1
|
Qian J, Wang Q, Xu J, Liang S, Zheng Q, Guo X, Luo W, Huang W, Long X, Min J, Wang Y, Wu G, Liang G. Macrophage OTUD1-CARD9 axis drives isoproterenol-induced inflammatory heart remodelling. Clin Transl Med 2024; 14:e1790. [PMID: 39118286 PMCID: PMC11310286 DOI: 10.1002/ctm2.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chronic inflammation contributes to the progression of isoproterenol (ISO)-induced heart failure (HF). Caspase-associated recruitment domain (CARD) families are crucial proteins for initiation of inflammation in innate immunity. Nonetheless, the relevance of CARDs in ISO-driven cardiac remodelling is little explored. METHODS This study utilized Card9-/- mice and reconstituted C57BL/6 mice with either Card9-/- or Otud1-/- marrow-derived cells. Mechanistic studies were conducted in primary macrophages, cardiomyocytes, fibroblasts and HEK-293T cells. RESULTS Here, we demonstrated that CARD9 was substantially upregulated in murine hearts infused with ISO. Either whole-body CARD9 knockout or myeloid-specific CARD9 deletion inhibited ISO-driven murine cardiac inflammation, remodelling and dysfunction. CARD9 deficiency in macrophages prevented ISO-induced inflammation and alleviated remodelling changes in cardiomyocytes and fibroblasts. Mechanistically, we found that ISO enhances the activity of CARD9 by upregulating ovarian tumour deubiquitinase 1 (OTUD1) in macrophages. We further demonstrated that OTUD1 directly binds to the CARD9 and then removes the K33-linked ubiquitin from CARD9 to promote the assembly of the CARD9-BCL10-MALT1 (CBM) complex, without affecting CARD9 stability. The ISO-activated CBM complex results in NF-κB activation and macrophage-based inflammatory gene overproduction, which then enhances cardiomyocyte hypertrophy and fibroblast fibrosis, respectively. Myeloid-specific OTUD1 deletion also attenuated ISO-induced murine cardiac inflammation and remodelling. CONCLUSIONS These results suggested that the OTUD1-CARD9 axis is a new pro-inflammatory signal in ISO-challenged macrophages and targeting this axis has a protective effect against ISO-induced HF. KEY POINTS Macrophage CARD9 was elevated in heart tissues of mice under chronic ISO administration. Either whole-body CARD9 knockout or myeloid-specific CARD9 deficiency protected mice from ISO-induced inflammatory heart remodeling. ISO promoted the assembly of CBM complex and then activated NF-κB signaling in macrophages through OTUD1-mediated deubiquitinating modification. OTUD1 deletion in myeloid cells protected hearts from ISO-induced injuries in mice.
Collapse
Affiliation(s)
- Jinfu Qian
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qinyan Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiachen Xu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shiqi Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Qingsong Zheng
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiaocheng Guo
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Wu Luo
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Weijian Huang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaohong Long
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Julian Min
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yi Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Gaojun Wu
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Guang Liang
- Department of Cardiologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
2
|
Sun X, Han Y, Yu Y, Chen Y, Dong C, Lv Y, Qu H, Fan Z, Yu Y, Sang Y, Tang W, Liu Y, Ju J, Zhao D, Bai Y. Overexpressing of the GIPC1 protects against pathological cardiac remodelling. Eur J Pharmacol 2024; 971:176488. [PMID: 38458410 DOI: 10.1016/j.ejphar.2024.176488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The β-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of β1-adrenergic receptor (β1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the β1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of β1-adrenergic receptor/β2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Scientific Research, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yujie Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuan Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zheyu Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yi Yu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yaru Sang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Wenxia Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
3
|
Maghsoudi S, Shuaib R, Van Bastelaere B, Dakshinamurti S. Adenylyl cyclase isoforms 5 and 6 in the cardiovascular system: complex regulation and divergent roles. Front Pharmacol 2024; 15:1370506. [PMID: 38633617 PMCID: PMC11021717 DOI: 10.3389/fphar.2024.1370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Rabia Shuaib
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ben Van Bastelaere
