1
|
Lagunas-Rangel FA, Liu W, Schiöth HB. Interaction between environmental pollutants and cancer drug efficacy: Bisphenol A, Bisphenol A diglycidyl ether and Perfluorooctanoic acid reduce vincristine cytotoxicity in acute lymphoblastic leukemia cells. J Appl Toxicol 2023; 43:458-469. [PMID: 36181250 DOI: 10.1002/jat.4398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Every day, we are exposed to many environmental pollutants that can enter our body through different routes and cause adverse effects on our health. Epidemiological studies suggest that these pollutants are responsible for approximately nine million deaths per year. Acute lymphoblastic leukemia (ALL) represents one of the major cancers affecting children, and although substantial progress has been made in its treatment, relapses are frequent after initial treatment and are now one of the leading causes of cancer-related death in pediatric patients. Currently, relatively little attention is paid to pollutant exposure during drug treatment and this is not taken into account for dose setting or regulatory purposes. In this work, we investigated how bisphenol A (BPA), its derivative bisphenol A diglycidyl ether (BADGE), and perfluorooctanoic acid (PFOA) alter vincristine treatment in ALL when administered before or together with the drug. We found that these three pollutants at nanomolar concentrations, lower than those established by current regulations, can reduce the cytotoxic effects of vincristine on ALL cells. Interestingly, we found that this is only achieved when exposure to pollutants occurs prior to administration of the chemotherapeutic drug. Moreover, we found that this effect could be mediated by activation of the PI3K/AKT pathway and stabilization of microtubules. This work strengthens the idea of starting to take into account exposure to pollutants to improve the efficacy of chemotherapy treatments.
Collapse
Affiliation(s)
| | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Chemical and Antimicrobial Analyses of Juniperus chinensis and Juniperus seravschanica Essential Oils and Comparison with Their Methanolic Crude Extracts. Int J Anal Chem 2021; 2021:9937522. [PMID: 34497647 PMCID: PMC8421171 DOI: 10.1155/2021/9937522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023] Open
Abstract
Juniperus chinensis and Juniperus seravschanica are commonly used in the traditional folk medicine to treat microbial infection. In this study, the essential oils obtained from the leaves of J. chinensis growing in Malaysia and J. seravschanica growing in Oman were analysed by head space-solid phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) and screened for antimicrobial activities against Escherichia coli (NCTC 10418), Pseudomonas aeruginosa (NCTC 10662), Bacillus subtilis ATCC6059, Micrococcus luteus (ATCC 9341), Staphylococcus aureus (NCTC 6571), and methicillin-resistant S. aureus (MRSA; ATCC 33591). To compare the antimicrobial activities of extracts using different extraction methods, methanol extraction was performed to obtain crude extracts from the leaves of J. chinensis and J. seravschanica for antimicrobial analysis. The HS-SPME-GS-MS analysis of the essential oils from the leaves of J. chinensis and J. seravschanica identified 37 and 36 components, respectively. Essential oils from these two species had distinctive chemical component profiles, with α-pinene (27.2%) as the major component of J. chinensis essential oil, while dl-limonene (45.2%) constitutes the major component of J. seravschanica essential oil. Essential oils of these two species shared only six similar terpenoids compounds: α-pinene, β-pinene, γ-elemene, sabinene, elemol, and 3-cyclohexen-1-ol. Overall, the essential oils showed antimicrobial activities against all the six bacterial strains tested, with the highest antagonistic activity against M. luteus and B. cereus; while, methanolic crude extracts showed the highest activities against S. aureus and MRSA strains. The methanolic crude extracts demonstrated significantly higher antibacterial activity against the Gram-positive bacteria (p < 0.005); while, the essential oils of Juniperus did not show significant differences between Gram-positive and Gram-negative bacteria. Future studies are needed to investigate the active compounds present in the essential oils and methanolic crude extracts that confer the selectivity in the antimicrobial activity.
