1
|
Lopes Soares L, Portes AMO, Costa SFF, Leite LB, Natali AJ. Autonomic Dysregulation in Pulmonary Hypertension: Role of Physical Exercise. Hypertension 2024; 81:2228-2236. [PMID: 39234679 DOI: 10.1161/hypertensionaha.124.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pulmonary hypertension (PH) is a rare and severe condition characterized by increased pressure in the pulmonary circulation, often resulting in right ventricular failure and death. The autonomic nervous system (ANS) plays a crucial role in the cardiovascular and pulmonary controls. Dysfunction of ANS has been implicated in the pathogenesis of cardiopulmonary diseases. Conversely, dysfunctions in ANS can arise from these diseases, impacting cardiac and pulmonary autonomic functions and contributing to disease progression. The complex interaction between ANS dysfunction and PH plays a crucial role in the disease progression, making it essential to explore interventions that modulate ANS, such as physical exercise, to improve the treatment and prognosis of patients with PH. This review addresses autonomic dysfunctions found in PH and their implications for the cardiopulmonary system. Furthermore, we discuss how physical exercise, a significant modulator of ANS, may contribute to the prognosis of PH. Drawing from evidence of aerobic and resistance exercise training in patients and experimental models of PH, potential cardiovascular benefits of exercise are presented. Finally, we highlight emerging therapeutic targets and perspectives to better cope with the complex condition. A comprehensive understanding of the interaction between ANS and PH, coupled with targeted physical exercise interventions, may pave the way for innovative therapeutic strategies and significantly improve the treatment and prognosis of vulnerable patients.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | | | | | - Luciano Bernardes Leite
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| |
Collapse
|
2
|
Shiina K. Obstructive sleep apnea -related hypertension: a review of the literature and clinical management strategy. Hypertens Res 2024; 47:3085-3098. [PMID: 39210083 PMCID: PMC11534699 DOI: 10.1038/s41440-024-01852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Obstructive Sleep Apnea (OSA) and hypertension have a high rate of co-occurrence, with OSA being a causative factor for hypertension. Sympathetic activity due to intermittent hypoxia and/or fragmented sleep is the most important mechanisms triggering the elevation in blood pressure in OSA. OSA-related hypertension is characterized by resistant hypertension, nocturnal hypertension, abnormal blood pressure variability, and vascular remodeling. In particular, the prevalence of OSA is high in patients with resistant hypertension, and the mechanism proposed includes vascular remodeling due to the exacerbation of arterial stiffness by OSA. Continuous positive airway pressure therapy is effective at lowering blood pressure, however, the magnitude of the decrease in blood pressure is relatively modest, therefore, patients often need to also take antihypertensive medications to achieve optimal blood pressure control. Antihypertensive medications targeting sympathetic pathways or the renin-angiotensin-aldosterone system have theoretical potential in OSA-related hypertension, Therefore, beta-blockers and renin-angiotensin system inhibitors may be effective in the management of OSA-related hypertension, but current evidence is limited. The characteristics of OSA-related hypertension, such as nocturnal hypertension and obesity-related hypertension, suggests potential for angiotensin receptor-neprilysin inhibitor (ARNI), sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucose-dependent insulinotropic polypeptide receptor/ glucagon-like peptide-1 receptor agonist (GIP/GLP-1 RA). Recently, OSA has been considered to be caused not only by upper airway anatomy but also by several non-anatomic mechanisms, such as responsiveness of the upper airway response, ventilatory control instability, and reduced sleep arousal threshold. Elucidating the phenotypic mechanisms of OSA may potentially advance more personalized hypertension treatment strategies in the future. Clinical characteristics and management strategy of OSA-related hypertension. OSA obstructive sleep apnea, BP blood pressure, ABPM ambulatory blood pressure monitoring, CPAP continuous positive airway pressure, LVH left ventricular hypertrophy, ARB: angiotensin II receptor blocker, SGLT2i Sodium-glucose cotransporter 2 inhibitors, ARNI angiotensin receptor-neprilysin inhibitor, CCB calcium channel blocker, GIP/GLP-1 RA glucose-dependent insulinotropic polypeptide receptor and glucagon-like peptide-1 receptor agonist.
Collapse
Affiliation(s)
- Kazuki Shiina
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Vakalopoulos A, Basting D, Brechmann M, Teller H, Boultadakis Arapinis M, Straub A, Mittendorf J, Meininghaus M, Müller T, Nowak-Reppel K, Schäfer M, Wittwer M, Kullmann M, Terjung C, Lang D, Poethko T, Marquardt T, Freudenberger T, Mondritzki T, Hüser J, Heckmann M, Tinel H. Discovery of BAY 2413555, First Selective Positive Allosteric Modulator of the M2 Receptor to Restore Cardiac Autonomic Balance. J Med Chem 2024. [PMID: 39463278 DOI: 10.1021/acs.jmedchem.4c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Autonomic disbalance, i.e., sympathetic overactivation and parasympathetic withdrawal, is a causal driver of disease progression in heart failure. While sympatholytic drugs are established treatments, no drug therapy restoring vagal control of cardiac function is available. We report here the HTS-based discovery of a novel class of 1,8-naphthyridin-4(1H)-one carboxamides acting as positive allosteric modulators (PAMs) of the M2 muscarinic acetylcholine receptor (M2R). M2R is the main postsynaptic myocyte receptor regulating heart rate, electrical conduction, and contractile strength. Extensive optimization of the screening hit in terms of potency, permeation, metabolic stability, and solubility ultimately resulted in the discovery of the first-in-class clinical candidate BAY 2413555 (27). With an overall technical profile compatible with once-daily oral administration in a phase 1 study, no apparent effects on blood pressure, and a mechanism that largely preserves autonomic regulatory capacity, BAY 2413555 could be the tool to finally study the restoration of autonomic balance.
