, Chen D, Jones S, Kaufman CK, Weiser R, Fields RC, Tyler DS. Malignant melanoma: evolving practice management in an era of increasingly effective systemic therapies. Curr Probl Surg 2022; 59:101030. [PMID: 35033317 PMCID: PMC9798450 DOI: 10.1016/j.cpsurg.2021.101030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Ken Newcomer
- Department of Surgery, Barnes-Jewish Hospital, Washington University, St. Louis, MO
| | | | - Jennifer Perone
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - David Chen
- e. Department of Medicine, Washington University, St. Louis, MO
| | - Susan Jones
- f. Department of Pediatrics, Washington University, St. Louis, MO
| | | | - Roi Weiser
- University of Texas Medical Branch, Galveston, TX
| | - Ryan C Fields
- Department of Surgery, Washington University, St. Louis, MO
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
26
|
Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers (Basel) 2021; 13:cancers13194914. [PMID: 34638397 PMCID: PMC8508267 DOI: 10.3390/cancers13194914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanoma constitutes a major public health risk, with the rates of diagnosis increasing on a yearly basis. Monitoring for risk factors and preventing dangerous behaviors that increase melanoma risk, such as tanning, are important measures for melanoma prevention. Additionally, assessing the effectiveness of various methods to prevent sun exposure and sunburns—which can lead to melanoma—is important to help identify ways to reduce the development of melanoma. We summarize the recent evidence regarding the heritable and behavioral risks underlying melanoma, as well as the current methods used to reduce the risk of developing melanoma and to improve the diagnosis of this disease. Abstract (1) Melanoma is the most aggressive dermatologic malignancy, with an estimated 106,110 new cases to be diagnosed in 2021. The annual incidence rates continue to climb, which underscores the critical importance of improving the methods to prevent this disease. The interventions to assist with melanoma prevention vary and typically include measures such as UV avoidance and the use of protective clothing, sunscreen, and other chemopreventive agents. However, the evidence is mixed surrounding the use of these and other interventions. This review discusses the heritable etiologies underlying melanoma development before delving into the data surrounding the preventive methods highlighted above. (2) A comprehensive literature review was performed to identify the clinical trials, observational studies, and meta-analyses pertinent to melanoma prevention and incidence. Online resources were queried to identify epidemiologic and clinical trial information. (3) Evidence exists to support population-wide screening programs, the proper use of sunscreen, and community-targeted measures in the prevention of melanoma. Clinical evidence for the majority of the proposed preventive chemotherapeutics is presently minimal but continues to evolve. (4) Further study of these chemotherapeutics, as well as improvement of techniques in artificial intelligence and imaging techniques for melanoma screening, is warranted for continued improvement of melanoma prevention.
Collapse
|
27
|
Iacullo J, Barriera-Silvestrini P, Knackstedt TJ. Dermatologic Follow-up and Assessment of Suspicious Lesions. Clin Plast Surg 2021; 48:617-629. [PMID: 34503722 DOI: 10.1016/j.cps.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As our knowledge and understanding of melanoma evolve, melanoma surveillance guidelines will reflect these findings. Currently, there is no consensus across international guidelines for melanoma follow-up. However, it is accepted that more aggressive surveillance is recommended for more advanced disease. When examining high-risk individuals, a systematic approach should be followed. Future considerations include the use of noninvasive imaging techniques, 'liquid biopsies,' and artificial intelligence to enhance detection of melanomas.
Collapse
Affiliation(s)
- Julie Iacullo
- Department of Dermatology, MetroHealth System, 2500 Metrohealth Drive, Cleveland, OH 44109, USA
| | | | - Thomas J Knackstedt
- Department of Dermatology, MetroHealth System, 2500 Metrohealth Drive, Cleveland, OH 44109, USA; Case Western Reserve University, School of Medicine, 2500 Metrohealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
28
|
Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J Clin Med 2021; 10:jcm10163760. [PMID: 34442055 PMCID: PMC8397216 DOI: 10.3390/jcm10163760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A family history of melanoma greatly increases the risk of developing cutaneous melanoma, a highly aggressive skin cancer whose incidence has been steadily increasing worldwide. Familial melanomas account for about 10% of all malignant melanomas and display an inheritance pattern consistent with the presence of pathogenic germline mutations, among which those involving CDKN2A are the best characterized. In recent years, a growing number of genes, such as MC1R, MITF, CDK4, POT1, TERT, ACD, TERF2IP, and BAP1, have been implicated in familial melanoma. The fact that individuals harboring these germline mutations along with their close blood relatives have a higher risk of developing multiple primary melanomas as well as other internal organ malignancies, especially pancreatic cancer, makes cascade genetic testing and surveillance of these families of the utmost importance. Unfortunately, due to a polygenic inheritance mechanism involving multiple low-risk alleles, genetic modifiers, and environmental factors, it is still very difficult to predict the presence of these mutations. It is, however, known that germline mutation carriers can sometimes develop specific clinical traits, such as high atypical nevus counts and specific dermoscopic features, which could theoretically help clinicians predict the presence of these mutations in prone families. In this review, we provide a comprehensive overview of the high- and intermediate-penetrance genes primarily linked to familial melanoma, highlighting their most frequently associated non-cutaneous malignancies and clinical/dermoscopic phenotypes.
