1
|
Lilliu E, Hackl B, Zabrodska E, Gewessler S, Karge T, Marksteiner J, Sauer J, Putz EM, Todt H, Hilber K, Koenig X. Cell size induced bias of current density in hypertrophic cardiomyocytes. Channels (Austin) 2024; 18:2361416. [PMID: 38836323 PMCID: PMC11155701 DOI: 10.1080/19336950.2024.2361416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.
Collapse
Affiliation(s)
- Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefanie Gewessler
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tobias Karge
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva M. Putz
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodeling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024:S0828-282X(24)01035-3. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling (ECC) and diastolic function. The clinical significance of T-tubules has become evident as their remodeling is recognized as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodeling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction (HFpEF), implying that T-tubule remodeling may play a crucial pathophysiological role in HFrEF. While research on the functional importance of T-tubules is ongoing due to their complexity, T-tubule remodeling has been found to be reversible. Such finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodeling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
3
|
Zhang X, Wu Y, Smith CER, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca 2+-Driven Arrhythmogenic Events in Female Patients With Atrial Fibrillation: Insights From Computational Modeling. JACC Clin Electrophysiol 2024:S2405-500X(24)00717-5. [PMID: 39340505 DOI: 10.1016/j.jacep.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Substantial sex-based differences have been reported in atrial fibrillation (AF), but the underlying mechanisms are poorly understood. OBJECTIVES This study sought to gain a mechanistic understanding of Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in male vs female atrial cardiomyocytes and establish their responses to Ca2+-targeted interventions. METHODS We integrated reported sex differences and AF-associated changes (ie, expression and phosphorylation of Ca2+-handling proteins, cardiomyocyte ultrastructural characteristics, and dimensions) into our human atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Sex-specific responses of atrial cardiomyocytes to arrhythmia-provoking protocols and Ca2+-targeted interventions were evaluated. RESULTS Simulated quiescent cardiomyocytes showed increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Sensitivity analysis uncovered distinct arrhythmogenic contributions of each component involved in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation emerged as the major SCR contributor in female AF cardiomyocytes, whereas reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulated Ca2+-targeted interventions identified potential strategies (eg, t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2⁺-ATPase) to attenuate Ca2+-driven arrhythmogenic events in women, and revealed enhanced efficacy when applied in combination. CONCLUSIONS Sex-specific modeling uncovers increased Ca2+-driven arrhythmogenic events in female vs male atria in AF, and suggests combined Ca2+-targeted interventions are promising therapeutic approaches in women.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Pharmacology, University of California Davis, Davis, California, USA. https://twitter.com/xianweizhang1
| | - Yixuan Wu
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Charlotte E R Smith
- Department of Pharmacology, University of California Davis, Davis, California, USA. https://twitter.com/Char_Smith3
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, USA. https://twitter.com/MorottiLab
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA. https://twitter.com/dr_dobrev
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA.
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, USA.
| |
Collapse
|
4
|
Lu F, Liou C, Ma Q, Wu Z, Xue B, Xia Y, Xia S, Trembley MA, Ponek A, Xie W, Shani K, Bortolin RH, Prondzynski M, Berkson P, Zhang X, Naya FJ, Bedi KC, Margulies KB, Zhang D, Parker KK, Pu WT. Virally delivered CMYA5 enhances the assembly of cardiac dyads. Nat Biomed Eng 2024:10.1038/s41551-024-01253-z. [PMID: 39237710 DOI: 10.1038/s41551-024-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) lack nanoscale structures essential for efficient excitation-contraction coupling. Such nanostructures, known as dyads, are frequently disrupted in heart failure. Here we show that the reduced expression of cardiomyopathy-associated 5 (CMYA5), a master protein that establishes dyads, contributes to dyad disorganization in heart failure and to impaired dyad assembly in hiPSC-CMs, and that a miniaturized form of CMYA5 suitable for delivery via an adeno-associated virus substantially improved dyad architecture and normalized cardiac function under pressure overload. In hiPSC-CMs, the miniaturized form of CMYA5 increased contractile forces, improved Ca2+ handling and enhanced the alignment of sarcomere Z-lines with ryanodine receptor 2, a protein that mediates the sarcoplasmic release of stored Ca2+. Our findings clarify the mechanisms responsible for impaired dyad structure in diseased cardiomyocytes, and suggest strategies for promoting dyad assembly and stability in heart disease and during the derivation of hiPSC-CMs.