Collapse
Affiliation(s)
- Alexandros Vakalopoulos
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Daniel Basting
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Markus Brechmann
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- CSL Innovation GmbH, Emil-von-Behring-Str. 76, Marburg 35041, Germany
| | - Henrik Teller
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- micromod Partikeltechnologie GmbH, Schillingallee 68, Rostock 18057, Germany
| | | | - Alexander Straub
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Joachim Mittendorf
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Mark Meininghaus
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Thomas Müller
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Katrin Nowak-Reppel
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Martina Schäfer
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- Nuvisan ICB GmbH, Müllerstrasse 178, Berlin 13353, Germany
| | - Matthias Wittwer
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Maximilian Kullmann
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- BioNTech SE, An der Goldgrube 12, Mainz 55131, Germany
| | - Carsten Terjung
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Dieter Lang
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Thorsten Poethko
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Tobias Marquardt
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Till Freudenberger
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Thomas Mondritzki
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- University of Witten/Herdecke, Witten 58455, Germany
| | - Jörg Hüser
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
- Axxam S.p.A., Openzone - Via Meucci 3, Bresso, Milan 20091, Italy
| | - Michael Heckmann
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Hanna Tinel
- Bayer AG, Pharmaceuticals, Research and Development, Aprather Weg 18a, Wuppertal 42113, Germany
| |
Collapse
|
4
|
van Es VAA, de Lathauwer ILJ, Kemps HMC, Handjaras G, Betta M. Remote Monitoring of Sympathovagal Imbalance During Sleep and Its Implications in Cardiovascular Risk Assessment: A Systematic Review. Bioengineering (Basel) 2024; 11:1045. [PMID: 39451420 PMCID: PMC11504514 DOI: 10.3390/bioengineering11101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease, emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal autonomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publications, with data extracted on study design, population characteristics, technology types, and CV implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electrocardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG), peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers. Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM, offering a comprehensive view of ANS function and vascular health during sleep. While electrodes provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP. Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation, but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and validation against direct measures of autonomic function, such as microneurography.
Collapse
Affiliation(s)
- Valerie A. A. van Es
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| | - Ignace L. J. de Lathauwer
- Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| |
Collapse
|
5
|
Schäfer AKC, Wallbach M, Schroer C, Lehnig LY, Lüders S, Hasenfuß G, Wachter R, Koziolek MJ. Effects of baroreflex activation therapy on cardiac function and morphology. ESC Heart Fail 2024; 11:3360-3367. [PMID: 38970313 PMCID: PMC11424325 DOI: 10.1002/ehf2.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
AIMS Arterial hypertension (aHTN) plays a fundamental role in the pathogenesis and prognosis of heart failure with preserved ejection fraction (HFpEF). The risk of heart failure increases with therapy-resistant arterial hypertension (trHTN), defined as inadequate blood pressure (BP) control ≥140/90 mmHg despite taking ≥3 antihypertensive medications including a diuretic. This study investigates the effects of the BP lowering baroreflex activation therapy (BAT) on cardiac function and morphology in patients with trHTN with and without HFpEF. METHODS Sixty-four consecutive patients who had been diagnosed with trHTN and received BAT implantation between 2012 and 2016 were prospectively observed. Office BP, electrocardiographic and echocardiographic data were collected before and after BAT implantation. RESULTS Mean patients' age was 59.1 years, 46.9% were male, and mean body mass index (BMI) was 33.2 kg/m2. The prevalence of diabetes mellitus was 38.8%, atrial fibrillation was 12.2%, and chronic kidney disease (CKD) stage ≥3 was 40.8%. Twenty-eight patients had trHTN with HFpEF, and 21 patients had trHTN without HFpEF. Patients with HFpEF were significantly older (64.7 vs. 51.6 years, P < 0.0001), had a lower BMI (30.0 vs. 37.2 kg/m2, P < 0.0001), and suffered more often from CKD-stage ≥3 (64 vs. 20%, P = 0.0032). After BAT implantation, mean office BP dropped in patients with and without HFpEF (from 169 ± 5/86 ± 4 to 143 ± 4/77 ± 3 mmHg [P = 0.0019 for systolic BP and 0.0403 for diastolic BP] and from 170 ± 5/95 ± 4 to 149 ± 6/88 ± 5 mmHg [P = 0.0019 for systolic BP and 0.0763 for diastolic BP]), while a significant reduction of the intake of calcium-antagonists, α2-agonists and direct vasodilators, as well as a decrease in average dosage of ACE-inhibitors and α2-agonists could be seen. Within the study population, a decrease in heart rate from 74 ± 2 to 67 ± 2 min-1 (P = 0.0062) and lengthening of QRS-time from 96 ± 3 to 106 ± 4 ms (P = 0.0027) and QTc-duration from 422 ± 5 to 432 ± 5 ms (P = 0.0184) were detectable. The PQ duration was virtually unchanged. In patients without HF, no significant changes of echocardiographic parameters could be seen. In patients with HFpEF, posterior wall diameter decreased significantly from 14.0 ± 0.5 to 12.7 ± 0.3 mm (P = 0.0125), left ventricular mass (LVM) declined from 278.1 ± 15.8 to 243.9 ± 13.4 g (P = 0.0203), and e' lateral increased from 8.2 ± 0.4 to 9.0 ± 0.4 cm/s (P = 0.0471). CONCLUSIONS BAT reduced systolic and diastolic BP and was associated with morphological and functional improvement of HFpEF.