Collapse
|
29
|
Argenziano G, Brancaccio G, Moscarella E, Dika E, Fargnoli MC, Ferrara G, Longo C, Pellacani G, Peris K, Pimpinelli N, Quaglino P, Rongioletti F, Simonacci M, Zalaudek I, Calzavara Pinton P. Management of cutaneous melanoma: comparison of the leading international guidelines updated to the 8th American Joint Committee on Cancer staging system and workup proposal by the Italian Society of Dermatology. GIORN ITAL DERMAT V 2021; 155:126-145. [PMID: 32394673 DOI: 10.23736/s0392-0488.19.06383-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giuseppe Argenziano
- Unit of Dermatology, Luigi Vanvitelli University of Campania, Naples, Italy -
| | | | - Elvira Moscarella
- Unit of Dermatology, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Emi Dika
- Unit of Dermatology (DIMES), University of Bologna, Bologna, Italy
| | - Maria C Fargnoli
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | - Gerardo Ferrara
- Unit of Anatomic Pathology, Hospital of Macerata, Area Vasta 3 ASUR Marche, Macerata, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ketty Peris
- Institute of Dermatology, Sacred Heart Catholic University, Rome, Italy.,A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy
| | - Nicola Pimpinelli
- Unit of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin Medical School, Turin, Italy
| | - Franco Rongioletti
- Unit of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Simonacci
- Unit of Dermatology, Hospital of Macerata, Area Vasta 3 ASUR Marche, Macerata, Italy
| | - Iris Zalaudek
- Department of Dermatology, University Hospital of Trieste, Trieste, Italy
| | | |
Collapse
|
30
|
Sargen MR, Pfeiffer RM, Elder DE, Yang XR, Goldstein AM, Tucker MA. The Impact of Longitudinal Surveillance on Tumor Thickness for Melanoma-Prone Families with and without Pathogenic Germline Variants of CDKN2A and CDK4. Cancer Epidemiol Biomarkers Prev 2021; 30:676-681. [PMID: 33811164 DOI: 10.1158/1055-9965.epi-20-1521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Skin cancer screening is routinely performed for members of melanoma-prone families, but longitudinal studies evaluating the efficacy of surveillance in this high-risk population are lacking. METHODS We evaluated thickness for first primary melanomas diagnosed in melanoma-prone families (≥2 individuals with melanoma) enrolled in NCT00040352 (NCI familial melanoma study) from 1976 through 2014; enrolled patients received routine skin cancer screening and education about skin self-exams. We used linear and ordinal logistic regression models adjusted for gender and age with a generalized estimating equations approach to report changes in thickness and tumor (T) stage over time, comparing outcomes for NCI cases diagnosed before (pre-study) versus after study participation (prospective) and for NCI cases versus nonfamilial cases [Surveillance, Epidemiology, and End Results (SEER) 9 registries]. RESULTS Tumor thickness was evaluated for 293 NCI (pre-study = 246; prospective = 47) patients. Compared with NCI pre-study cases, NCI prospective melanomas were thinner (0.6 vs. 1.1 mm; P < 0.001) and more likely to be T1 stage [39/47 (83%) vs. 98/246 (40%); P < 0.001]. Similar findings (P < 0.05) were observed for familial cases with and without germline CDKN2A and CDK4 mutations. Peters-Belson modeling suggested that calendar period effects of decreasing thickness in the general population (SEER 9) did not fully explain thickness trends in NCI families. CONCLUSIONS Participation in a longitudinal surveillance program providing skin cancer screening and education about skin self-exams was associated with thinner melanomas for members of melanoma-prone families. IMPACT The study findings support the clinical benefit of screening (physician and self) for this high-risk population.
Collapse
Affiliation(s)
- Michael R Sargen
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland.
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| |
Collapse
|
31
|
Chan SH, Chiang J, Ngeow J. CDKN2A germline alterations and the relevance of genotype-phenotype associations in cancer predisposition. Hered Cancer Clin Pract 2021; 19:21. [PMID: 33766116 PMCID: PMC7992806 DOI: 10.1186/s13053-021-00178-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Although CDKN2A is well-known as a susceptibility gene for melanoma and pancreatic cancer, germline variants have also been anecdotally associated with a broader range of neoplasms including neural system tumors, head and neck squamous cell carcinomas, breast carcinomas, as well as sarcomas. The CDKN2A gene encodes for two distinct tumor suppressor proteins, p16INK4A and p14ARF, however, the independent association of germline alterations affecting these two proteins with cancer is under-appreciated. Here, we reviewed CDKN2A germline alterations reported among individuals and families with cancer in the literature, specifically addressing the cancer phenotypes in relation to the molecular consequence on p16INK4A and p14ARF. While melanoma is observed to associate with variants affecting both p16INK4A and p14ARF transcripts, it is noted that variants affecting p14ARF are more frequently observed with a heterogenous range of cancers. Finally, we reflected on the implications of this inferred genotype-phenotype association in clinical practice and proposed that clinical management of CDKN2A germline variant carriers should involve dedicated cancer genetics services, with multidisciplinary input from various healthcare professionals.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore.