Collapse
Affiliation(s)
- Fujian Lu
- Institutes of Biomedical Sciences, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
| | - Carter Liou
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Zexuan Wu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingqing Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yu Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | | | - Anna Ponek
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Wenjun Xie
- Department of Cardiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Raul H Bortolin
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Paul Berkson
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Francisco J Naya
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA, USA
| | - Kenneth C Bedi
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Kevin K Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Giraud Q, Laporte J. Amphiphysin-2 (BIN1) functions and defects in cardiac and skeletal muscle. Trends Mol Med 2024; 30:579-591. [PMID: 38514365 DOI: 10.1016/j.molmed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Amphiphysin-2 is a ubiquitously expressed protein also known as bridging integrator 1 (BIN1), playing a critical role in membrane remodeling, trafficking, and cytoskeleton dynamics in a wide range of tissues. Mutations in the gene encoding BIN1 cause centronuclear myopathies (CNM), and recent evidence has implicated BIN1 in heart failure, underlining its crucial role in both skeletal and cardiac muscle. Furthermore, altered expression of BIN1 is linked to an increased risk of late-onset Alzheimer's disease and several types of cancer, including breast, colon, prostate, and lung cancers. Recently, the first proof-of-concept for potential therapeutic strategies modulating BIN1 were obtained for muscle diseases. In this review article, we discuss the similarities and differences in BIN1's functions in cardiac and skeletal muscle, along with its associated diseases and potential therapies.
Collapse
Affiliation(s)
- Quentin Giraud
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France.
| |
Collapse
|
6
|
Zhang X, Wu Y, Smith C, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca2+-Driven Arrhythmias in Female Patients with Atrial Fibrillation: Insights from Computational Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583217. [PMID: 38496584 PMCID: PMC10942295 DOI: 10.1101/2024.03.04.583217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.
Collapse
|
7
|
Hong T, Richmond B. Editorial commentary: A new era of antiarrhythmics - Perspectives from SGLT2i therapy. Trends Cardiovasc Med 2023; 33:429-430. [PMID: 35561997 DOI: 10.1016/j.tcm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Affiliation(s)
- TingTing Hong
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, United States; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, United States.
| | - Bradley Richmond
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, United States; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, United States
| |
Collapse
|
8
|
Li J, Richmond B, Cluntun AA, Bia R, Walsh MA, Shaw K, Symons JD, Franklin S, Rutter J, Funai K, Shaw RM, Hong T. Cardiac gene therapy treats diabetic cardiomyopathy and lowers blood glucose. JCI Insight 2023; 8:e166713. [PMID: 37639557 PMCID: PMC10561727 DOI: 10.1172/jci.insight.166713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intracardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes-induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium-handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalized components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalized insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescued cardiac lusitropy, improved exercise intolerance, and ameliorated hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy and can also improve systemic glycemic control.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology and Toxicology, College of Pharmacy
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | | | | | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | - Maureen A. Walsh
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
| | - Kikuyo Shaw
- Department of Pharmacology and Toxicology, College of Pharmacy
| | - J. David Symons
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
- Diabetes & Metabolism Research Center, and
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | - Jared Rutter
- Department of Biochemistry
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
- Diabetes & Metabolism Research Center, and
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- College of Health, Department of Nutrition and Integrative Physiology, Program in Molecular Medicine
- Diabetes & Metabolism Research Center, and
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute
| | - TingTing Hong
- Department of Pharmacology and Toxicology, College of Pharmacy
- Nora Eccles Harrison Cardiovascular Research and Training Institute
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
10
|
Polycystin-1 Is a Crucial Regulator of BIN1 Expression and T-Tubule Remodeling Associated with the Development of Dilated Cardiomyopathy. Int J Mol Sci 2022; 24:ijms24010667. [PMID: 36614108 PMCID: PMC9820588 DOI: 10.3390/ijms24010667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiomyopathy is commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD), even when they have normal renal function and arterial pressure. The role of cardiomyocyte polycystin-1 (PC1) in cardiovascular pathophysiology remains unknown. PC1 is a potential regulator of BIN1 that maintains T-tubule structure, and alterations in BIN1 expression induce cardiac pathologies. We used a cardiomyocyte-specific PC1-silenced (PC1-KO) mouse model to explore the relevance of cardiomyocyte PC1 in the development of heart failure (HF), considering reduced BIN1 expression induced T-tubule remodeling as a potential mechanism. PC1-KO mice exhibited an impairment of cardiac function, as measured by echocardiography, but no signs of HF until 7-9 months of age. Of the PC1-KO mice, 43% died suddenly at 7 months of age, and 100% died after 9 months with dilated cardiomyopathy. Total BIN1 mRNA, protein levels, and its localization in plasma membrane-enriched fractions decreased in PC1-KO mice. Moreover, the BIN1 + 13 isoform decreased while the BIN1 + 13 + 17 isoform was overexpressed in mice without signs of HF. However, BIN1 + 13 + 17 overexpression was not observed in mice with HF. T-tubule remodeling and BIN1 score measured in plasma samples were associated with decreased PC1-BIN1 expression and HF development. Our results show that decreased PC1 expression in cardiomyocytes induces dilated cardiomyopathy associated with diminished BIN1 expression and T-tubule remodeling. In conclusion, positive modulation of BIN1 expression by PC1 suggests a novel pathway that may be relevant to understanding the pathophysiological mechanisms leading to cardiomyopathy in ADPKD patients.
