1
|
Occhipinti G, Brugaletta S, Abbate A, Pedicino D, Del Buono MG, Vinci R, Biondi Zoccai G, Sabate M, Angiolillo D, Liuzzo G. Inflammation in coronary atherosclerosis: diagnosis and treatment. Heart 2025:heartjnl-2024-325408. [PMID: 40139681 DOI: 10.1136/heartjnl-2024-325408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Coronary atherosclerosis is a chronic condition characterised by the development of an atherosclerotic plaque in the inner layer of the coronary artery, mainly associated with cholesterol accumulation and favoured by endothelial dysfunction related to other cardiovascular risk factors, such as smoking, diabetes and hypertension. A key actor in this process is the systemic inflammatory response, which can make plaques either grow slowly over the course of years (like a 'mountain'), obstructing coronary flow, and causing stable coronary artery disease, or make them explode (like a 'volcano') with subsequent abrupt thrombosis causing an acute coronary syndrome. This central role of inflammation in coronary atherosclerosis has led to its consideration as a modifiable cardiovascular risk factor and a therapeutic target. Classic anti-inflammatory drugs have been tested in clinical trials with some encouraging results, and new drugs specifically designed to tackle inflammation are currently being under investigation in ongoing trials. The objectives of this review are to (1) summarise the role of inflammatory biomarkers and imaging techniques to detect inflammation at each stage of plaque progression, and (2) explore currently available and upcoming anti-inflammatory therapies.
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
| | - Salvatore Brugaletta
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Manel Sabate
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|
2
|
Lu Y, Jabbari P, Mukhamedshin A, Zvyagin AV. Fluorescence lifetime imaging in drug delivery research. Adv Drug Deliv Rev 2025; 218:115521. [PMID: 39848547 DOI: 10.1016/j.addr.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Once an exotic add-on to fluorescence microscopy for life science research, fluorescence lifetime imaging (FLIm) has become a powerful and increasingly utilised technique owing to its self-calibration nature, which affords superior quantification over conventional steady-state fluorescence imaging. This review focuses on the state-of-the-art implementation of FLIm related to the formulation, release, dosage, and mechanism of action of drugs aimed for innovative diagnostics and therapy. Quantitative measurements using FLIm have appeared instrumental for encapsulated drug delivery design, pharmacokinetics and pharmacodynamics, pathological investigations, early disease diagnosis, and evaluation of therapeutic efficacy. Attention is paid to the latest advances in lifetime-engineered nanomaterials and practical instrumentation, which begin to show preclinical and clinical translation potential beyond in vitro samples of cells and tissues. Finally, major challenges that need to be overcome in order to facilitate future perspectives are discussed.
Collapse
Affiliation(s)
- Yiqing Lu
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Parinaz Jabbari
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Anton Mukhamedshin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| | - Andrei V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| |
Collapse
|
3
|
Yap NAL, Khan Z, He X, Lee JG, Maung S, Morgan KR, Zhou T, Precht H, Serruys PW, Garcia-Garcia HM, Onuma Y, Hynes S, Kelle S, Mathur A, Baumbach A, Bourantas CV. What have we learnt from histology about the efficacy of coronary imaging modalities in assessing plaque composition? Front Cardiovasc Med 2025; 12:1507892. [PMID: 39925979 PMCID: PMC11802506 DOI: 10.3389/fcvm.2025.1507892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Accurate evaluation of coronary artery pathology is essential for risk stratification and tailoring appropriate treatment. Intravascular imaging was introduced for this purpose 40 years ago enabling for the first time in vivo plaque characterization. Since then, several studies have evaluated the efficacy of the existing intravascular imaging modalities in assessing plaque pathology and composition and their potential in guiding intervention and predicting vulnerable plaques. Today it is known that intravascular imaging is an indispensable tool in percutaneous coronary intervention planning, but the existing modalities have a limited efficacy in predicting lesion vulnerability; a fact that should be attributed to their advantages and limitations in accurately assessing morpho-pathological features that are common in advanced atherosclerotic plaques. This review aims to provide a comprehensive evaluation of the performance of intravascular imaging in characterizing plaque phenotypes using histology as a reference standard; it summarizes the studies comparing the available invasive imaging techniques against histology, discusses the findings and limitations of these studies and highlights the potential of novel intravascular imaging approaches that were introduced for a more complete and comprehensive evaluation of plaque pathobiology.
