1
|
Zheng XQ, Zhang XH, Gao HQ, Huang LY, Ye JJ, Ye JH, Lu JL, Ma SC, Liang YR. Green Tea Catechins and Skin Health. Antioxidants (Basel) 2024; 13:1506. [PMID: 39765834 PMCID: PMC11673495 DOI: 10.3390/antiox13121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves (Camellia sinensis (L.) O. Kuntze). They have garnered significant attention due to their diverse health benefits and potential therapeutic applications, including as antioxidant and sunscreen agents. Human skin serves as the primary barrier against various external aggressors, including pathogens, pollutants, and harmful ultraviolet radiation (UVR). Skin aging is a complex biological process influenced by intrinsic factors such as genetics and hormonal changes, as well as extrinsic factors like environmental stressors, among which UVR plays a pivotal role in accelerating skin aging and contributing to various dermatological conditions. Research has demonstrated that GTCs possess potent antioxidant properties that help neutralize free radicals generated by oxidative stress. This action not only mitigates cellular damage but also supports the repair mechanisms inherent in human skin. Furthermore, GTCs exhibit anti-carcinogenic effects by inhibiting pathways involved in tumor promotion and progression. GTCs have been shown to exert anti-inflammatory effects through modulation of inflammatory signaling pathways. Chronic inflammation is known to contribute significantly to both premature aging and various dermatological diseases such as psoriasis or eczema. By regulating these pathways effectively, GTCs may alleviate symptoms associated with inflammatory conditions. GTCs can enhance wound healing processes by stimulating angiogenesis. They also facilitate DNA repair mechanisms within dermal fibroblasts exposed to damaging agents. The photoprotective properties attributed to GTCs further underscore their relevance in skincare formulations aimed at preventing sun-induced damage. Their ability to screen UV light helps shield underlying tissues from harmful rays. This review paper aims to comprehensively examine the beneficial effects of GTCs on skin health through an analysis encompassing in vivo and in vitro studies alongside insights into molecular mechanisms underpinning these effects. Such knowledge could pave the way for the development of innovative strategies focused on harnessing natural compounds like GTCs for improved skincare solutions tailored to combat environmental stresses faced by the human epidermis.
Collapse
Affiliation(s)
- Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Xue-Han Zhang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Han-Qing Gao
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Lan-Ying Huang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jing-Jing Ye
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Shi-Cheng Ma
- Wuzhou Liubao Tea Research Association, #18, Sanlong Avenue, Changzhou District, Wuzhou 543001, China;
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| |
Collapse
|
2
|
Zhang X, Zhou Q, Qi Y, Chen X, Deng J, Zhang Y, Li R, Fan J. The effect of tomato and lycopene on clinical characteristics and molecular markers of UV-induced skin deterioration: A systematic review and meta-analysis of intervention trials. Crit Rev Food Sci Nutr 2024; 64:6198-6217. [PMID: 36606553 DOI: 10.1080/10408398.2022.2164557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lycopene as a natural antioxidant that have been studied for ultraviolet radiation (UVR) photo protection and is one of the most effective carotenoids to scavenge reactive oxygen species (ROS). This review aims to summarize the protective effect of tomato and lycopene on skin photo damage and skin photoaging in healthy subjects by reviewing the existing population intervention experiments. A total of five electronic databases including PubMed, Scopus, EBSCO, Web of Science and Cochrane Library were searched from inceptions to January 2021 without any restriction. Out of 19336 publications identified, 21 fulfilled the inclusion criteria and were meta-analysis. Overall, interventions supplementing tomato and lycopene were associated with significant reductions in Δa*, MMP-1, ICAM-1 and skin pigmentation; while tomato and lycopene supplementation were associated with significant increase in MED, skin thickness and skin density. Based on the results of this systematic review and meta-analysis, supplementation with tomato and lycopene could reduce skin erythema formation and improve the appearance and pigmentation of the skin, thereby preventing light-induced skin photodamage and skin photoaging. Lycopene-rich products could be used as endogenous sun protection and may be a potential nutraceutical for sun protection.