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Section of Neonatology, Department of Pediatrics, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Fitzpatrick M, Solberg Woods LC. Adenylate cyclase 3: a potential genetic link between obesity and major depressive disorder. Physiol Genomics 2024; 56:1-8. [PMID: 37955134 PMCID: PMC11281808 DOI: 10.1152/physiolgenomics.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Obesity and major depressive disorder (MDD) are both significant health issues that have been increasing in prevalence and are associated with multiple comorbidities. Obesity and MDD have been shown to be bidirectionally associated, and they are both influenced by genetics and environmental factors. However, the molecular mechanisms that link these two diseases are not yet fully understood. It is possible that these diseases are connected through the actions of the cAMP/protein kinase A (PKA) pathway. Within this pathway, adenylate cyclase 3 (Adcy3) has emerged as a key player in both obesity and MDD. Numerous genetic variants in Adcy3 have been identified in humans in association with obesity. Rodent knockout studies have also validated the importance of this gene for energy homeostasis. Furthermore, Adcy3 has been identified as a top candidate gene and even a potential blood biomarker for MDD. Adcy3 and the cAMP/PKA pathway may therefore serve as an important genetic and functional link between these two diseases. In this mini-review, we discuss the role of both Adcy3 and the cAMP/PKA pathway, including specific genetic mutations, in both diseases. Understanding the role that Adcy3 mutations play in obesity and MDD could open the door for precision medicine approaches and treatments for both diseases that target this gene.
Collapse
Affiliation(s)
- Mackenzie Fitzpatrick
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
5
|
Bhatia V, Maghsoudi S, Hinton M, Bhagirath AY, Singh N, Jaggupilli A, Chelikani P, Dakshinamurti S. Characterization of Adenylyl Cyclase Isoform 6 Residues Interacting with Forskolin. BIOLOGY 2023; 12:biology12040572. [PMID: 37106773 PMCID: PMC10135528 DOI: 10.3390/biology12040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The adenylyl cyclase (AC) pathway, crucial for pulmonary vasodilation, is inhibited by hypoxia. Forskolin (FSK) binds allosterically to AC, stimulating ATP catalysis. As AC6 is the primary AC isoform in the pulmonary artery, selective reactivation of AC6 could provide targeted reinstatement of hypoxic AC activity. This requires elucidation of the FSK binding site in AC6. METHODS HEK293T cells stably overexpressing AC 5, 6, or 7 were incubated in normoxia (21% O2) or hypoxia (10% O2) or exposed to s-nitrosocysteine (CSNO). AC activity was measured using terbium norfloxacin assay; AC6 structure built by homology modeling; ligand docking to examine FSK-interacting amino acids; roles of selected residues determined by site-directed mutagenesis; FSK-dependent cAMP generation measured in wild-type and FSK-site mutants by biosensor-based live cell assay. RESULTS Only AC6 is inhibited by hypoxia and nitrosylation. Homology modeling and docking revealed residues T500, N503, and S1035 interacting with FSK. Mutation of T500, N503, or S1035 decreased FSK-stimulated AC activity. FSK site mutants were not further inhibited by hypoxia or CSNO; however, mutation of any of these residues prevented AC6 activation by FSK following hypoxia or CSNO treatment. CONCLUSIONS FSK-interacting amino acids are not involved in the hypoxic inhibition mechanism. This study provides direction to design FSK derivatives for selective activation of hypoxic AC6.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Saeid Maghsoudi
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Martha Hinton
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anjali Y Bhagirath
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Nisha Singh
- Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | | | - Prashen Chelikani
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
6
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
7
|
Abstract
While clinical gene therapy celebrates its first successes, with several products already approved for clinical use and several hundreds in the final stages of the clinical approval pipeline, there is not a single gene therapy approach that has worked for the heart. Here, we review the past experience gained in the several cardiac gene therapy clinical trials that had the goal of inducing therapeutic angiogenesis in the ischemic heart and in the attempts at modulating cardiac function in heart failure. Critical assessment of the results so far achieved indicates that the efficiency of cardiac gene delivery remains a major hurdle preventing success but also that improvements need to be sought in establishing more reliable large animal models, choosing more effective therapeutic genes, better designing clinical trials, and more deeply understanding cardiac biology. We also emphasize a few areas of cardiac gene therapy development that hold great promise for the future. In particular, the transition from gene addition studies using protein-coding cDNAs to the modulation of gene expression using small RNA therapeutics and the improvement of precise gene editing now pave the way to applications such as cardiac regeneration after myocardial infarction and gene correction for inherited cardiomyopathies that were unapproachable until a decade ago.