| |
Collapse
|
32
|
Taber JM, Aspinwall LG, Drummond DM, Stump TK, Kohlmann W, Champine M, Cassidy P, Leachman SA. Priority of Risk (But Not Perceived Magnitude of Risk) Predicts Improved Sun-Protection Behavior Following Genetic Counseling for Familial Melanoma. Ann Behav Med 2021; 55:24-40. [PMID: 32415830 PMCID: PMC7880221 DOI: 10.1093/abm/kaaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Understanding multiple components of risk perceptions is important because perceived risk predicts engagement in prevention behaviors. PURPOSE To examine how multiple components of risk perceptions (perceived magnitude of and worry about risk, prioritization of the management of one's risk) changed following genetic counseling with or without test reporting, and to examine which of these components prospectively predicted improvements in sun-protection behavior 1 year later. METHODS A prospective, nonrandomized study design was used. Participants were 114 unaffected members of melanoma-prone families who (i) underwent genetic testing for a CDKN2A/p16 mutation (n = 69) or (ii) were at comparably elevated risk based on family history and underwent genetic counseling but not testing (no-test controls, n = 45). Participants reported risk perception components and sun-protection behavior at baseline, immediately following counseling, and 1 month and 1 year after counseling. RESULTS Factor analysis indicated three risk components. Carriers reported increased perceived magnitude and priority of risk, but not cancer worry. No-test controls showed no changes in any risk perception. Among noncarriers, priority of risk remained high at all assessments, whereas magnitude of risk and cancer worry decreased. Of the three risk components, greater priority of risk uniquely predicted improved self-reported sun protection 1 year post-counseling. CONCLUSIONS Priority of risk (i) seems to be a component of risk perceptions distinguishable from magnitude of risk and cancer worry, (ii) may be an important predictor of daily prevention behavior, and (iii) remained elevated 1 year following genetic counseling only for participants who received a positive melanoma genetic test result.
Collapse
Affiliation(s)
- Jennifer M Taber
- Department of Psychological Sciences, Kent State University, Kent, OH
| | - Lisa G Aspinwall
- Department of Psychology, University of Utah, Salt Lake City, UT
| | | | - Tammy K Stump
- Department of Preventive Medicine, Northwestern University, Evanston, IL
| | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Marjan Champine
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | |
Collapse
|
33
|
Yu WY, Hill ST, Chan ER, Pink JJ, Cooper K, Leachman S, Lund AW, Kulkarni R, Bordeaux JS. Computational Drug Repositioning Identifies Statins as Modifiers of Prognostic Genetic Expression Signatures and Metastatic Behavior in Melanoma. J Invest Dermatol 2021; 141:1802-1809. [PMID: 33417917 DOI: 10.1016/j.jid.2020.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
Despite advances in melanoma treatment, more than 70% of patients with distant metastasis die within 5 years. Proactive treatment of early melanoma to prevent metastasis could save lives and reduce overall healthcare costs. Currently, there are no treatments specifically designed to prevent early melanoma from progressing to metastasis. We used the Connectivity Map to conduct an in silico drug screen and identified 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) as a drug class that might prevent melanoma metastasis. To confirm the in vitro effect of statins, RNA sequencing was completed on A375 cells after treatment with fluvastatin to describe changes in the melanoma transcriptome. Statins induced differential expression in genes associated with metastasis and are used in commercially available prognostic tests for melanoma metastasis. Finally, we completed a chart review of 475 patients with melanoma. Patients taking statins were less likely to have metastasis at the time of melanoma diagnosis in both univariate and multivariate analyses (24.7% taking statins vs. 37.6% not taking statins, absolute risk reduction = 12.9%, P = 0.038). These findings suggest that statins might be useful as a treatment to prevent melanoma metastasis. Prospective trials are required to verify our findings and to determine the mechanism of metastasis prevention.
Collapse
Affiliation(s)
- Wesley Y Yu
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA.
| | - Sheena T Hill
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - E Ricky Chan
- Institute for Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John J Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kevin Cooper
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sancy Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Rajan Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeremy S Bordeaux
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
34
|
A Single Center Retrospective Review of Patients from Central Italy Tested for Melanoma Predisposition Genes. Int J Mol Sci 2020; 21:ijms21249432. [PMID: 33322357 PMCID: PMC7763813 DOI: 10.3390/ijms21249432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. CMM pathogenesis involves genetic and environmental factors. Recent studies have led to the identification of new genes involved in CMM susceptibility: beyond CDKN2A and CDK4, BAP1, POT1, and MITF were recently identified as potential high-risk melanoma susceptibility genes. This study is aimed to evaluate the genetic predisposition to CMM in patients from central Italy. From 1998 to 2017, genetic testing was performed in 888 cases with multiple primary melanoma and/or familial melanoma. Genetic analyses included the sequencing CDKN2A, CDK4, BAP1, POT1, and MITF in 202 cases, and of only CDKN2A and CDK4 codon 24 in 686 patients. By the evaluation of the personal and familial history, patients were divided in two clinical categories: “low significance” and “high significance” cases. 128 patients (72% belonging to the “high significance” category, 28% belonging to the “low significance” category) were found to carry a DNA change defined as pathogenic, likely pathogenic, variant of unknown significance (VUS)-favoring pathogenic or VUS. It is important to verify the genetic predisposition in CMM patients for an early diagnosis of further melanomas and/or other tumors associated with the characterized genotype.