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Efficacy and Safety of Oral Green Tea Preparations in Skin Ailments: A Systematic Review of Clinical Studies. Nutrients 2022; 14:nu14153149. [PMID: 35956325 PMCID: PMC9370301 DOI: 10.3390/nu14153149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Green-tea-based products and their polyphenols, especially epigallocatechin-3-gallate, have attracted great attention over the years as possible nutraceuticals, due to their promising bioactivities, especially antioxidant and anti-inflammatory, which could be exploited in several diseases, including skin ailments. In this context, the present study aimed at reviewing clinical evidence about the benefits of the oral administration of green tea preparations and its polyphenols to relieve skin disorders, to point out the current knowledge, and to suggest possible novel strategies to effectively exploit the properties of green tea, also managing safety risks. To this end, a systematic review of the existing literature was carried out, using the PRISMA method. Few studies, including five focused on UV-induced erythema and skin alterations, three on photoaging, two on antioxidant skin defenses, and one on acne and genodermatosis, were retrieved. Despite several benefits, clinical evidence only supports the use of oral green tea preparations to protect skin from damage induced by ultraviolet radiation; in other cases, conflicting results and methodological limits of clinical trials do not allow one to clarify their efficacy. Therefore, their application as adjuvant or alternative sunscreen-protective interventions could be encouraged, in compliance with the safety recommendations.
Collapse
|
4
|
Charoenchon N, Rhodes LE, Nicolaou A, Williamson G, Watson RE, Farrar MD. Ultraviolet radiation‐induced degradation of dermal extracellular matrix and protection by green tea catechins: a randomised controlled trial. Clin Exp Dermatol 2022; 47:1314-1323. [PMID: 35279873 PMCID: PMC9320810 DOI: 10.1111/ced.15179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
Abstract
Background Aim Methods Results Conclusions
Collapse
Affiliation(s)
- Nisamanee Charoenchon
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| | - Lesley E. Rhodes
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
- Photobiology Unit, Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre Manchester UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry School of Health Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences Monash University Victoria Australia
| | - Rachel E.B. Watson
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| | - Mark D. Farrar
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| |
Collapse
|
5
|
Protective effects of gallocatechin gallate against ultraviolet B induced skin damages in hairless mice. Sci Rep 2022; 12:1310. [PMID: 35079059 PMCID: PMC8789851 DOI: 10.1038/s41598-022-05305-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
Epigallocatechin gallate (EGCG) has the effect to protect skin from ultraviolet B (UVB) induced damages, but it is unstable under ambient conditions, being susceptible to become brown in color. Gallocatechin gallate (GCG), an epimer counterpart of EGCG, is more stable chemically than EGCG. The potential effects of GCG against UVB-induced skin damages has not been available. The objective of this study was to investigate the protective effects of GCG against UVB-induced skin photodamages. GCG was topically applied on the skin of hairless mice at three dosage levels (LL, 12.5 mg/mL; ML 25 mg/mL; HL, 50 mg/mL), with EGCG and a commercially available baby sunscreen lotion SPF50 PA+++ as control. The mice were then irradiated by UVB (fluence rate 1.7 µmol/m2 s) for 45 min. The treatments were carried out once a day for 6 consecutive days. Skin measurements and histological studies were performed at the end of experiment. The results show that GCG treatments at ML and HL levels inhibited the increase in levels of skin oil and pigmentation induced by UVB irradiation, and improved the skin elasticity and collagen fibers. GCG at ML and HL levels inhibited the formation of melanosomes and aberrations in mitochondria of UVB-irradiated skin in hairless mice. It is concluded that GCG protected skin from UVB-induced photodamages by improving skin elasticity and collagen fibers, and inhibiting aberrations in mitochondria and formation of melanosomes.