Collapse
Affiliation(s)
- Nathan Angelo Lecaros Yap
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Zahid Khan
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Medical Education, University of South Wales, Wales and University of Buckingham, Buckingham, United Kingdom
| | - Xingwei He
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Jae-Geun Lee
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Soe Maung
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Kimberley R. Morgan
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Tingquan Zhou
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Helle Precht
- Conrad Research Center, Radiography Education, University College Lillebælt, Odense, Denmark
| | - Patrick W. Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, United Kingdom
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Hector M. Garcia-Garcia
- Interventional Cardiology Department, MedStar Washington Hospital Center, Washington, DC, United States
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Sean Hynes
- Department of Pathology, National University of Ireland, Galway, Ireland
| | - Sebastian Kelle
- Department of Cardiology, Radiology and Intensive Care Medicine, Deutsches Herzzentrum Der Charite, Berlin, Germany
| | - Anthony Mathur
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Andreas Baumbach
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Christos V. Bourantas
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Apostolos A, Karanasos A, Ktenopoulos N, Tsalamandris S, Vlachakis PK, Kachrimanidis I, Skalidis I, Sagris M, Koliastasis L, Drakopoulou M, Synetos A, Tsioufis K, Toutouzas K. Unlocking the Secrets of Acute Coronary Syndromes Using Intravascular Imaging: From Pathophysiology to Improving Outcomes. J Clin Med 2024; 13:7087. [PMID: 39685545 DOI: 10.3390/jcm13237087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Acute coronary syndrome (ACS) represents the most severe manifestation of coronary artery disease. Intravascular imaging, both intravascular ultrasound (IVUS) and optical coherence tomography (OCT), have played crucial roles for the impressive reduction in mortality of ACS. Intravascular imaging is useful for the detection of atherosclerotic mechanism (plaque rupture, calcified nodules, or plaque erosions) and for the evaluation of nonatherosclerotic and nonobstructive types of ACS. In addition, IVUS and OCT play a crucial role in the optimization of the PCI. The aim of the current review is to present the role of intravascular imaging in identifying the mechanisms of ACS and its prognostic role in future events, to review the current guidelines suggesting intravascular imaging use in ACS, to summarize its role in PCI in patients with ACS, and to compare IVUS and OCT.
Collapse
Affiliation(s)
- Anastasios Apostolos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Antonios Karanasos
- Department of Cardiology, Faculty of Medicine, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Nikolaos Ktenopoulos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Sotirios Tsalamandris
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Panayotis K Vlachakis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Ioannis Kachrimanidis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Ioannis Skalidis
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Marios Sagris
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Leonidas Koliastasis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Maria Drakopoulou
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Andreas Synetos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| |
Collapse
|
5
|
Tufaro V, Jaffer FA, Serruys PW, Onuma Y, van der Steen AFW, Stone GW, Muller JE, Marcu L, Van Soest G, Courtney BK, Tearney GJ, Bourantas CV. Emerging Hybrid Intracoronary Imaging Technologies and Their Applications in Clinical Practice and Research. JACC Cardiovasc Interv 2024; 17:1963-1979. [PMID: 39260958 DOI: 10.1016/j.jcin.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024]
Abstract
Intravascular ultrasound and optical coherence tomography are used with increasing frequency for the care of coronary patients and in research studies. These imaging tools can identify culprit lesions in acute coronary syndromes, assess coronary stenosis severity, guide percutaneous coronary intervention (PCI), and detect vulnerable plaques and patients. However, they have significant limitations that have stimulated the development of multimodality intracoronary imaging catheters, which provide improvements in assessing vessel wall pathology and guiding PCI. Prototypes combining 2 or even 3 imaging probes with complementary attributes have been developed, and several multimodality systems have already been used in patients, with near-infrared spectroscopy intravascular ultrasound-based studies showing promising results for the identification of high-risk plaques. Moreover, postmortem histology studies have documented that hybrid imaging catheters can enable more accurate characterization of plaque morphology than standalone imaging. This review describes the evolution in the field of hybrid intracoronary imaging; presents the available multimodality catheters; and discusses their potential role in PCI guidance, vulnerable plaque detection, and the assessment of endovascular devices and emerging pharmacotherapies targeting atherosclerosis.