Collapse
Affiliation(s)
- Ann-Kathrin C Schäfer
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Manuel Wallbach
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Charlotte Schroer
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Luca-Yves Lehnig
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
| | - Stephan Lüders
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- St. Josefs Hospital, Cloppenburg, Germany
| | - Gerhard Hasenfuß
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
- Department of Cardiology and Pulmonology, University Medical Centre, Göttingen, Germany
| | - Rolf Wachter
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
- Department of Cardiology and Pulmonology, University Medical Centre, Göttingen, Germany
| | - Michael J Koziolek
- Department of Nephrology and Rheumatology, University Medical Centre, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
6
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
7
|
Nagai M, Rommel KP, Po SS, Dasari TW. Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction. Hypertens Res 2024:10.1038/s41440-024-01886-2. [PMID: 39261699 DOI: 10.1038/s41440-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Karl-Philipp Rommel
- Department of Cardiology, University Medical Center Mainz and German Center for Cardiovascular Research, Mainz, Germany
| | - Sunny S Po
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
| |
Collapse
|
8
|
Boehmer AA, Schubert T, Rothe M, Keim C, Wiedenmann L, Ruckes C, von Stuelpnagel L, Theurl F, Schreinlechner M, Dobre BC, Kaess BM, Bauer A, Ehrlich JR. Angiotensin Receptor-Neprilysin Inhibitor Is Associated With Improved Cardiac Autonomic Function in Heart Failure. J Am Heart Assoc 2024; 13:e033538. [PMID: 39082399 DOI: 10.1161/jaha.123.033538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/24/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Heart failure with reduced ejection fraction is associated with potentially deleterious imbalance of the cardiac autonomic nervous system. Sacubitril/valsartan (angiotensin receptor-neprilysin inhibitor [ARNI]) reduces cardiovascular mortality and hospitalization for heart failure with reduced ejection fraction. Whether ARNI affects the cardiac autonomic nervous system has not been studied. METHODS AND RESULTS This investigator-initiated, prospective, single-center cohort study compared heart rate (HR) variability, HR, deceleration capacity, and periodic repolarization dynamics as noninvasive measures of the cardiac autonomic nervous system before and after initiation of ARNI therapy. Patients underwent standardized 12-lead Holter-ECG, echocardiography and laboratory testing before and 3 months after start of therapy. End points were changes in HR variability (SD of normal-to-normal intervals, mean square of differences between consecutive R-R intervals), HR, deceleration capacity, and periodic repolarization dynamics as well as ventricular function and NT-proBNP (N-terminal pro-B-type natriuretic peptide). Of 63 patients with heart failure with reduced ejection fraction enrolled, 48 (76.2%) patients were still on ARNI at follow-up. SD of normal-to-normal intervals increased from 25 to 36 milliseconds (P<0.001), mean square of differences between consecutive R-R intervals increased from 12 to 19 milliseconds (P<0.001), HR decreased from 73±9 bpm to 67±4 bpm, (P<0.001), and deceleration capacity increased from 2.1 to 4.4 milliseconds (P<0.001). A trend for periodic repolarization dynamics reduction was observed (5.6 deg2 versus 4.7 deg2, P=0.09). Autonomic changes were accompanied by increased left ventricular ejection fraction (29±6% versus 40±8%, P<0.001) and reduced NT-proBNP (3548 versus 685 ng/L, P<0.001). Correlation analysis showed a significant relationship between volume-unloading (as evidenced by NT-proBNP reduction) and autonomic improvement. CONCLUSIONS Three months of ARNI therapy resulted in a significant increase in cardiac parasympathetic tone. The improvement in autonomic properties may be mediated by "volume unloading" and likely contributes to the beneficial effects of ARNI in heart failure with reduced ejection fraction. REGISTRATION URL: https://www.clinicaltrials.gov; Unique Identifier: NCT04587947.