Collapse
|
11
|
Tarasov KV, Chakir K, Riordon DR, Lyashkov AE, Ahmet I, Perino MG, Silvester AJ, Zhang J, Wang M, Lukyanenko YO, Qu JH, Barrera MCR, Juhaszova M, Tarasova YS, Ziman B, Telljohann R, Kumar V, Ranek M, Lammons J, Bychkov R, de Cabo R, Jun S, Keceli G, Gupta A, Yang D, Aon MA, Adamo L, Morrell CH, Otu W, Carroll C, Chambers S, Paolocci N, Huynh T, Pacak K, Weiss R, Field L, Sollott SJ, Lakatta EG. A remarkable adaptive paradigm of heart performance and protection emerges in response to marked cardiac-specific overexpression of ADCY8. eLife 2022; 11:e80949. [PMID: 36515265 PMCID: PMC9822292 DOI: 10.7554/elife.80949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.
Collapse
Affiliation(s)
- Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Daniel R Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Alexey E Lyashkov
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Allwin Jennifa Silvester
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yevgeniya O Lukyanenko
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Jia-Hua Qu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel Calvo-Rubio Barrera
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Vikas Kumar
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Mark Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - John Lammons
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Seungho Jun
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ashish Gupta
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Walter Otu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Cameron Carroll
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Shane Chambers
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Thanh Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Robert Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Loren Field
- Kraennert Institute of Cardiology, Indiana University School of MedicineIdianapolisUnited States
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
12
|
Chen H, Zhou J, Chen H, Liang J, Xie C, Gu X, Wang R, Mao Z, Zhang Y, Li Q, Zuo G, Miao D, Jin J. Bmi-1-RING1B prevents GATA4-dependent senescence-associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4. Clin Transl Med 2022; 12:e574. [PMID: 35390228 PMCID: PMC8989148 DOI: 10.1002/ctm2.574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
AIMS Senescence-associated pathological cardiac hypertrophy (SA-PCH) is associated with upregulation of foetal genes, fibrosis, senescence-associated secretory phenotype (SASP), cardiac dysfunction and increased morbidity and mortality. Therefore, we conducted experiments to investigate whether GATA4 accumulation induces SA-PCH, and whether Bmi-1-RING1B promotes GATA4 ubiquitination and its selective autophagic degradation to prevent SA-PCH. METHODS AND RESULTS Bmi-1-deficient (Bmi-1-/- ), transgenic Bmi-1 overexpressing (Bmi-1Tg ) and wild-type (WT) mice were infused with angiotensin II (Ang II) to stimulate the development of SA-PCH. Through bioinformatics analysis with RNA sequencing data from cardiac tissues, we found that Bmi-1-RING1B and autophagy are negatively related to SA-PCH. Bmi-1 deficiency promoted GATA4-dependent SA-PCH by increasing GATA4 protein and hypertrophy-related molecules transcribed by GATA4 such as ANP and BNP. Bmi-1 deficiency stimulated NF-κB-p65-dependent SASP, leading to cardiac dysfunction, cardiomyocyte hypertrophy and senescence. Bmi-1 overexpression repressed GATA4-dependent SA-PCH. GATA4 degraded by Bmi-1 was mainly dependent on autophagy rather than proteasome. In human myocardium, p16 positively correlated with ANP and GATA4 and negatively correlated with LC3B, Bmi-1 and RING1B; GATA4 positively correlated with p62 and negatively correlated with Bmi-1 and LC3B. With increased p16 protein levels, ANP-, BNP- and GATA4-positive cells or areas increased; however, LC3B-positive cells or areas decreased in human myocardium. GATA4 is ubiquitinated after combining with Bmi-1-RING1B, which is then recognised by p62, is translocated to autophagosomes to form autophagolysosomes and degraded. Downregulated GATA4 ameliorated SA-PCH and cardiac dysfunction by reducing GATA4-dependent hypertrophy and SASP-related molecules. Bmi-1 combined with RING1B (residues 1-179) and C-terminus of GATA4 (residues 206-443 including zinc finger domains) through residues 1-95, including a RING-HC-finger. RING1B combined with C-terminus of GATA4 through the C-terminus (residues 180-336). Adeno-associated viral vector serotype 9 (AAV9)-cytomegalovirus (CMV)-Bmi-1-RING1B treatment significantly attenuated GATA4-dependent SA-PCH through promoting GATA4 autophagic degradation. CONCLUSIONS Bmi-1-RING1B maintained cardiac function and prevented SA-PCH by promoting selective autophagy for degrading GATA4. TRANSLATIONAL PERSPECTIVE AAV9-CMV-Bmi-1-RING1B could be used for translational gene therapy to ubiquitinate GATA4 and prevent GATA4-dependent SA-PCH. Also, the combined domains between Bmi-1-RING1B and GATA4 in aging cardiomyocytes could be therapeutic targets for identifying stapled peptides in clinical applications to promote the combination of Bmi-1-RING1B with GATA4 and the ubiquitination of GATA4 to prevent SA-PCH and heart failure. We found that degradation of cardiac GATA4 by Bmi-1 was mainly dependent on autophagy rather than proteasome, and autophagy agonists metformin and rapamycin could ameliorate the SA-PCH, suggesting that activation of autophagy with metformin or rapamycin could also be a promising method to prevent SA-PCH.