Collapse
Affiliation(s)
- Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Farouc A Jaffer
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| | | | - Gregg W Stone
- Department of Cardiology, The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai, New York, New York, USA
| | - James E Muller
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gijs Van Soest
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Brian K Courtney
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Conavi Medical Inc, Toronto, Ontario, Canada
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Institute of Cardiovascular Sciences, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Lee SY, Kim JH, Song JW, Min JS, Kim HJ, Kim RH, Ahn JW, Yoo H, Park K, Kim JW. Macrophage-mannose-receptor-targeted photoactivatable agent for in vivo imaging and treatment of atherosclerosis. Int J Pharm 2024; 654:123951. [PMID: 38423154 DOI: 10.1016/j.ijpharm.2024.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Previous studies have demonstrated the effects of theranostic agents on atherosclerotic plaques. However, there is limited information on targeted theranostics for photodynamic treatment of atherosclerosis. This study aimed to develop a macrophage-mannose-receptor-targeted photoactivatable nanoagent that regulates atherosclerosis and to evaluate its efficacy as well as safety in atherosclerotic mice. We synthesised and characterised D-mannosamine (MAN)-polyethylene glycol (PEG)-chlorin e6 (Ce6) for phototheranostic treatment of atherosclerosis. The diagnostic and therapeutic effects of MAN-PEG-Ce6 were investigated using the atherosclerotic mouse model. The hydrophobic Ce6 photosensitiser was surrounded by the hydrophilic MAN-PEG outer shell of the self-assembled nanostructure under aqueous conditions. The MAN-PEG-Ce6 was specifically internalised in macrophage-derived foam cells through receptor-mediated endocytosis. After laser irradiation, the MAN-PEG-Ce6 markedly increased singlet oxygen generation. Intravital imaging and immunohistochemistry analyses verified MAN-PEG-Ce6's specificity to plaque macrophages and its notable anti-inflammatory impact by effectively reducing mannose-receptor-positive macrophages. The toxicity assay showed that MAN-PEG-Ce6 had negligible effects on the biochemical profile and structural damage in the skin and organs. Targeted photoactivation with MAN-PEG-Ce6 thus has the potential to rapidly reduce macrophage-derived inflammatory responses in atheroma and present favourable toxicity profiles, making it a promising approach for both imaging and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Seung-Yul Lee
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea; Division of Cardiology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam 13496, Republic of Korea
| | - Jin Hyuk Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Joon Woo Song
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ji Seon Min
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jae Won Ahn
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea.
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Jin Won Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea.
| |
Collapse
|
7
|
Bec J, Zhou X, Villiger M, Southard JA, Bouma B, Marcu L. Dual modality intravascular catheter system combining pulse-sampling fluorescence lifetime imaging and polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:2114-2132. [PMID: 38633060 PMCID: PMC11019710 DOI: 10.1364/boe.516515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
The clinical management of coronary artery disease and the prevention of acute coronary syndromes require knowledge of the underlying atherosclerotic plaque pathobiology. Hybrid imaging modalities capable of comprehensive assessment of biochemical and morphological plaques features can address this need. Here we report the first implementation of an intravascular catheter system combining fluorescence lifetime imaging (FLIm) with polarization-sensitive optical coherence tomography (PSOCT). This system provides multi-scale assessment of plaque structure and composition via high spatial resolution morphology from OCT, polarimetry-derived tissue microstructure, and biochemical composition from FLIm, without requiring any molecular contrast agent. This result was achieved with a low profile (2.7 Fr) double-clad fiber (DCF) catheter and high speed (100 fps B-scan rate, 40 mm/s pullback speed) console. Use of a DCF and broadband rotary junction required extensive optimization to mitigate the reduction in OCT performance originating from additional reflections and multipath artifacts. This challenge was addressed by the development of a broad-band (UV-visible-IR), high return loss (47 dB) rotary junction. We demonstrate in phantoms, ex vivo swine coronary specimens and in vivo swine heart (percutaneous coronary access) that the FLIm-PSOCT catheter system can simultaneously acquire co-registered FLIm data over four distinct spectral bands (380/20 nm, 400/20 nm, 452/45 nm, 540/45 nm) and PSOCT backscattered intensity, birefringence, and depolarization. The unique ability to collect complementary information from tissue (e.g., morphology, extracellular matrix composition, inflammation) with a device suitable for percutaneous coronary intervention offers new opportunities for cardiovascular research and clinical diagnosis.
Collapse
Affiliation(s)
- Julien Bec
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Xiangnan Zhou
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Southard
- Division of Cardiovascular Medicine, UC Davis Health System, University of California-Davis, Sacramento, CA 95817, USA
| | - Brett Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Laura Marcu
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Kang DO, Nam HS, Kim S, Yoo H, Kim JW. Feasibility and safety of non-contrast optical coherence tomography imaging using hydroxyethyl starch in coronary arteries. Sci Rep 2023; 13:13818. [PMID: 37620359 PMCID: PMC10449772 DOI: 10.1038/s41598-023-40363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Intracoronary optical coherence tomography (OCT) requires injection of flushing media for image acquisition. Alternative flushing media needs to be investigated to reduce the risk of contrast-induced renal dysfunction. We investigated the feasibility and safety of pentastarch (hydroxyethyl starch) for clinical OCT imaging. We prospectively enrolled 43 patients with 70 coronary lesions (46-stented; 24-native). Total 81 OCT pullback pairs were obtained by manual injection of iodine contrast, followed by pentastarch. Each pullback was assessed frame-by-frame using an automated customized lumen contour/stent strut segmentation algorithm. Paired images were compared for the clear image segments (CIS), blood-flushing capability, and quantitative morphometric measurements. Overall image quality, as assessed by the proportion of CIS, was comparable between the contrast- and pentastarch-flushed images (97.1% vs. 96.5%; p = 0.160). The pixel-based blood-flushing capability was similar between the groups (0.951 [0.947-0.953] vs. 0.950 [0.948-0.952], p = 0.125). Quantitative two- and three-dimensional morphometric measurements of the paired images correlated well (p < 0.001) with excellent inter-measurement variability. All patients safely underwent OCT imaging using pentastarch without resulting in clinically relevant complications or renal deterioration. Non-contrast OCT imaging using pentastarch is clinically safe and technically feasible with excellent image quality and could be a promising alternative strategy for patients at high risk of renal impairment.
