1
|
Carney BC, Oliver MA, Kurup S, Collins M, Keyloun JW, Moffatt LT, Shupp JW, Travis TE. Laser-assisted drug delivery of synthetic alpha melanocyte stimulating hormone and L-tyrosine leads to increased pigmentation area and expression of melanogenesis genes in a porcine hypertrophic scar model. Lasers Surg Med 2023. [PMID: 37051852 DOI: 10.1002/lsm.23663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVES One symptom of hypertrophic scar (HTS) that can develop after burn injury is dyschromia with hyper- and hypopigmentation. There are limited treatments for these conditions. Previously, we showed there is no expression of alpha melanocyte stimulating hormone (α-MSH) in hypopigmented scars, and if these melanocytes are treated with synthetic α-MSH in vitro, they respond by repigmenting. The current study tested the same hypothesis in the in vivo environment using laser-assisted drug delivery (LADD). METHODS HTSs were created in red Duroc pigs. At Day 77 (pre), they were treated with CO2 fractional ablative laser (FLSR). Synthetic α-MSH was delivered as a topical solution dissolved in l-tyrosine (n = 6, treated). Control scars received LADD of l-tyrosine only (n = 2, control). Scars were treated and examined weekly through Week 4. Digital images and punch biopsies of hyper, hypo-, and normally pigmented scar and skin were collected. Digital pictures were analyzed with ImageJ by tracing the area of hyperpigmentation. Epidermal sheets were obtained from punch biopsies through dispase separation and RNA was isolated. qRT-PCR was run for melanogenesis-related genes: tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1), and dopachrome tautomerase (DCT). Two-way ANOVA with multiple comparisons and Dunnett's correction compared the groups. RESULTS The areas of hyperpigmentation were variable before treatment. Therefore, data is represented as fold-change where each scar was normalized to its own pre value. Within the LADD of NDP α-MSH + l-tyrosine group, hyperpigmented areas gradually increased each week, reaching 1.3-fold over pre by Week 4. At each timepoint, area of hyperpigmentation was greater in the treated versus the control (1.04 ± 0.05 vs. 0.89 ± 0.08, 1.21 ± 0.07 vs. 0.98 ± 0.24, 1.21 ± 0.08 vs. 1.04 ± 0.11, 1.28 ± 0.11 vs. 0.94 ± 0.25; fold-change from pre-). Within the treatment group, pretreatment, levels of TYR were decreased -17.76 ± 4.52 below the level of normal skin in hypopigmented scars. After 1 treatment, potentially due to laser fractionation, the levels decreased to -43.49 ± 5.52. After 2, 3, and 4 treatments, there was ever increasing levels of TYR to almost the level of normally pigmented skin (-35.74 ± 15.72, -23.25 ± 6.80, -5.52 ± 2.22 [p < 0.01, Week 4]). This pattern was also observed for TYRP1 (pre = -12.94 ± 1.82, Week 1 = -48.85 ± 13.25 [p < 0.01], Weeks 2, 3, and 4 = -34.45 ± 14.64, -28.19 ± 4.98, -6.93 ± 3.05 [p < 0.01, Week 4]) and DCT (pre = -214.95 ± 89.42, Week 1 = -487.93 ± 126.32 [p < 0.05], Weeks 2, 3, and 4 = -219.06 ± 79.33, -72.91 ± 20.45 [p < 0.001], -76.00 ± 24.26 [p < 0.001]). Similar patterns were observed for scars treated with LADD of l-tyrosine alone without NDP α-MSH. For each gene, in hyperpigmented scar, levels increased at Week 4 of treatment compared to Week 1 (p < 0.01). CONCLUSIONS A clinically-relevant FLSR treatment method can be combined with topical delivery of synthetic α-MSH and l-tyrosine to increase the area of pigmentation and expression of melanogenesis genes in hypopigmented HTS. LADD of l-tyrosine alone leads to increased expression of melanogenesis genes. Future studies will aim to optimize drug delivery, timing, and dosing.
