1
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
2
|
Motchon YD, Sack KL, Sirry MS, Kruger M, Pauwels E, Van Loo D, De Muynck A, Van Hoorebeke L, Davies NH, Franz T. Effect of biomaterial stiffness on cardiac mechanics in a biventricular infarcted rat heart model with microstructural representation of in situ intramyocardial injectate. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3693. [PMID: 36864599 PMCID: PMC10909490 DOI: 10.1002/cnm.3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 01/29/2023] [Indexed: 05/13/2023]
Abstract
Intramyocardial delivery of biomaterials is a promising concept for treating myocardial infarction. The delivered biomaterial provides mechanical support and attenuates wall thinning and elevated wall stress in the infarct region. This study aimed at developing a biventricular finite element model of an infarcted rat heart with a microstructural representation of an in situ biomaterial injectate, and a parametric investigation of the effect of the injectate stiffness on the cardiac mechanics. A three-dimensional subject-specific biventricular finite element model of a rat heart with left ventricular infarct and microstructurally dispersed biomaterial delivered 1 week after infarct induction was developed from ex vivo microcomputed tomography data. The volumetric mesh density varied between 303 mm-3 in the myocardium and 3852 mm-3 in the injectate region due to the microstructural intramyocardial dispersion. Parametric simulations were conducted with the injectate's elastic modulus varying from 4.1 to 405,900 kPa, and myocardial and injectate strains were recorded. With increasing injectate stiffness, the end-diastolic median myocardial fibre and cross-fibre strain decreased in magnitude from 3.6% to 1.1% and from -6.0% to -2.9%, respectively. At end-systole, the myocardial fibre and cross-fibre strain decreased in magnitude from -20.4% to -11.8% and from 6.5% to 4.6%, respectively. In the injectate, the maximum and minimum principal strains decreased in magnitude from 5.4% to 0.001% and from -5.4% to -0.001%, respectively, at end-diastole and from 38.5% to 0.06% and from -39.0% to -0.06%, respectively, at end-systole. With the microstructural injectate geometry, the developed subject-specific cardiac finite element model offers potential for extension to cellular injectates and in silico studies of mechanotransduction and therapeutic signalling in the infarcted heart with an infarct animal model extensively used in preclinical research.
Collapse
Affiliation(s)
- Y. D. Motchon
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
| | - Kevin L. Sack
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
- Department of SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - M. S. Sirry
- Department of Biomedical Engineering, School of Engineering and ComputingAmerican International UniversityAl JahraKuwait
| | - M. Kruger
- Cardiovascular Research Unit, MRC IUCHRUUniversity of Cape TownCape TownSouth Africa
| | - E. Pauwels
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
- Nuclear MedicineUniversity Hospitals LeuvenLeuvenBelgium
| | - D. Van Loo
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
- XRE nv, Bollebergen 2B box 1, 9052GhentBelgium
| | - A. De Muynck
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
| | - L. Van Hoorebeke
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
| | - Neil H. Davies
- Cardiovascular Research Unit, MRC IUCHRUUniversity of Cape TownCape TownSouth Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
- Bioengineering Science Research Group, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
3
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Leite FG, Marana JF, de Sá LFT, Alves de Almeida TFR, do Carmo HRP, Chaud MV, Grotto D, Silveira-Filho LDM. Effects of a collagen hyaluronic acid silk-fibroin patch with the electroconductive element polyaniline on left ventricular remodeling in an infarct heart model. J Biomed Mater Res B Appl Biomater 2022; 110:1651-1666. [PMID: 35099115 DOI: 10.1002/jbm.b.35026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Biodegradable cardiac patches have been able to induce improvement in left ventricular (LV) remodeling. A novel scaffold patch made with collagen and silk-fibroin (COL-SF) was further associated to polyaniline (PANi) to increase conductivity. Thus, this study investigated the safety of the association of PANi to a patch, and the improvement in LV remodeling in a myocardial infarct (MI) rat model. Wistar rats underwent MI induction. MI was confirmed with echocardiographic and after 2 weeks, animals (n = 10/group) were randomized into: (a) COL-SF hyaluronic acid patch, (b) PANi hyaluronic acid patch, (c) MI Control (just repeat thoracotomy). Healthy animals were also followed. Echocardiography was performed at pre-treatment, and at 2-, 4-, and 8-weeks post-treatment. Hearts underwent hemodynamic evaluation on Langendorff apparatus and histology for LV thickness and percent of infarct size. Liver, kidneys, and blood samples were evaluated for biochemical, hematological, oxidative stress, and histology. There was a tendency of lower %infarct size in patched animals. LV thickness was higher in the patched animals than controls. Functional echocardiographic indices %Fractional shortening and %LV ejection fraction decreased in the MI control group, but not in the patched animals. PANi presented higher %LVEF versus MI control. PANi presented higher liver transaminases; no morphological changes were observed in histology. Elevation of antioxidant markers was observed. COL-SF and PANi patches were able to induce better remodeling features compared to MI controls on %infarct size and LV thickness and have not presented echocardiographic worsening. Polyaniline may present a slight improvement on LV remodeling, despite associated to signs of hepatotoxicity and pro-oxidant effect.
Collapse
Affiliation(s)
- Fernanda Gomes Leite
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Sorocaba, Brazil.,Toxicology Program, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Marco Vinícius Chaud
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Sorocaba, Brazil
| | - Denise Grotto
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba, Sorocaba, Brazil
| | | |
Collapse
|
5
|
Perveen S, Rossin D, Vitale E, Rosso R, Vanni R, Cristallini C, Rastaldo R, Giachino C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. Int J Mol Sci 2021; 22:ijms222313054. [PMID: 34884856 PMCID: PMC8658014 DOI: 10.3390/ijms222313054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.
Collapse
Affiliation(s)
- Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| |
Collapse
|
6
|
Vasanthan V, Biglioli M, Hassanabad AF, Dundas J, Matheny RG, Fedak PW. CorMatrix Cor™ PATCH for epicardial infarct repair. Future Cardiol 2021; 17:1297-1305. [PMID: 34008420 DOI: 10.2217/fca-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Contemporary management of ischemic heart disease lacks strategies to directly access the heart and promote reparative cellular mechanisms to improve postinfarct cardiac remodeling. Epicardial infarct repair (EIR) is an emerging technique whereby bioactive materials are sewn over ischemic areas of the heart at the time of surgical revascularization to promote adaptive cardiac repair. The CorMatrix Cor™ PATCH (CorMatrix Cardiovascular Inc., GA, USA) is an acellular bioactive material compatible with EIR. Herein, we review current preclinical and clinical data for the CorMatrix Cor PATCH and its use in EIR.
Collapse
Affiliation(s)
- Vishnu Vasanthan
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Matteo Biglioli
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | - Jameson Dundas
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| | | | - Paul Wm Fedak
- Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, AB, T2N 4N1, Canada
| |
Collapse
|