Collapse
|
35
|
Abstract
The incidence of cutaneous melanoma continues to increase in pale skinned peoples in Europe and elsewhere. Epidemiological studies identified genetically determined phenotypes such as pale skin, freckles and red hair, and sunburn as risk factors for this cancer. The development of many melanocytic naevi is also genetically determined and a strong melanoma risk phenotype. Not surprisingly then, genome wide association studies have identified pigmentation genes as common risk genes, and to a lesser extent, genes associated with melanocytic naevi. More unexpectedly, genes associated with telomere length have also been identified as risk genes. Higher risk susceptibility genes have been identified, particularly CDKN2A as the most common cause, and very rarely genes such as CDK4, POT1, TERT and other genes in coding for proteins in the shelterin complex are found to be mutated. Familial melanoma genes are associated with an increased number of melanocytic naevi but not invariably and the atypical naevus phenotype is therefore an imperfect marker of gene carrier status. At a somatic level, the most common driver mutation is BRAF, second most common NRAS, third NF1 and increasing numbers of additional rarer mutations are being identified such as in TP53. It is of note that the BRAF and NRAS mutations are not C>T accepted as characteristic of ultraviolet light induced mutations.
Collapse
|
36
|
Longo C, Barquet V, Hernandez E, Marghoob AA, Potrony M, Carrera C, Aguilera P, Badenas C, Malvehy J, Puig S. Dermoscopy comparative approach for early diagnosis in familial melanoma: influence of MC1R genotype. J Eur Acad Dermatol Venereol 2020; 35:403-410. [PMID: 32455486 DOI: 10.1111/jdv.16679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND MC1R polymorphisms interact with CDKN2A mutations modulating melanoma risk and contribute to a less suspicious clinical and dermoscopic appearance of melanomas. Different strategies, including dermoscopic comparative approach and digital monitoring, are used for the melanoma diagnosis in this context. OBJECTIVE To analyse the diagnostic accuracy of the morphologic approach and comparative approach in dermoscopy, and to detect melanoma in familial melanoma (FamMM) patients according to different genetic backgrounds. METHODS Two independent readers evaluated 415 lesions belonging to 25 FamMM: 26 melanomas (62% in situ, 36% early invasive) and 389 naevi, blinded for dermoscopic and histopathologic diagnosis, following two different steps. First step-Randomized: all lesions were randomly located in one single folder. Second step-Comparative approach: the lesions were clustered by patient. Sensitivity, specificity and number needed to excise (NNE) for melanoma diagnosis were calculated for both diagnostic strategies. Sensitivity and specificity were also assessed regarding the genetic background. RESULTS The comparative approach showed lower sensitivity compared to the morphologic approach (69.2 and 73.1 vs. 76.9 both readers) but better specificity (95.9 and 95.1 vs. 84.3 and 90.2, respectively). NNE was better in the comparative approach. The readers had more difficulties diagnosing lesions from CDKN2A mutation carriers with red hair colour (RHC) MC1R variants. CONCLUSION The comparative approach can be useful in high-risk patients to decrease the NNE. Early melanomas in CDKN2A carriers with RHC polymorphisms are more difficult to diagnose even with the comparative approach and benefit from the detection of changes during digital dermoscopy monitoring for early diagnosis.
Collapse
Affiliation(s)
- C Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - V Barquet
- Dermatology Department, Hospital de Clínicas, Montevideo, Uruguay
| | - E Hernandez
- Dermatology Department, Hospital Universitary Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A A Marghoob
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - M Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Carrera
- Dermatology Department, Melanoma Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - P Aguilera
- Dermatology Department, Melanoma Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Badenas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - J Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - S Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
37
|
McMeniman EK, Peach E, Lee KJ, Yanes T, Jagirdar K, Stark MS, Soyer HP, Duffy DL, McInerney-Leo AM, Sturm RA. CDKN2A testing threshold in a high-risk Australian melanoma cohort: number of primaries, family history and young age of onset impact risk. J Eur Acad Dermatol Venereol 2020; 34:e797-e798. [PMID: 32386439 DOI: 10.1111/jdv.16627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E K McMeniman
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - E Peach
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - K J Lee
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - T Yanes
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - K Jagirdar
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - M S Stark
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - H P Soyer
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - D L Duffy
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A M McInerney-Leo
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - R A Sturm
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Fried L, Tan A, Bajaj S, Liebman TN, Polsky D, Stein JA. Technological advances for the detection of melanoma: Advances in molecular techniques. J Am Acad Dermatol 2020; 83:996-1004. [PMID: 32360759 DOI: 10.1016/j.jaad.2020.03.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/02/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
The growth of molecular technologies analyzing skin cells and inherited genetic variations has the potential to address current gaps in both diagnostic accuracy and prognostication in patients with melanoma or in individuals who are at risk for developing melanoma. In the second article in this continuing medical education series, novel molecular technologies are reviewed. These have been developed as adjunct tools for melanoma management and include the Pigmented Lesion Assay, myPath Melanoma, and DecisionDx-Melanoma tests, and genetic testing in patients with a strong familial melanoma history. These tests are commercially available and marketed as ancillary tools for clinical decision-making, diagnosis, and prognosis. We review fundamental principles behind each test, discuss peer-reviewed literature assessing their performance, and highlight the utility and limitations of each assay. The goal of this article is to provide a comprehensive, evidence-based foundation for clinicians regarding the management of patients with difficult pigmented lesions.