Collapse
Affiliation(s)
- Andreas A Boehmer
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Tim Schubert
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Moritz Rothe
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Christoph Keim
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Lilli Wiedenmann
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Christian Ruckes
- University Medical Center Mainz Interdisciplinary Center for Clinical Trials Mainz Germany
| | | | - Fabian Theurl
- Division of Cardiology Medical University of Innsbruck Innsbruck Austria
| | | | - Bianca C Dobre
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Bernhard M Kaess
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| | - Axel Bauer
- Division of Cardiology Medical University of Innsbruck Innsbruck Austria
| | - Joachim R Ehrlich
- Division of Cardiology St. Josefs-Hospital Wiesbaden Wiesbaden Germany
| |
Collapse
|
9
|
Stutsman N, Habecker B, Pavlovic N, Jurgens CY, Woodward WR, Lee CS, Denfeld QE. Sympathetic dysfunction is associated with worse fatigue and early and subtle symptoms in heart failure: an exploratory sex-stratified analysis. Eur J Cardiovasc Nurs 2024; 23:532-539. [PMID: 38196102 PMCID: PMC11257751 DOI: 10.1093/eurjcn/zvad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
AIMS Physical symptoms impact patients with heart failure (HF) despite treatment advancements; however, our understanding of the pathogenic mechanisms underlying HF symptoms remains limited, including sex differences therein. The objective of this study was to quantify associations between sympathetic markers [norepinephrine (NE) and 3,4-dihydroxyphenylglycol (DHPG)] and physical symptoms in patients with HF and to explore sex differences in these associations. METHODS AND RESULTS We performed a secondary analysis of combined data from two studies: outpatients with HF (n = 111), and patients prior to left ventricular assist device implantation (n = 38). Physical symptoms were measured with the Heart Failure Somatic Perception Scale (HFSPS) dyspnoea and early/subtle symptom subscales and the Functional Assessment in Chronic Illness Therapy Fatigue Scale (FACIT-F) to capture dyspnoea, early symptoms of decompensation, and fatigue. Norepinephrine and DHPG were measured with high-performance liquid chromatography with electrochemical detection. Multivariate linear regression was used to quantify associations between symptoms and sympathetic markers. The sample (n = 149) was 60.8 ± 15.7 years, 41% women, and 71% non-ischaemic aetiology. Increased plasma NE and NE:DHPG ratio were associated with worse FACIT-F scores (P = 0.043 and P = 0.013, respectively). Increased plasma NE:DHPG ratio was associated with worse HFSPS early/subtle symptoms (P = 0.025). In sex-stratified analyses, increased NE:DHPG ratio was associated with worse FACIT-F scores (P = 0.011) and HFSPS early/subtle scores (P = 0.022) among women but not men. CONCLUSION In patients with HF, sympathetic dysfunction is associated with worse fatigue and early/subtle physical symptoms with associations stronger in women than men.
Collapse
Affiliation(s)
- Nina Stutsman
- Oregon Health & Science University, School of Nursing, 3455 SW U.S. Veteran’s Hospital Road, Portland, OR 97239, USA
| | - Beth Habecker
- Oregon Health & Science University, Knight Cardiovascular Institute, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Noelle Pavlovic
- Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA
| | - Corrine Y Jurgens
- Boston College, William F. Connell School of Nursing, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Christopher S Lee
- Boston College, William F. Connell School of Nursing, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
- Australian Catholic University, 115 Victoria Parade, Fitzroy, VIC 3065, Australia
| | - Quin E Denfeld
- Oregon Health & Science University, School of Nursing, 3455 SW U.S. Veteran’s Hospital Road, Portland, OR 97239, USA
- Oregon Health & Science University, Knight Cardiovascular Institute, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
10
|
Li M, Sorensen M, Johnson MA, Ingram SL, Andresen MC, Habecker BA. Hypertension increases sympathetic neuron activity by enhancing intraganglionic cholinergic collateral connections. J Physiol 2024. [PMID: 39031543 DOI: 10.1113/jp286601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024] Open
Abstract
Autonomic dysregulation, including sympathetic hyperactivity, is a common feature of hypertension (HT) and other cardiovascular diseases. The CNS plays a role in driving chronic sympathetic activation in disease, but several lines of evidence suggest that neuroplasticity in the periphery may also contribute. The potential contribution of postganglionic sympathetic neurons to sustained sympathetic hyperactivity is not well understood. We recently discovered that noradrenergic sympathetic neurons in the stellate ganglion (SG) have excitatory cholinergic collateral connections to other neurons within the ganglion. We hypothesize that remodelling of these neurons and increased cholinergic collateral transmission contributes to sustained sympathetic hyperactivity in cardiovascular diseases, including HT. To test that hypothesis, we examined the activity of sympathetic neurons in isolated SG under control conditions and after 1 week of HT induced by peripheral angiotensin II infusion, using whole-cell patch clamp recordings. Despite the absence of central inputs, we observed elevated spontaneous activity and synaptic transmission in sympathetic SG neurons from hypertensive mice that required generation of action potentials. Genetically disrupting cholinergic transmission in noradrenergic neurons decreased basal neuronal activity and prevented angiotensin II-mediated enhancement of activity. Similar changes in activity, driven by increased collateral transmission, were identified in cardiac projecting neurons and neurons projecting to brown adipose tissue. These changes were not driven by altered A-type K+ currents. This suggests that HT stimulates increased activity throughout the intraganglionic network of collateral connections, contributing to the sustained sympathetic hyperactivity characteristic in cardiovascular disease. KEY POINTS: Sympathetic neurons in ganglia isolated from angiotensin II-treated hypertensive mice are more active than neurons from control mice despite the absence of central activation. The enhanced activity is the result of a ganglionic network of cholinergic collaterals, rather than altered intrinsic excitability. Increased neuronal activity was observed in both cardiac neurons and brown adipose tissue-projecting neurons, which are not involved in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Minghua Li