Collapse
Affiliation(s)
- Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Sanjana Kurup
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Howard University College of Medicine, Washington, District of Columbia, USA
| | - Monica Collins
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - John W Keyloun
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Taryn E Travis
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Labadie JG, Ibrahim SA, Worley B, Kang BY, Rakita U, Rigali S, Arndt KA, Bernstein E, Brauer JA, Chandra S, Didwania A, DiGiorgio C, Donelan M, Dover JS, Galadari H, Geronemus RG, Goldman MP, Haedersdal M, Hruza G, Ibrahimi OA, Kauvar A, Kelly KM, Krakowski AC, Miest R, Orringer JS, Ozog DM, Ross EV, Shumaker PR, Sobanko JF, Suozzi K, Taylor MB, Teng JMC, Uebelhoer NS, Waibel J, Wanner M, Ratchev I, Christensen RE, Poon E, Miller CH, Alam M. Evidence-Based Clinical Practice Guidelines for Laser-Assisted Drug Delivery. JAMA Dermatol 2022; 158:1193-1201. [PMID: 35976634 DOI: 10.1001/jamadermatol.2022.3234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Laser-assisted drug delivery (LADD) is used for various medical and cosmetic applications. However, there is insufficient evidence-based guidance to assist clinicians performing LADD. Objective To develop recommendations for the safe and effective use of LADD. Evidence Review A systematic literature review of Cochrane Central Register of Controlled Trials, Embase, and MEDLINE was conducted in December 2019 to identify publications reporting research on LADD. A multidisciplinary panel was convened to draft recommendations informed by the systematic review; they were refined through 2 rounds of Delphi survey, 2 consensus meetings, and iterative review by all panelists until unanimous consensus was achieved. Findings Of the 48 published studies of ablative fractional LADD that met inclusion criteria, 4 were cosmetic studies; 21, oncologic; and 23, medical (not cosmetic/oncologic), and 6 publications of nonablative fractional LADD were included at the request of the expert panel, producing a total of 54 studies. Thirty-four studies (63.0%) were deemed to have low risk of bias, 17 studies (31.5%) had moderate risk, and 3 (5.5%) had serious risk. The key findings that informed the guidelines developed by the expert panel were as follows: LADD is safe in adults and adolescents (≥12 years) with all Fitzpatrick skin types and in patients with immunosuppression; it is an effective treatment for actinic keratosis, cutaneous squamous cell carcinoma in situ, actinic cheilitis, hypertrophic scars, and keloids; it is useful for epidermal and dermal analgesia; drug delivery may be increased through the application of heat, pressure, or occlusion, or by using an aqueous drug solution; laser settings should be selected to ensure that channel diameter is greater than the delivered molecule; antibiotic prophylaxis is not recommended, except with impaired wound healing; antiviral prophylaxis is recommended when treating the face and genitalia; and antifungal prophylaxis is not recommended. The guideline's 15 recommendations address 5 areas of LADD use: (I) indications and contraindications; (II) parameters to report; (III) optimization of drug delivery; (IV) safety considerations; and (V) prophylaxis for bacterial, viral, and fungal infections. Conclusions and Relevance This systematic review and Delphi consensus approach culminated in an evidence-based clinical practice guideline for safe and effective use of LADD in a variety of applications. Future research will further improve our understanding of this novel treatment technique.