Collapse
Affiliation(s)
- Haiyun Chen
- The Research Center for AgingAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Jiawen Zhou
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Hongjie Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Jialong Liang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Chunfeng Xie
- Department of Nutrition and Food SafetySchool of Public HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xin Gu
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Rong Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Zhiyuan Mao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Yongjie Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Qing Li
- Department of Science and TechnologyJiangsu Jiankang Vocational CollegeNanjingJiangsu210029China
| | - Guoping Zuo
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Dengshun Miao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
- The Research Center for AgingAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Jianliang Jin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsKey Laboratory for Aging & DiseaseThe State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
13
|
Abstract
In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
14
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
16
|
Khan MS, Shaw RM. Huntington's disease skeletal muscle has altered T-tubules. J Gen Physiol 2021; 153:e202012843. [PMID: 33978682 PMCID: PMC8126974 DOI: 10.1085/jgp.202012843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Romer et al. explored T-tubules in skeletal muscle.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
17
|
Correale M, Tricarico L, Fortunato M, Mazzeo P, Nodari S, Di Biase M, Brunetti ND. New Targets in Heart Failure Drug Therapy. Front Cardiovasc Med 2021; 8:665797. [PMID: 34026873 PMCID: PMC8131549 DOI: 10.3389/fcvm.2021.665797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in chronic heart failure management (either pharmacological or non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor prognosis emphasizes the need for developing novel pathways for testing new HF drugs, beyond neurohumoral and hemodynamic modulation approaches. The development of new drugs for HF therapy must thus necessarily focus on novel approaches such as the direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium. This review summarizes principal evidence on new possible pharmacological targets for the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiology, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
18
|
Li J, Richmond B, Hong T. Cardiac T-Tubule cBIN1-Microdomain, a Diagnostic Marker and Therapeutic Target of Heart Failure. Int J Mol Sci 2021; 22:ijms22052299. [PMID: 33669042 PMCID: PMC7956774 DOI: 10.3390/ijms22052299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Since its first identification as a cardiac transverse tubule (t-tubule) protein, followed by the cloning of the cardiac isoform responsible for t-tubule membrane microdomain formation, cardiac bridging integrator 1 (cBIN1) and its organized microdomains have emerged as a key mechanism in maintaining normal beat-to-beat heart contraction and relaxation. The abnormal remodeling of cBIN1-microdomains occurs in stressed and diseased cardiomyocytes, contributing to the pathophysiology of heart failure. Due to the homeostatic turnover of t-tubule cBIN1-microdomains via microvesicle release into the peripheral circulation, plasma cBIN1 can be assayed as a liquid biopsy of cardiomyocyte health. A new blood test cBIN1 score (CS) has been developed as a dimensionless inverse index derived from plasma cBIN1 concentration with a diagnostic and prognostic power for clinical outcomes in stable ambulatory patients with heart failure with reduced or preserved ejection fraction (HFrEF or HFpEF). Recent evidence further indicates that exogenous cBIN1 introduced by adeno-associated virus 9-based gene therapy can rescue cardiac contraction and relaxation in failing hearts. The therapeutic potential of cBIN1 gene therapy is enormous given its ability to rescue cardiac inotropy and provide lusitropic protection in the meantime. These unprecedented capabilities of cBIN1 gene therapy are shifting the current paradigm of therapy development for heart failure, particularly HFpEF.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (B.R.)
| | - Bradley Richmond
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (B.R.)
| | - TingTing Hong
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (B.R.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: ; Tel.: +1-801-581-3090
| |
Collapse
|