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Michelle Sorensen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Morgan A Johnson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Andresen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
11
|
Liu C, Yu H, Xia H, Wang Z, Li B, Xue H, Jin S, Xiao L, Wu Y, Guo Q. Butyrate attenuates sympathetic activation in rats with chronic heart failure by inhibiting microglial inflammation in the paraventricular nucleus. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 38863438 DOI: 10.3724/abbs.2024092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Sympathetic activation is a hallmark of heart failure and the underlying mechanism remains elusive. Butyrate is generated by gut microbiota and influences numerous physiological and pathological processes in the host. The present study aims to investigate whether the intestinal metabolite butyrate reduces sympathetic activation in rats with heart failure (HF) and the underlying mechanisms involved. Sprague-Dawley rats (220‒250 g) are anaesthetized with isoflurane, and the left anterior descending artery is ligated to model HF. Then, the rats are treated with or without butyrate sodium (NaB, a donor of butyrate, 10 g/L in water) for 8 weeks. Blood pressure and renal sympathetic nerve activity (RSNA) are recorded to assess sympathetic outflow. Cardiac function is improved (mean ejection fraction, 22.6%±4.8% vs 38.3%±5.3%; P<0.05), and sympathetic activation is decreased (RSNA, 36.3%±7.9% vs 23.9%±7.6%; P<0.05) in HF rats treated with NaB compared with untreated HF rats. The plasma and cerebrospinal fluid levels of norepinephrine are decreased in HF rats treated with NaB. The infusion of N-methyl-D-aspartic acid (NMDA) into the paraventricular nucleus (PVN) of the hypothalamus of HF model rats increases sympathetic nervous activity by upregulating the NMDA receptor. Microglia polarized to the M2 phenotype and inflammation are markedly attenuated in the PVN of HF model rats after NaB administration. In addition, HF model rats treated with NaB exhibit enhanced intestinal barrier function and increased levels of GPR109A, zona occludens-1 and occludin, but decreased levels of lipopolysaccharide-binding protein and zonulin. In conclusion, butyrate attenuates sympathetic activation and improves cardiac function in rats with HF. The improvements in intestinal barrier function, reductions in microglia-mediated inflammation and decreases in NMDA receptor 1 expression in the PVN are all due to the protective effects of NaB.
Collapse
Affiliation(s)
- Chang Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongyi Xia
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziwei Wang
- Department of Reproduction, the Second Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Bolin Li
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Shijiazhuang 050017, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Shijiazhuang 050017, China
| |
Collapse
|
12
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Zile MR, Lindenfeld J, Weaver FA, Zannad F, Galle E, Rogers T, Abraham WT. Baroreflex activation therapy in patients with heart failure and a reduced ejection fraction: Long-term outcomes. Eur J Heart Fail 2024; 26:1051-1061. [PMID: 38606555 DOI: 10.1002/ejhf.3232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
AIMS Carotid baroreflex activation therapy (BAT) restores baroreflex sensitivity and modulates the imbalance in cardiac autonomic function in patients with heart failure with reduced ejection fraction (HFrEF). We tested the hypothesis that treatment with BAT significantly reduces cardiovascular mortality and heart failure morbidity and provides long-term safety and sustainable symptomatic improvement. METHODS AND RESULTS BeAT-HF was a prospective, multicentre, randomized, two-arm, parallel-group, open-label, non-implanted control trial. New York Heart Association (NYHA) class III subjects, ejection fraction ≤35%, previous heart failure hospitalization or N-terminal pro-B-type natriuretic peptide (NT-proBNP) >400 pg/ml, no class I indication for cardiac resynchronization therapy and NT-proBNP <1600 pg/ml were randomized to BAT plus optimal medical management (BAT group) or optimal medical management alone (control). The primary endpoint was cardiovascular mortality and HF morbidity; additional pre-specified endpoints included durability of safety, quality of life (QOL), exercise capacity (6-min hall walk distance [6MHWD]), functional status (NYHA class), hierarchical composite win ratio, freedom from all-cause death, left ventricular assists device (LVAD) implantation, heart transplant. Overall, 323 patients had 332 primary events, median follow-up was 3.6 years/patient. Both primary endpoint (rate ratio 0.94, 95% confidence interval [CI] 0.57-1.57; p = 0.82) and components of the primary endpoints were not significantly different between BAT and control. The system- and procedure-related major adverse neurological and cardiovascular event-free rate remained 97% throughout the trial. Symptom improvement (QOL, 6MHWD, NYHA class, all nominal p < 0.001) in the BAT group was durable in time, sustainable in extent. Win ratio (1.26, 95% CI 1.02-1.58) and freedom from all-cause death, LVAD implantation, heart transplant (hazard ratio 0.66, 95% CI 0.43-1.01) favoured the BAT group but did not reach statistical significance. CONCLUSION The BeAT-HF primary endpoint was neutral; however, BAT provided safe, effective, and sustainable improvements in HFrEF patient's functional status, 6MHWD and QOL.