Collapse
Affiliation(s)
- Antonio Cannatà
- From the King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (A.C., H.A., M.G.).,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (A.C., G.S., M.G.)
| | - Hashim Ali
- From the King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (A.C., H.A., M.G.).,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy (H.A., M.G.)
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (A.C., G.S., M.G.)
| | - Mauro Giacca
- From the King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, United Kingdom (A.C., H.A., M.G.).,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy (A.C., G.S., M.G.).,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy (H.A., M.G.)
| |
Collapse
|
8
|
Affiliation(s)
- Jake M. Kieserman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Valerie D. Myers
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Praveen Dubey
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Joseph Y. Cheung
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Arthur M. Feldman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| |
Collapse
|
9
|
Tan Z, Giamouridis D, Lai NC, Kim YC, Guo T, Xia B, Gao MH, Hammond HK. Cardiac-Directed Expression of Adenylyl Cyclase Catalytic Domain ( C1C2) Attenuates Deleterious Effects of Pressure Overload. Hum Gene Ther 2019; 30:682-692. [PMID: 30638074 DOI: 10.1089/hum.2018.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A fusion protein (C1C2) constructed by fusing the intracellular C1 and C2 segments of adenylyl cyclase type 6 (AC6) retains beneficial effects of AC6 expression, without increasing cyclic adenosine monophosphate generation. The effects of cardiac-directed C1C2 expression in pressure overload is unknown. Left ventricular (LV) pressure overload was induced by transverse aortic constriction (TAC) in C1C2 mice and in transgene negative (TG-) mice. Four weeks after TAC, LV systolic function and diastolic function were measured, and Ca2+ handling was assessed. Four weeks after TAC, TG- animals showed reduced LV peak +dP/dt. LV peak +dP/dt in C1C2 mice was statistically indistinguishable from that of normal mice and was higher than that seen in TG- mice 4 weeks after TAC (p = 0.02), despite similar and substantial cardiac hypertrophy. In addition to higher LV peak +dP/dt in vivo, cardiac myocytes from C1C2 mice showed shorter time-to-peak Ca2+ transient amplitude (p = 0.002) and a reduced time constant of cytosolic Ca2+ decline (Tau; p = 0.003). Sarcomere shortening fraction (p < 0.03) and the rate of sarcomere shortening (p < 0.02) increased in C1C2 cardiac myocytes. Myofilament sensitivity to Ca2+ was increased in systole (p = 0.02) and diastole (p = 0.04) in C1C2 myocytes. These findings indicate enhanced Ca2+ handling associated with C1C2 expression. Favorable effects on Ca2+ handling and LV function were associated with increased LV SERCA2a protein content (p = 0.015) and reduced LV fibrosis (p = 0.008). Cardiac-directed C1C2 expression improves Ca2+ handling and increases LV contractile function in pressure overload. These data provide a rationale for further exploration of C1C2 gene transfer as a potential treatment for heart failure.