Collapse
|
6
|
Pihl C, Togsverd-Bo K, Andersen F, Haedersdal M, Bjerring P, Lerche CM. Keratinocyte Carcinoma and Photoprevention: The Protective Actions of Repurposed Pharmaceuticals, Phytochemicals and Vitamins. Cancers (Basel) 2021; 13:cancers13153684. [PMID: 34359586 PMCID: PMC8345172 DOI: 10.3390/cancers13153684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Keratinocyte carcinoma is the most common type of cancer. Sun exposure and ultraviolet radiation are significant contributors to the development of carcinogenesis, mediated by DNA damage, increased oxidative stress, inflammation, immunosuppression and dysregulated signal transduction. Photoprevention involves using different compounds to delay or prevent ultraviolet radiation-induced skin cancer. In this review, we look at new avenues for systemic photoprevention that are based on pharmaceuticals, plant-derived phytochemicals and vitamins. We also investigate the mechanisms underlying these strategies for preventing the onset of carcinogenesis. Abstract Ultraviolet radiation (UVR) arising from sun exposure represents a major risk factor in the development of keratinocyte carcinomas (KCs). UVR exposure induces dysregulated signal transduction, oxidative stress, inflammation, immunosuppression and DNA damage, all of which promote the induction and development of photocarcinogenesis. Because the incidence of KCs is increasing, better prevention strategies are necessary. In the concept of photoprevention, protective compounds are administered either topically or systemically to prevent the effects of UVR and the development of skin cancer. In this review, we provide descriptions of the pathways underlying photocarcinogenesis and an overview of selected photoprotective compounds, such as repurposed pharmaceuticals, plant-derived phytochemicals and vitamins. We discuss the protective potential of these compounds and their effects in pre-clinical and human trials, summarising the mechanisms of action involved in preventing photocarcinogenesis.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Katrine Togsverd-Bo
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
- Private Hospital Molholm, 7100 Vejle, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Kapoor MP, Sugita M, Fukuzawa Y, Timm D, Ozeki M, Okubo T. Green Tea Catechin Association with Ultraviolet Radiation-Induced Erythema: A Systematic Review and Meta-Analysis. Molecules 2021; 26:molecules26123702. [PMID: 34204433 PMCID: PMC8233826 DOI: 10.3390/molecules26123702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Catechins are a part of the chemical family of flavonoids, a naturally occurring antioxidant, and a secondary metabolite in certain plants. Green tea catechins are well recognized for their essential anti-inflammatory, photo-protective, antioxidant, and chemo-preventive functions. Ultraviolet radiation is a principal cause of damage to the skin. Studies observed that regular intake of green tea catechins increased the minimal dose of radiation required to induce erythema. The objectives of this systematic review and meta-analysis are to determine the effectiveness of green tea catechins in cutaneous erythema and elucidate whether green tea catechin consumption protects against erythema (sunburn) inflammation. A comprehensive literature search was conducted to identify the relevant studies. Two researchers carried out independent screening, data extraction, and quality assessment according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The pooled effect of green tea catechins on protection against erythema was assessed using approaches fixed-effects or random-effects model to quantify the effectiveness of green tea catechins in the erythema dose-response. Studies not be included in meta-analyses were summarized narratively. Six randomized controlled studies of enrolled studies regularly administrated green tea catechins orally for 6 to 12 weeks involving healthy volunteers comprising a total of 100 participants were included in the analysis. The results revealed green tea catechins have favorable protection against erythema inflammation even at increased minimal erythema dose (MED) of ultraviolet radiation. Meta-analysis results confirm oral supplementation of green tea catechins is highly effective at low-intensity ultraviolet radiation-induced erythema response (MED range; 1.25-1.30) compared to placebo, showing a significant pooling difference (p = 0.002) in erythema index (SMD: -0.35; 95% CI, -0.57 to -0.13; I2 = 4%, p = 0.40) in the random-effects model. The pro-inflammatory signaling pathways through oral supplementation with green tea catechins are an attractive strategy for photo-protection in healthy human subjects and could represent a complementary approach to topical sunscreens. Therefore, studies that involved green tea catechin in topical applications to human subjects were also evaluated separately, and their meta-analysis is presented as a reference. The evidence indicates that regular green tea catechin supplementation is associated with protection against UV-induced damage due to erythema inflammation.