Collapse
Affiliation(s)
- Michael R Zile
- Medical University of South Carolina, Charleston, South Carolina and the Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
| | | | - Fred A Weaver
- Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Faiez Zannad
- Université de Lorraine, Inserm Centre d'Investigation, CHU de Nancy, Institute Lorrain du Coeur et des Vaisseaux, Nancy, France
| | | | | | - William T Abraham
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
15
|
Hamaoka T, Leuenberger UA, Drew RC, Murray M, Blaha C, Luck JC, Sinoway LI, Cui J. Glucose metabolism and autonomic function in healthy individuals and patients with type 2 diabetes mellitus at rest and during exercise. Exp Physiol 2024; 109:214-226. [PMID: 38050866 PMCID: PMC10841625 DOI: 10.1113/ep091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Autonomic dysfunction is a common complication of type 2 diabetes mellitus (T2DM). However, the character of dysfunction varies in different reports. Differences in measurement methodology and complications might have influenced the inconsistent results. We sought to evaluate comprehensively the relationship between abnormal glucose metabolism and autonomic function at rest and the response to exercise in healthy individuals and T2DM patients. We hypothesized that both sympathetic and parasympathetic indices would decrease with the progression of abnormal glucose metabolism in individuals with few complications related to high sympathetic tone. Twenty healthy individuals and 11 T2DM patients without clinically evident cardiovascular disease other than controlled hypertension were examined. Resting muscle sympathetic nerve activity (MSNA), heart rate variability, spontaneous cardiovagal baroreflex sensitivity (CBRS), sympathetic baroreflex sensitivity and the MSNA response to handgrip exercise were measured. Resting MSNA was lower in patients with T2DM than in healthy control subjects (P = 0.011). Resting MSNA was negatively correlated with haemoglobin A1c in all subjects (R = -0.45, P = 0.024). The parasympathetic components of heart rate variability and CBRS were negatively correlated with glycaemic/insulin indices in all subjects and even in the control group only (all, P < 0.05). In all subjects, the MSNA response to exercise was positively correlated with fasting blood glucose (R = 0.69, P < 0.001). Resting sympathetic activity and parasympathetic modulation of heart rate were decreased in relationship to abnormal glucose metabolism. Meanwhile, the sympathetic responses to handgrip were preserved in diabetics. The responses were correlated with glucose/insulin parameters throughout diabetic and control subjects. These results suggest the importance of a comprehensive assessment of autonomic function in T2DM.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Urs A. Leuenberger
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Rachel C. Drew
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Exercise and Health SciencesUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Matthew Murray
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Cheryl Blaha
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jonathan Carter Luck
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Lawrence I. Sinoway
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jian Cui
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
16
|
Yang Y, Xu J, Shu S, Wang P, Liang Y, Liu B, Yang B, Zhang H, Zhao Q, Zhao Z, Luo Q, Liu Z, Zeng Q, Xiong C. Circulating acetylcholine serves as a potential biomarker role in pulmonary hypertension. BMC Pulm Med 2024; 24:35. [PMID: 38229103 DOI: 10.1186/s12890-024-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND An increased acetylcholine (ACh) level in the right ventricle tissue of pulmonary hypertension (PH) was revealed, which indicated the important role of ACh in disease pathogenesis. However, the relationship between plasma ACh levels and disease conditions and patients' prognosis has not been investigated. We aimed to explore the association between plasma ACh levels and the prognosis of patients with PH. We also discussed the feasibility of plasma ACh as a biomarker, which may contribute to the management of PH patients in the future. METHODS Patients with confirmed PH in Fuwai Hospital from April 2019 to August 2020 were enrolled. The primary clinical outcome in this study was defined as a composite outcome, including death/lung transplantation, heart failure, and worsening of symptoms. Fasting plasma was collected to detect the ACh levels. The association between ACh levels and patients' prognosis was explored. RESULTS Finally, four hundred and eight patients with PH were enrolled and followed for a mean period of 2.5 years. Patients in the high ACh group had worse World Health Organization Functional Class (WHO-FC), lower 6-minute walk distance (6 MWD), and higher N-terminal pro-brain natriuretic peptide (NT-proBNP). Notably, echocardiographic and hemodynamic parameters in the high metabolite group also suggested a worse disease condition compared with the low ACh group. After adjusting for confounders, compared with low ACh patients, those with high metabolite levels still have worse prognoses characterized as elevated risk of mortality, heart failure, and symptoms worsening. CONCLUSION High circulating ACh levels were associated with severe PH conditions and poor prognosis, which might serve as a potential biomarker in PH.