Collapse
Affiliation(s)
- Lauren Fried
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | - Andrea Tan
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | - Shirin Bajaj
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | - Tracey N Liebman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| | - Jennifer A Stein
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York.
| |
Collapse
|
39
|
Dika E, Patrizi A, Rossi C, Turchetti D, Miccoli S, Ferracin M, Veronesi G, Scarfì F, Lambertini M. Clinical histopathological features and CDKN2A/CDK4/MITF mutational status of patients with multiple primary melanomas from Bologna: Italy is a fascinating but complex mosaic. Ital J Dermatol Venerol 2020; 156:599-605. [PMID: 32221274 DOI: 10.23736/s2784-8671.20.06496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The incidence of cutaneous melanoma (cM) has increased in the last decades. Germline mutations in the high-penetrance melanoma susceptibility gene CDKN2A (Cyclin-dependent kinase inhibitor 2A) are associated with a younger age at diagnosis and an increased risk to develop pancreatic cancer. METHODS We retrospectively analyzed the data of patients with prior diagnosis of cM referring to our service from January 2005 to May 2017. The aim was to investigate the rate of multiple cMs (MPM), assessing their clinical/pathological features. Moreover, the genetic tests of patients who had undergone CDKN2A/CDKN2B, CDK4 and MITF screening were evaluated. RESULTS One hundred fifteen patients (9.26%) were diagnosed with MPMs: 70 males (60.87%) and 45 women (39.13%). 75 patients (43 males and 32 females) underwent genetic screening for germline mutations. The screening revealed that 4/75 patients (5.33%) were carriers of the non-synonymous missense variation c.442G>A (p.Ala148Thr) in CDKN2A exon 2 in heterozygosis, 3 of whom had at least one in-situ melanoma. In 1 patient (1.33%) we detected the variation c.249C>A, p.His83Gln in CDKN2A exon 2 in heterozygosis and in 1 patient (1.33%) the mutation c.952G>A (p.Glu318Lys) in MITF gene was found. CONCLUSIONS This study confirms the need for a full body skin examination and a prolonged surveillance in patients affected by cM, as MPMs were detected in up to 10% of total cases in our series and synchronous lesions in 1/5. Moreover, it reflects the great variability of cM high-susceptibility genes mutational status within the Italian territory. Patients carrying c.952G>A (p.Glu318Lys) MITF mutation have a higher risk to develop a nodular cM.
Collapse
Affiliation(s)
- Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Annalisa Patrizi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Cesare Rossi
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Daniela Turchetti
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Sara Miccoli
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giulia Veronesi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Federica Scarfì
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Martina Lambertini
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy - .,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| |
Collapse
|
40
|
Christodoulou E, van Doorn R, Visser M, Teunisse A, Versluis M, van der Velden P, Hayward NK, Jochemsen A, Gruis N. NEK11 as a candidate high-penetrance melanoma susceptibility gene. J Med Genet 2019; 57:203-210. [PMID: 31704778 DOI: 10.1136/jmedgenet-2019-106134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND A proportion of patients diagnosed with cutaneous melanoma reports a positive family history. Inherited variants in CDKN2A and several other genes have been shown to predispose to melanoma; however, the genetic basis of familial melanoma remains unknown in most cases. The objective of this study was to provide insight into the genetic basis of familial melanoma. METHODS In order to identify novel melanoma susceptibility genes, whole exome sequencing (WES) analysis was applied in a Dutch family with melanoma. The causality of a candidate variant was characterised by performing cosegregation analysis in five affected family members using patient-derived tissues and digital droplet PCR analysis to accurately quantify mutant allele frequency. Functional in-vitro studies were performed to assess the pathogenicity of the candidate variant. RESULTS Application of WES identified a rare, nonsense variant in the NEK11 gene (c.1120C>T, p.Arg374Ter), cosegregating in all five affected members of a Dutch family. NEK11 (NIMA-related Kinase 11) is involved in the DNA damage response, enforcing the G2/M cell cycle checkpoint. In a melanoma from a variant carrier, somatic loss of the wildtype allele of this putative tumour suppressor gene was demonstrated. Functional analyses showed that the NEK11 p.Arg374Ter mutation results in strongly reduced expression of the truncated protein caused by proteasomal degradation. CONCLUSION The NEK11 p.Arg374Ter variant identified in this family leads to loss-of-function through protein instability. Collectively, these findings support NEK11 as a melanoma susceptibility gene.
Collapse
Affiliation(s)
- Eirini Christodoulou
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Remco van Doorn
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mijke Visser
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Amina Teunisse
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Mieke Versluis
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Pieter van der Velden
- Ophthalmology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nicholas K Hayward
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Aart Jochemsen
- Cell and Chemical Biology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Nelleke Gruis
- Dermatology, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
41
|
Abstract
Melanoma is a deadly skin cancer linked to ultraviolet radiation exposure. Heritable traits and sporadic mutations modify an individual's risk for melanoma that may be associated with phenotype. Familial/heritable melanomas are broadly used to describe families with an increased incidence of melanomas, although the underlying mutation may be unknown. Mutations associated with melanoma occur in cell cycle regulation, tumor suppression, chromosomal stability, DNA repair, pigmentation, and melanocyte differentiation genes. Genetic testing of individuals with a family history of melanoma may provide additional etiologic information and ensure patients with known markers for cancer development are closely monitored by physicians.