Collapse
Affiliation(s)
- Dong Oh Kang
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
| | - Hyeong Soo Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sunwon Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
- Cardiovascular Center, Korea University Ansan Hospital, 123 Jeokgeum-Ro, Danwon-Gu, Ansan, 15355, Republic of Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jin Won Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
9
|
Kageyama S, Kotoku N, Ninomiya K, Masuda S, Huang J, Okamura T, Garg S, Mori I, Courtney B, Sharif F, Bourantas CV, Serruys PW, Onuma Y. Intravascular Ultrasound and Optical Coherent Tomography Combined Catheter. Interv Cardiol Clin 2023; 12:187-201. [PMID: 36922060 DOI: 10.1016/j.iccl.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are established intravascular imaging tools for evaluating plaque characteristics and volume, together with guiding percutaneous coronary interventions. The high tissue penetration of IVUS facilitates assessment of the entire vessel wall, whereas the higher resolution of OCT allows detailed assessment of endoluminal structures. A combined IVUS-OCT probe works synergistically, facilitating a greater understanding of de novo coronary artery disease and a better correlation with pathological specimens. In this review, we discuss the rationale and potential roles of the combined IVUS-OCT catheter system.
Collapse
Affiliation(s)
- Shigetaka Kageyama
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Nozomi Kotoku
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Kai Ninomiya
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Shinichiro Masuda
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Jiayue Huang
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Takayuki Okamura
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, UK
| | | | - Brian Courtney
- Schulich Heart Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Institute of Cardiovascular Sciences University College London, London, UK
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
10
|
Xing J, Lee DR, Kim JW, Yoo H. Histological classification of atherosclerotic arteries using high-speed confocal Raman microscopy with machine learning. JOURNAL OF BIOPHOTONICS 2023; 16:e202200243. [PMID: 36238991 DOI: 10.1002/jbio.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Confocal Raman microscopy is a useful tool to observe composition and constitution of label-free samples at high spatial resolution. However, accurate characterization of microstructure of tissue and its application in diagnostic imaging are challenging due to weak Raman scattering signal and complex chemical composition of tissue. We have developed a method to improve imaging speed, diffraction efficiency, and spectral resolution of confocal Raman microscopy. In addition to the novel imaging technique, the machine learning method enables confocal Raman microscopy to visualize accurate histology of tissue sections. Here, we have demonstrated the performance of the proposed method by measuring histological classification of atherosclerotic arteries and compared the histological confocal Raman images with the conventional staining method. Our new confocal Raman microscopy enables us to comprehend the structure and biochemical composition of tissue and diagnose the buildup of atherosclerotic plaques in the arterial wall without labeling.
Collapse
Affiliation(s)
- Jingchao Xing
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong-Ryoung Lee
- School of Mechanical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jin Won Kim
- Multimodal Imagng and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Wang H, Wang Q, Hu J, Zhang R, Gao T, Rong S, Dong H. Global research trends in in-stent neoatherosclerosis: A CiteSpace-based visual analysis. Front Cardiovasc Med 2022; 9:1025858. [PMID: 36426225 PMCID: PMC9679497 DOI: 10.3389/fcvm.2022.1025858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Recent studies have shown that in-stent neoatherosclerosis (ISNA/NA) is an important cause of late stent failure. A comprehensive understanding of the current state of research in this field will facilitate the analysis of its development trends and hot frontiers. However, no bibliometric correlation has been reported yet. Here, we analyze the relevant literature since the emergence of the concept and provide valuable insights. METHODS Publications were collected from the Web of Science Core Collection (WoSCC) and PubMed. Microsoft Excel, SPSS and CiteSpace were used to analyze and present the data. RESULTS A total of 498 articles were collected, with Japan and Cardiovasc Res Fdn being the main publishing forces in all country/region and institutions. J AM COLL CARDIOL is the journal with the most published and co-cited articles. According to co-citation analysis, optical coherence tomography, thrombosis, implantation, restenosis, drug-eluting stent, and bare metal stent have become more and more popular recently. CONCLUSION ISNA is a niche and emerging field. How to reduce the incidence of ISNA and improve the late patency rate of coronary stents may remain a hot spot for future research. The pathogenesis of ISNA also needs to be explored in more depth.
Collapse
Affiliation(s)
- Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|