Collapse
Affiliation(s)
- Yicheng Yang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jing Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Songren Shu
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Peizhi Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yanru Liang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Bingyang Liu
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Beilan Yang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Hanwen Zhang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Qing Zhao
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Zhihui Zhao
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Qin Luo
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Zhihong Liu
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China
| | - Qixian Zeng
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China.
| | - Changming Xiong
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng District, No. 167, Beijing, 100037, China.
| |
Collapse
|
17
|
Ruddy JM, Kroman A, Baicu CF, Zile MR. Baroreflex Activation Therapy in Patients with Heart Failure with a Reduced Ejection Fraction. Heart Fail Clin 2024; 20:39-50. [PMID: 37953020 DOI: 10.1016/j.hfc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A randomized, controlled trial of baroreflex activation therapy (BAT) in patients with heart failure and reduced ejection fraction demonstrated that BAT was safe and significantly improved patient-centered symptomatic outcomes, increasing exercise capacity, improving quality of life, decreasing n-terminal pro B-type natriuretic peptide (NT-proBNP), and improving functional class. BAT was approved by the FDA for improvement of symptoms of heart failure for patients who remain symptomatic despite treatment with guideline-directed management, are New York Heart Association Class III or Class II (with a recent history of Class III), have a left ventricular ejection fraction ≤ 35%, an NT-proBNP < 1600 pg/mL and excluding patients indicated for cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Jean M Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA; Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA.
| | - Anne Kroman
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Catalin F Baicu
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Michael R Zile
- Ralph H Johnson Department of Veterans Affairs Health Care System, 109 Bee Street, Charleston, SC 29401, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Georges G, Trudeau F, Potvin J, Burkhoff D, Généreux P. Organ blood flow assessment with the ModulHeart cardiorenal support device. Artif Organs 2024; 48:61-69. [PMID: 37787101 DOI: 10.1111/aor.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND ModulHeart (Puzzle Medical Devices Inc) is a novel percutaneous flow entrainment pump anchored in the descending aorta. The current study evaluates the hemodynamic effect of ModulHeart support and its impact on cerebral, myocardial, and renal blood flow. METHODS ModulHeart was implanted in the descending aorta of four healthy calves. A ramp protocol (2000 RPM increments) was performed with the pump operating at five different speeds from 14 000 to 22 000 RPM. For each speed, pressures proximal and distal to the pump, and right heart catheterization measurements were recorded. Stable-isotope labeled microspheres were injected in the left ventricle to evaluate organ perfusion. RESULTS Thermodilution cardiac output increased by 23% at 22 000 RPM. Greater pump speeds resulted in greater pump gradients, up to 10 mm Hg in mean arterial pressure at 22 000 RPM, without significant reduction of proximal perfusion pressures. Arterial pulse pressure remained stable at all speeds. ModulHeart was not associated with a reduction in cerebral or myocardial blood flow at any speed. Renal cortical and medullary blood flow increased by up to 50% and 40%, respectively. CONCLUSION The ModulHeart device implanted in the descending aorta of healthy calves resulted in significant arterial pressure gradients and preserved pulse pressure. Greater pump speeds translated into greater increases in renal blood flow, with no decrease in cerebral or myocardial perfusion.
Collapse
Affiliation(s)
- Gabriel Georges
- Department of cardiac surgery, Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | | | - Jeannot Potvin
- Department of cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Philippe Généreux
- Department of cardiology, Gagnon Cardiovascular Institute, Morristown Medical Center, Morristown, New Jersey, USA
| |
Collapse
|
19
|
Dasari TW, Chakraborty P, Mukli P, Akhtar K, Yabluchanskiy A, Cunningham MW, Csiszar A, Po SS. Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure. Clin Auton Res 2023; 33:767-775. [PMID: 37943335 DOI: 10.1007/s10286-023-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Acute decompensated heart failure (ADHF) is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown whether neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level tragus stimulation on inflammation and oxidative stress in ADHF. METHODS Nineteen patients with ejection fraction < 40% were randomized to neuromodulation 4 h twice daily (6-10 a.m. and 6-10 p.m.) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using a dihydrodichlorofluorescein probe test (expressed as fluorescein units). RESULTS Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum interleukin-6 levels (-78% vs. -9%; p = 0.012). Similarly, neuromodulation led to a reduction of endothelial cell oxidative stress in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant differences in heart rate, blood pressure, or renal function were noted between the two groups. CONCLUSION In this proof-of-concept pilot study, in acute decompensated heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of coronary endothelial cellular oxidative stress. CLINICAL TRIAL REGISTRATION NCT02898181.
Collapse
Affiliation(s)
- Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA.
| | - Praloy Chakraborty
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Peter Mukli
- Department of Neurosurgery, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Khawaja Akhtar
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | | | - Madeleine W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Anna Csiszar
- Department of Neurosurgery, University of Oklahoma HSC, Oklahoma City, OK, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| |
Collapse
|
20
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
21
|
Wester M, Arzt M, Sinha F, Maier LS, Lebek S. Insights into the Interaction of Heart Failure with Preserved Ejection Fraction and Sleep-Disordered Breathing. Biomedicines 2023; 11:3038. [PMID: 38002038 PMCID: PMC10669157 DOI: 10.3390/biomedicines11113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is emerging as a widespread disease with global socioeconomic impact. Patients with HFpEF show a dramatically increased morbidity and mortality, and, unfortunately, specific treatment options are limited. This is due to the various etiologies that promote HFpEF development. Indeed, cluster analyses with common HFpEF comorbidities revealed the existence of several HFpEF phenotypes. One especially frequent, yet underappreciated, comorbidity is sleep-disordered breathing (SDB), which is closely intertwined with the development and progression of the "obese HFpEF phenotype". The following review article aims to provide an overview of the common HFpEF etiologies and phenotypes, especially in the context of SDB. As general HFpEF therapies are often not successful, patient- and phenotype-individualized therapeutic strategies are warranted. Therefore, for the "obese HFpEF phenotype", a better understanding of the mechanistic parallels between both HFpEF and SDB is required, which may help to identify potential phenotype-individualized therapeutic strategies. Novel technologies like single-cell transcriptomics or CRISPR-Cas9 gene editing further broaden the groundwork for deeper insights into pathomechanisms and precision medicine.