Collapse
|
3
|
Akaberi M, Boghrati Z, Amiri MS, Khayyat MH, Emami SA. A Review of Conifers in Iran: Chemistry, Biology and their Importance in Traditional and Modern Medicine. Curr Pharm Des 2020; 26:1584-1613. [PMID: 32003665 DOI: 10.2174/1381612826666200128100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Cupressus sempervirens, Platycladus orientalis, Juniperus communis, J. excelsa, J. foetidissima, J. polycarpos var. turcomanica, J. sabina, and Taxus baccata are conifers in Iran. These plants have a long reputation in different systems of traditional medicines for a variety of diseases. This review aims to provide comprehensive and up-to-date information about the ethnopharmacological uses, chemical constituents, and pharmacology of these conifers. Furthermore this study comprises a bibliographical survey of major Islamic Traditional Medicine (ITM) books regarding different medical aspects of these species. A literature search was conducted on the applications of these conifers both in traditional and modern medicines by referencing traditional textbooks and scientific databases. Ethnobotanical literature review indicates that various parts of the plants including cones, berries, leaves, bark, wood, and resin have been used for a broad spectrum of applications. In Iran, C. sempervirens, J. sabina, J. communis, and T. baccata have been used traditionally for the treatment of urinary, digestive, nervous, respiratory, and integumentary systems-related problems. The phytochemical constituents of these plants can be divided into two main categories: volatile and non-volatile components, all dominated by terpenes. Considering the pharmacological and clinical evidence, while some of the traditional applications of these plants are supported by modern medicine, implying the value of the traditional and folklore knowledge for finding new lead compounds in drug discovery, some have remained unexamined showing the need for much more studies in this regard.
Collapse
Affiliation(s)
- Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Boghrati
- Department of Traditional Medicine, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad H Khayyat
- Department of Pharmaceutical Chemistry, School of Pharmacy, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Traditional Medicine, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Stankov S, Fidan H, Petkova Z, Stoyanova M, Petkova N, Stoyanova A, Semerdjieva I, Radoukova T, Zheljazkov VD. Comparative Study on the Phytochemical Composition and Antioxidant Activity of Grecian Juniper ( Juniperus excelsa M. Bieb) Unripe and Ripe Galbuli. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091207. [PMID: 32942594 PMCID: PMC7570073 DOI: 10.3390/plants9091207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Grecian juniper (Juniperus excelsa M. Bieb.) is an evergreen tree and a rare plant found in very few locations in southern Bulgaria. The aim of this study was to evaluate the phytochemical content and antioxidant potential of J. excelsa unripe and ripe galbuli from three different locations in Bulgaria. The essential oil content ranged between 1.9% and 5.1%, while the lipid fraction yield was between 4.5% and 9.1%. The content of total chlorophyll was 185.4-273.4 μg/g dw. The total carotenoid content ranged between 41.7 and 50.4 μg/g dw of ripe galbuli, and protein content was between 13.6% and 16.4%. Histidine (5.5 and 8.0 mg/g content range) and lysine (4.0 and 6.1 mg/g) were the major essential amino acids. The antioxidant potential of the 95% and 70% ethanol extracts was analyzed using four different methods. A positive correlation between the antioxidant potential and phenolic content of the galbuli was found. The results obtained in this study demonstrated the differences in phytochemical composition and antioxidant capacity of J. excelsa galbuli as a function of maturity stage and collection locality.
Collapse
Affiliation(s)
- Stanko Stankov
- Department of Nutrition and Tourism, University of Food Technologies, 26 Maritza, 4002 Plovdiv, Bulgaria; (S.S.); (H.F.)
| | - Hafize Fidan
- Department of Nutrition and Tourism, University of Food Technologies, 26 Maritza, 4002 Plovdiv, Bulgaria; (S.S.); (H.F.)
| | - Zhana Petkova
- Department of Chemical Technology, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria;
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritza, 4002 Plovdiv, Bulgaria;
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza, 4002 Plovdiv, Bulgaria;
| | - Albena Stoyanova
- Department of Technology of Fats, Essential Oils, Perfumery and Cosmetics, University of Food Technologies, 26 Maritza, 4002 Plovdiv, Bulgaria;
| | - Ivanka Semerdjieva
- Department of Botany and Agrometeorology, Agricultural University, 12 Mendleev12, 4000 Plovdiv, Bulgaria;
| | - Tzenka Radoukova
- Department of Botany and Methods of Biology Teaching, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria;
| | - Valtcho D. Zheljazkov
- Crop and Soil Science Department, Oregon State University, 3050 SW Campus Way, 109 Crop Science Building, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Karami A, Hamzeloo-Moghadam M, Yami A, Barzegar M, Mashati P, Gharehbaghian A. Antiproliferative Effect of Gaillardin from Inula oculus-christi in Human Leukemic Cells. Nutr Cancer 2019; 72:1043-1056. [DOI: 10.1080/01635581.2019.1665188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Afshin Karami
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yami
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohieddin Barzegar
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pargol Mashati
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Congenital Hematologic Disorders Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|