Collapse
Affiliation(s)
- Mahendra P. Kapoor
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan; (M.O.); (T.O.)
- Correspondence: ; Tel.: +81-70-6479-6004
| | - Masaaki Sugita
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1 Fukusawa, Setagaya-Ku, Tokyo 158-8508, Japan;
| | - Yoshitaka Fukuzawa
- Preemptive and Integrative Medicine Center, Aichi Medical University Hospital, 1-1 Karimata, Yazako, Nagakute 480-1195, Japan;
| | - Derek Timm
- Taiyo International Inc., 5960 Golden Hills Dr, Minneapolis, MN 55416, USA;
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan; (M.O.); (T.O.)
| | - Tsutomu Okubo
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan; (M.O.); (T.O.)
| |
Collapse
|
8
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
9
|
Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Front Cell Dev Biol 2020; 8:822. [PMID: 33015038 PMCID: PMC7493682 DOI: 10.3389/fcell.2020.00822] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeine is chemically stable and not readily oxidized under normal physiological conditions but also has antioxidant effects, although the underlying molecular mechanism is not well understood. Superoxide dismutase (SOD) 2 is a manganese-containing enzyme located in mitochondria that protects cells against oxidative stress by scavenging reactive oxygen species (ROS). SOD2 activity is inhibited through acetylation under conditions of stress such as exposure to ultraviolet (UV) radiation. Sirtuin 3 (SIRT3) is the major mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, which deacetylates two critical lysine residues (lysine 68 and lysine 122) on SOD2 and promotes its antioxidative activity. In this study, we investigated whether the antioxidant effect of caffeine involves modulation of SOD2 by SIRT3 using in vitro and in vivo models. The results show that caffeine interacts with SIRT3 and promotes direct binding of SIRT3 with its substrate, thereby enhancing its enzymatic activity. Mechanistically, caffeine bound to SIRT3 with high affinity (KD = 6.858 × 10–7 M); the binding affinity between SIRT3 and its substrate acetylated p53 was also 9.03 (without NAD+) or 6.87 (with NAD+) times higher in the presence of caffeine. Caffeine effectively protected skin cells from UV irradiation-induced oxidative stress. More importantly, caffeine enhanced SIRT3 activity and reduced SOD2 acetylation, thereby leading to increased SOD2 activity, which could be reversed by treatment with the SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) in vitro and in vivo. Taken together, our results show that caffeine targets SIRT3 to enhance SOD2 activity and protect skin cells from UV irradiation-induced oxidative stress. Thus, caffeine, as a small-molecule SIRT3 activator, could be a potential agent to protect human skin against UV radiation.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziqi Gao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Simin Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dongying Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
|
11
|
Abstract
Melanoma is rapidly evolving because of advances in noninvasive diagnosis, targeted therapies, and improved prognostic methods. This article discusses what is new in melanoma risk factors, prevention, clinical management, and targeted treatment. The incidence continues to increase worldwide, whereas mortality is steadily improving. This trend reinforces the importance of dermatologists comprehensively understanding all aspects of melanoma. Further research is needed to continue making a material impact on outcomes for patients.
Collapse
Affiliation(s)
- Giselle Prado
- National Society for Cutaneous Medicine, 35 East 35th Street #208, New York, NY 10016, USA.
| | - Ryan M Svoboda
- Department of Dermatology, Duke University School of Medicine, Durham, NC, USA
| | - Darrell S Rigel
- Department of Dermatology, NYU School of Medicine, 35 East 35th Street #208, New York, NY 10016, USA
| |
Collapse
|