Collapse
Affiliation(s)
- Zhen Tan
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - Dimosthenis Giamouridis
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - N Chin Lai
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - Young Chul Kim
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - Tracy Guo
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - Bing Xia
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - Mei Hua Gao
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| | - H Kirk Hammond
- 1 Veterans Affairs San Diego Healthcare System, San Diego, California, and University of California San Diego, San Diego, California.,2 Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
10
|
Study of adenylyl cyclase-GαS interactions and identification of novel AC ligands. Mol Cell Biochem 2018; 446:63-72. [DOI: 10.1007/s11010-018-3273-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
11
|
Gao MH, Lai NC, Giamouridis D, Kim YC, Guo T, Hammond HK. Cardiac-directed expression of a catalytically inactive adenylyl cyclase 6 protects the heart from sustained β-adrenergic stimulation. PLoS One 2017; 12:e0181282. [PMID: 28767701 PMCID: PMC5540275 DOI: 10.1371/journal.pone.0181282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
Objectives Increased expression of adenylyl cyclase type 6 (AC6) has beneficial effects on the heart through cyclic adenosine monophosphate (cAMP)-dependent and cAMP-independent pathways. We previously generated a catalytically inactive mutant of AC6 (AC6mut) that has an attenuated response to β-adrenergic receptor stimulation, and, consequently, exhibits reduced myocardial cAMP generation. In the current study we test the hypothesis that cardiac-directed expression of AC6mut would protect the heart from sustained β-adrenergic receptor stimulation, a condition frequently encountered in patients with heart failure. Methods and results AC6mut mice and transgene negative siblings received osmotic mini-pumps to provide continuous isoproterenol infusion for seven days. Isoproterenol infusion caused deleterious effects that were attenuated by cardiac-directed AC6mut expression. Both groups showed reduced left ventricular (LV) ejection fraction, but the reduction was less in AC6mut mice (p = 0.047). In addition, AC6mut mice showed superior left ventricular function, manifested by higher values for LV peak +dP/dt (p = 0.03), LV peak -dP/dt (p = 0.008), end-systolic pressure-volume relationship (p = 0.003) and cardiac output (p<0.03). LV samples of AC6mut mice had more sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) protein (p<0.01), which likely contributed to better LV function. AC6mut mice had lower rates of cardiac myocyte apoptosis (p = 0.016), reduced caspase 3/7 activity (p = 0.012) and increased B-cell lymphoma 2 (Bcl2) expression (p = 0.0001). Conclusion Mice with cardiac-directed AC6mut expression weathered the deleterious effects of continuous isoproterenol infusion better than control mice, indicating cardiac protection.
Collapse
Affiliation(s)
- Mei Hua Gao
- VA San Diego Healthcare System, Department of Medicine, Division of Cardiology, San Diego CA, United States of America
- University of California, San Diego, Department of Medicine, Division of Cardiology, La Jolla CA, United States of America
| | - N. Chin Lai
- VA San Diego Healthcare System, Department of Medicine, Division of Cardiology, San Diego CA, United States of America
- University of California, San Diego, Department of Medicine, Division of Cardiology, La Jolla CA, United States of America
| | - Dimosthenis Giamouridis
- VA San Diego Healthcare System, Department of Medicine, Division of Cardiology, San Diego CA, United States of America
- University of California, San Diego, Department of Medicine, Division of Cardiology, La Jolla CA, United States of America
| | - Young Chul Kim
- VA San Diego Healthcare System, Department of Medicine, Division of Cardiology, San Diego CA, United States of America
- University of California, San Diego, Department of Medicine, Division of Cardiology, La Jolla CA, United States of America
| | - Tracy Guo
- VA San Diego Healthcare System, Department of Medicine, Division of Cardiology, San Diego CA, United States of America
- University of California, San Diego, Department of Medicine, Division of Cardiology, La Jolla CA, United States of America
| | - H. Kirk Hammond
- VA San Diego Healthcare System, Department of Medicine, Division of Cardiology, San Diego CA, United States of America
- University of California, San Diego, Department of Medicine, Division of Cardiology, La Jolla CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Affiliation(s)
- J. David Port
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|