Collapse
|
42
|
Qiu CC, Brown AE, Lobitz GR, Shanker A, Hsu S. The color of skin: black diseases of the skin, nails, and mucosa. Clin Dermatol 2019; 37:447-467. [PMID: 31896402 DOI: 10.1016/j.clindermatol.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gradations in skin color are a consequence of differing amounts of melanin and their varying distribution. Although many darkly pigmented skin lesions are melanocytic and can be attributed to melanin content, the color of a black lesion can also be due to blood, necrotic tissue, or exogenous pigment. The source, pattern, and distribution of the color in black lesions usually offer important insight into its etiology. This contribution reviews conditions that can take on a black color, discussing the cause of the hue and any additional impact sun exposure may have.
Collapse
Affiliation(s)
- Connie C Qiu
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Ashley E Brown
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gabriella R Lobitz
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Akshay Shanker
- Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sylvia Hsu
- Department of Dermatology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Taylor NJ, Mitra N, Qian L, Avril MF, Bishop DT, Bressac-de Paillerets B, Bruno W, Calista D, Cuellar F, Cust AE, Demenais F, Elder DE, Gerdes AM, Ghiorzo P, Goldstein AM, Grazziotin TC, Gruis NA, Hansson J, Harland M, Hayward NK, Hocevar M, Höiom V, Holland EA, Ingvar C, Landi MT, Landman G, Larre-Borges A, Mann GJ, Nagore E, Olsson H, Palmer JM, Perić B, Pjanova D, Pritchard AL, Puig S, Schmid H, van der Stoep N, Tucker MA, Wadt KAW, Yang XR, Newton-Bishop JA, Kanetsky PA. Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. J Am Acad Dermatol 2019; 81:386-394. [PMID: 30731170 PMCID: PMC6634996 DOI: 10.1016/j.jaad.2019.01.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5%-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of families with melanoma and whether performance improvements can be achieved. METHODS In total, 2116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CIs) along with net reclassification indices (NRIs) as performance metrics. RESULTS MELPREDICT performed well (AUC 0.752, 95% CI 0.730-0.775), and GenoMELPREDICT performance was similar (AUC 0.748, 95% CI 0.726-0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (P < .0001) in GenoMELPREDICT (AUC 0.772, 95% CI 0.750-0.793, NRI 0.40). Including phenotypic risk factors did not improve performance. CONCLUSION The MELPREDICT model functioned well in a global data set of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in directing these patients to receive genetic testing or cancer risk counseling.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lu Qian
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin et Université Paris Descartes, Paris, France
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Université Paris-Saclay, Département de Biopathologie and Institut National de la Santé et de la Recherche Médicale U1186, Villejuif, France
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and Istituto de Ricovero e Cura a Carattere Scientifico AOU San Martino-IST, Genoa, Italy
| | - Donato Calista
- Dermatology Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Francisco Cuellar
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Institut de Investigacions Biomediques August Pi Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Anne E Cust
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Florence Demenais
- Institut National de la Santé et de la Recherche Médicale UMR-946, Genetic Variation and Human Disease Unit, Université Paris Diderot, Paris, France
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Istituto de Ricovero e Cura a Carattere Scientifico AOU San Martino-IST, Genoa, Italy
| | - Alisa M Goldstein
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Thais C Grazziotin
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | | | - Marko Hocevar
- Institute of Oncology Ljubljana, Zaloska, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Holland
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Christian Ingvar
- Department of Clinical Sciences, Lund University Hospital Lund, Sweden; Department of Surgery, Lund University Hospital, Lund, Sweden
| | - Maria Teresa Landi
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Gilles Landman
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alejandra Larre-Borges
- Unidad de Lesiones Pigmentadas, Cátedra de Dermatología, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Håkan Olsson
- Department of Clinical Sciences, Lund University Hospital Lund, Sweden; Department of Surgery, Lund University Hospital, Lund, Sweden
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Barbara Perić
- Institute of Oncology Ljubljana, Zaloska, Ljubljana, Slovenia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Institut de Investigacions Biomediques August Pi Sunyer, Universitat de Barcelona, Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Helen Schmid
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center Leiden, the Netherlands
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Xiaohong R Yang
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia A Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
44
|
Potrony M, Puig-Butille J, Ribera-Sola M, Iyer V, Robles-Espinoza C, Aguilera P, Carrera C, Malvehy J, Badenas C, Landi M, Adams D, Puig S. POT1 germline mutations but not TERT promoter mutations are implicated in melanoma susceptibility in a large cohort of Spanish melanoma families. Br J Dermatol 2019; 181:105-113. [PMID: 30451293 PMCID: PMC6526091 DOI: 10.1111/bjd.17443] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Germline mutations in telomere-related genes such as POT1 and TERT predispose individuals to familial melanoma. OBJECTIVES To evaluate the prevalence of germline mutations in POT1 and TERT in a large cohort of Spanish melanoma-prone families (at least two affected first- or second-degree relatives). METHODS Overall, 228 CDKN2A wild-type melanoma-prone families were included in the study. Screening of POT1 was performed in one affected person from each family and TERT was sequenced in one affected patient from 202 families (26 families were excluded owing to DNA exhaustion/degradation). TERT promoter sequencing was extended to an additional 30 families with CDKN2A mutation and 70 patients with sporadic multiple primary melanoma (MPM) with a family history of other cancers. RESULTS We identified four families with potentially pathogenic POT1 germline mutations: a missense variant c.233T>C (p.Ile78Thr); a nonsense variant c.1030G>T (p.Glu344*); and two other variants, c.255G>A (r.125_255del) and c.1792G>A (r.1791_1792insAGTA, p.Asp598Serfs*22), which we confirmed disrupted POT1 mRNA splicing. A TERT promoter variant of unknown significance (c.-125C>A) was detected in a patient with MPM, but no germline mutations were detected in TERT promoter in cases of familial melanoma. CONCLUSIONS Overall, 1·7% of our CDKN2A/CDK4-wild type Spanish melanoma-prone families carry probably damaging mutations in POT1. The frequency of TERT promoter germline mutations in families with melanoma in our population is extremely rare.