Collapse
Affiliation(s)
- Jessica G Labadie
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarah A Ibrahim
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brandon Worley
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bianca Y Kang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Uros Rakita
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Sarah Rigali
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kenneth A Arndt
- SkinCare Physicians, Chestnut Hill, Massachusetts.,Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Eric Bernstein
- Main Line Center for Laser Surgery, Ardmore, Pennsylvania
| | - Jeremy A Brauer
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York
| | - Sunandana Chandra
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aashish Didwania
- Department of Internal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Mattias Donelan
- Shriners Hospital for Children-Boston, Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey S Dover
- SkinCare Physicians, Chestnut Hill, Massachusetts.,Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Hassan Galadari
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Mitchel P Goldman
- Cosmetic Laser Dermatology, West Dermatology Company, San Diego, California
| | - Merete Haedersdal
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen, Denmark.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston
| | - George Hruza
- Departments of Dermatology and Otolaryngology, St Louis University-Laser and Dermatologic Surgery Center, St Louis, Missouri
| | | | - Arielle Kauvar
- New York Laser & Skin Care, New York.,New York University Grossman School of Medicine, New York, New York
| | - Kristen M Kelly
- Department of Dermatology, University of California Irvine School of Medicine, Irvine
| | - Andrew C Krakowski
- Department of Dermatology, St. Luke's University Health Network, Easton, Pennsylvania
| | - Rachel Miest
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey S Orringer
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor
| | - David M Ozog
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Peter R Shumaker
- Veterans Affairs San Diego Healthcare System and University of California, San Diego, California
| | - Joseph F Sobanko
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen Suozzi
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Mark B Taylor
- Gateway Aesthetic Institute & Laser Center, Salt Lake City, Utah
| | - Joyce M C Teng
- Department of Dermatology, School of Medicine, Stanford University, Stanford, California
| | | | - Jill Waibel
- Miami Dermatology and Laser Institute, Miami, Florida
| | - Molly Wanner
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ina Ratchev
- Section of Cutaneous Surgery, Northwestern Medical Group, Chicago, Illinois
| | - Rachel E Christensen
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emily Poon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Corinne H Miller
- Galter Health Sciences Library & Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Murad Alam
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
3
|
Mpourazanis G, Konschake W, Vogiatzis R, Papalexis P, Georgakopoulou VE, Ntritsos G, Sklapani P, Trakas N. The Role and Effectiveness of Photodynamic Therapy on Patients With Actinic Keratosis: A Systematic Review and Meta-Analysis. Cureus 2022; 14:e26390. [PMID: 35911353 PMCID: PMC9332024 DOI: 10.7759/cureus.26390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/05/2022] Open
Abstract
Actinic keratoses (AKs) are the most common neoplastic lesions and are recognized as a precursor to squamous cell skin cancer. Photodynamic therapy (PDT) is a therapeutic option for multiple AKs in line with field cancerization. The aim of this study was to assess the effectiveness of PDT on patients with AKs using a meta-analysis, in order to evaluate the possible superiority of one treatment over the others. For this purpose, the PubMed, MEDLINE, Scopus, OVID, Science Direct, British Journal of Dermatology, Research Gate, and Embase databases were searched in March 2022. The search terms used were 'photodynamic therapy' and 'actinic keratosis'. We utilized the random-effects meta-analysis model to compare methyl aminolevulinate PDT (MAL-PDT) and the combination of a nanoscale-lipid vesicle formulation with the prodrug 5-aminolevulinic acid (BF-200 ALA) on a complete response (CR) of the lesions. Our meta-analysis indicated that the comparison of BF-200 ALA versus MAL-PDT showed marginally higher CRs than MAL-PDT.
Collapse
Affiliation(s)
- George Mpourazanis
- Department of Obstetrics and Gynecology, General Hospital of Ioannina G. Hatzikosta, Ioannina, GRC
| | - Wolfgang Konschake
- Department of Dermatology, Ernst-Moritz-Arndt Medical University of Greifswald, Greifswald, DEU
| | - Romanos Vogiatzis
- Department of Dermatology, Ernst-Moritz-Arndt Medical University of Greifswald, Greifswald, DEU
| | - Petros Papalexis
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Vasiliki E Georgakopoulou
- Department of Pulmonology, Laiko General Hospital, Athens, GRC
- First Department of Pulmonology, Sismanogleio Hospital, Athens, GRC
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, GRC
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, GRC
| | | | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens, GRC
| |
Collapse
|