Collapse
Affiliation(s)
- Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J.A. Puig-Butille
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M. Ribera-Sola
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - V. Iyer
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - C.D. Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico
- Experimental Cancer Genetics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - P. Aguilera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J. Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C. Badenas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M.T. Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - D.J. Adams
- Experimental Cancer Genetics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
45
|
Matsumoto A, Nijhawan RI. Cells to Surgery Quiz: June 2019. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.03.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Peters MLB, Stobie L, Dudley B, Karloski E, Allen K, Speare V, Dolinsky JS, Tian Y, DeLeonardis K, Krejdovsky J, Button A, Lim C, Borazanci E, Brand R, Tung N. Family communication and patient distress after germline genetic testing in individuals with pancreatic ductal adenocarcinoma. Cancer 2019; 125:2488-2496. [PMID: 30980401 DOI: 10.1002/cncr.32077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Germline genetic testing currently is recommended for patients with pancreatic ductal adenocarcinoma (PDAC). In the current study, the authors assessed how often results are communicated to first-degree relatives within 3 months and the emotional impact of testing on patients. METHODS A total of 148 patients who were newly diagnosed with PDAC and who had undergone testing of 32 cancer susceptibility genes at 3 academic centers were selected; 71% participated. Subjects completed the Multidimensional Impact of Cancer Risk Assessment (MICRA) and a family communication survey. The results of both surveys were assessed at 3 months according to the genetic test result (positive, negative, or variant of unknown significance [VUS]) and whether a patient met criteria for genetic testing. RESULTS A total of 99 patients completed the MICRA survey and 104 completed the family communication survey. The average age of the patients was 67 years, 47% were female, 29% had stage III/IV (AJCC 8th edition) disease, and 42% met genetic testing criteria. Approximately 80% of patients told at least 1 first-degree relative about their result. There was a trend toward greater disclosure among patients who tested positive (93% vs 77% for those with a VUS result [P = .149] and 74% for those who tested negative [P = .069]). Patients not meeting genetic testing criteria were less likely to disclose results (69% vs 93%; P = .003). MICRA scores did not differ by test result, age, stage of disease, or sex. CONCLUSIONS The rate of result communication was high, although it was lower among patients who did not meet genetic testing criteria, those who tested negative, or those who had a VUS result. Testing-associated distress was similar across patient groups, and was comparable to that reported by other patients with cancer. Improved communication for all patients is crucial given the prognosis of PDAC, which limits time for disclosure.
Collapse
Affiliation(s)
- Mary Linton B Peters
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Lindsey Stobie
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Beth Dudley
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eve Karloski
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kyle Allen
- Division of Clinical Affairs, Division of Bioinformatics, Ambry Genetics, Aliso Viejo, California
| | - Virginia Speare
- Division of Clinical Affairs, Division of Bioinformatics, Ambry Genetics, Aliso Viejo, California
| | - Jill S Dolinsky
- Division of Clinical Affairs, Division of Bioinformatics, Ambry Genetics, Aliso Viejo, California
| | - Yuan Tian
- Division of Clinical Affairs, Division of Bioinformatics, Ambry Genetics, Aliso Viejo, California
| | - Kim DeLeonardis
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jill Krejdovsky
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Cynthia Lim
- HonorHealth Research Institute, Scottsdale, Arizona
| | | | - Randall Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nadine Tung
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
47
|
Visser M, van der Stoep N, Gruis N. Progress report on the major clinical advances in patient-oriented research into familial melanoma (2013-2018). Fam Cancer 2019; 18:267-271. [PMID: 30659395 DOI: 10.1007/s10689-018-00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mijke Visser
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
48
|
CDKN2A germline alterations in melanoma patients with personal or familial history of pancreatic cancer. Melanoma Res 2019; 28:246-249. [PMID: 29543703 DOI: 10.1097/cmr.0000000000000442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CDKN2A germline mutations increase the risk of melanoma development and are present in 20 and 10% of familial and multiple melanoma cases, respectively. Pancreatic cancer has been associated with CDKN2A in some populations and, accordingly, its presence in first-degree or second-degree relatives of a melanoma patient is considered as a criterion for genetic testing. In this study, we show that in an area with low melanoma incidence, CDKN2A germline mutations in patients with melanoma and personal or family history of pancreatic cancer are mainly present in the setting of familial or multiple melanoma cases. In addition, a relatively young age (≤52 years) at pancreatic diagnosis is an additional single criterion that might also be considered.
Collapse
|
49
|
Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC. Familial Melanoma: Diagnostic and Management Implications. Dermatol Pract Concept 2019; 9:10-16. [PMID: 30775140 PMCID: PMC6368081 DOI: 10.5826/dpc.0901a03] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background An estimated 5%-10% of all cutaneous melanoma cases occur in families. This review describes susceptibility genes currently known to be involved in melanoma predisposition, genetic testing of familial melanoma patients, and management implications. Results CDKN2A is the major high-penetrance susceptibility gene with germline mutations identified in 20%-40% of melanoma families. A positive CDKN2A mutation status has been associated with a high number of affected family members, multiple primary melanomas, pancreatic cancer, and early age at melanoma onset. Mutations in the other melanoma predisposition genes-CDK4, BAP1, TERT, POT1, ACD, TERF2IP, and MITF-are rare, overall contributing to explain a further 10% of familial clustering of melanoma. The underlying genetic susceptibility remains indeed unexplained for half of melanoma families. Genetic testing for melanoma is currently recommended only for CDKN2A and CDK4, and, at this time, the role of multigene panel testing remains under debate. Individuals from melanoma families must receive genetic counseling to be informed about the inclusion criteria for genetic testing, the probability of an inconclusive result, the genetic risk for melanoma and other cancers, and the debatable role of medical management. They should be counseled focusing primarily on recommendations on appropriate lifestyle, encouraging skin self-examination, and regular dermatological screening. Conclusions Genetic testing for high-penetrance melanoma susceptibility genes is recommended in melanoma families after selection of the appropriate candidates and adequate counseling of the patient. All patients and relatives from melanoma kindreds, irrespective of their mutation status, should be encouraged to adhere to a correct ultraviolet exposure, skin self-examination, and surveillance by physicians.
Collapse
Affiliation(s)
- Mariarita Rossi
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | | | - Ludovica Cardelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Valeria Ciciarelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Lucia Di Nardo
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy.,Institute of Dermatology, Catholic University, Rome, Italy
| | | |
Collapse
|
50
|
Swetter SM, Tsao H, Bichakjian CK, Curiel-Lewandrowski C, Elder DE, Gershenwald JE, Guild V, Grant-Kels JM, Halpern AC, Johnson TM, Sober AJ, Thompson JA, Wisco OJ, Wyatt S, Hu S, Lamina T. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol 2018; 80:208-250. [PMID: 30392755 DOI: 10.1016/j.jaad.2018.08.055] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
The incidence of primary cutaneous melanoma continues to increase each year. Melanoma accounts for the majority of skin cancer-related deaths, but treatment is usually curative following early detection of disease. In this American Academy of Dermatology clinical practice guideline, updated treatment recommendations are provided for patients with primary cutaneous melanoma (American Joint Committee on Cancer stages 0-IIC and pathologic stage III by virtue of a positive sentinel lymph node biopsy). Biopsy techniques for a lesion that is clinically suggestive of melanoma are reviewed, as are recommendations for the histopathologic interpretation of cutaneous melanoma. The use of laboratory, molecular, and imaging tests is examined in the initial work-up of patients with newly diagnosed melanoma and for follow-up of asymptomatic patients. With regard to treatment of primary cutaneous melanoma, recommendations for surgical margins and the concepts of staged excision (including Mohs micrographic surgery) and nonsurgical treatments for melanoma in situ, lentigo maligna type (including topical imiquimod and radiation therapy), are updated. The role of sentinel lymph node biopsy as a staging technique for cutaneous melanoma is described, with recommendations for its use in clinical practice. Finally, current data regarding pregnancy and melanoma, genetic testing for familial melanoma, and management of dermatologic toxicities related to novel targeted agents and immunotherapies for patients with advanced disease are summarized.
Collapse
Affiliation(s)
- Susan M Swetter
- Department of Dermatology, Stanford University Medical Center and Cancer Institute, Stanford, California; Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Wellman Center for Photomedicine, Boston, Massachusetts
| | - Christopher K Bichakjian
- Department of Dermatology, University of Michigan Health System, Ann Arbor, Michigan; Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Clara Curiel-Lewandrowski
- Division of Dermatology, University of Arizona, Tucson, Arizona; University of Arizona Cancer Center, Tucson, Arizona
| | - David E Elder
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut; Department of Pathology, University of Connecticut Health Center, Farmington, Connecticut; Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Allan C Halpern
- Department of Dermatology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Timothy M Johnson
- Department of Dermatology, University of Michigan Health System, Ann Arbor, Michigan; Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Arthur J Sober
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - John A Thompson
- Division of Oncology, University of Washington, Seattle, Washington; Seattle Cancer Care Alliance, Seattle, Washington
| | - Oliver J Wisco
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon
| | | | - Shasa Hu
- Department of Dermatology, University of Miami Health System, Miami, Florida
| | - Toyin Lamina
- American Academy of Dermatology, Rosemont, Illinois
| |
Collapse
|