Collapse
Affiliation(s)
- Michael Wester
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Frederick Sinha
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Lars Siegfried Maier
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.); (L.S.M.)
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Yamada Y, Kiyota N, Yoshida M, Omodaka K, Nakazawa T. The Relationship Between Kiritsu-Meijin-Derived Autonomic Function Parameters and Visual-Field Defects in Eyes with Open-Angle Glaucoma. Curr Eye Res 2023; 48:1006-1013. [PMID: 37405397 DOI: 10.1080/02713683.2023.2234105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE This retrospective cross-sectional study aimed to investigate the association between autonomic parameters measured using the Kiritsu-Meijin device and visual-field defects in patients with open-angle glaucoma. METHODS A total of 79 eyes of 42 patients with open-angle glaucoma were enrolled in this study. Kiritsu-Meijin testing comprised three phases: sitting, standing, and sitting again (2 min, 2 min, and 1 min, respectively). Continuous electrocardiograms were recorded for five minutes. Autonomic parameters were extracted from the resulting data and analyzed, including activity, balance, reaction, switchover, and recovery; these are five representative parameters derived from Kiritsu-Meijin testing. Correlations between these parameters and mean deviation from Humphrey visual field testing were determined. Additionally, we used a linear mixed-effects model to observe sectoral differences in the relationship between total deviation and the Kiritsu-Meijin parameters. In this study, we focused on superior, central, and inferior total deviations. RESULTS Significant positive correlations were observed between activity, balance, and recovery and mean deviation values (β = 0.29-0.38, p < .05). The β value between activity and inferior total deviation was higher than that between activity and superior total deviation (β = 0.22, p < .05). Balance did not show any sectoral differences (p > .05). Recovery was more strongly associated with central to inferior total deviation than superior total deviation (β = 0.17-0.25, p < .05). CONCLUSION Our findings suggest that in patients with open-angle glaucoma, lower activity and recovery are associated with more severe central and/or inferior visual field defects in the superior quadrant. These results imply that measurements of autonomic function made with the Kiritsu-Meijin device may have clinical utility in the management of glaucoma.
Collapse
Affiliation(s)
- Yurina Yamada
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Kiyota
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhide Yoshida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Chakraborty P, Po SS, Yabluchanskiy A, Dasari TW. Protein kinase A: A potential marker of sympathovagal imbalance in heart failure. Life Sci 2023; 331:122069. [PMID: 37666387 DOI: 10.1016/j.lfs.2023.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mitigation of cardiac autonomic dysregulation by neuromodulation technologies is emerging as a new therapeutic modality of heart failure (HF). This recent progress has necessitated the identification of a biomarker for the quantification of sympathovagal balance, the potential target of 'neuromodulation' strategies. The currently available autonomic nervous system assessment parameters do not truly reflect the sympathovagal balance of the ventricle. Protein kinase A (PKA) is an intracellular enzyme that plays a major role in the pathophysiology of functional and structural ventricular remodeling in HF. Interestingly, sympathetic and parasympathetic activations exert reciprocal influence on the activity of PKA. The current review attempts to evaluate the potential concept and feasibility of using in vitro assessment of PKA activity as a marker of sympathovagal balance in HF.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
24
|
Dasari T, Chakraborty P, Mukli P, Akhtar K, Yabluchanskiy A, Cunningham MW, Csiszar A, Po SS. Noninvasive low-level tragus stimulation attenuates inflammation and oxidative stress in acute heart failure. RESEARCH SQUARE 2023:rs.3.rs-3323086. [PMID: 37790298 PMCID: PMC10543293 DOI: 10.21203/rs.3.rs-3323086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Purpose Acute decompensated heart failure is associated with inflammation, oxidative stress, and excess sympathetic drive. It is unknown if neuromodulation would improve inflammation and oxidative stress in acute heart failure. We, therefore, performed this proof-of-concept study to evaluate the effects of neuromodulation using noninvasive low-level Tragus stimulation on inflammation and oxidative stress in ADHF. Methods 19 patients with ejection fraction < 40% were randomized to neuromodulation- 4 hours twice daily (6 AM-10 AM and 6 PM-10 PM) (n = 8) or sham stimulation (n = 11) during hospital admission. All patients received standard-of-care treatment. Blood samples were collected at admission and discharge. Serum cytokines were assayed using standard immunosorbent techniques. Reactive oxygen species inducibility from cultured coronary endothelial cells exposed to patient sera was determined using dihydrodichlorofluorescein probe test (expressed as fluorescein units). Results Compared to sham stimulation, neuromodulation was associated with a significant reduction of circulating serum Interleukin-6 levels (-78% vs -9%; p = 0.012). Similarly, neuromodulation led to reduction of endothelial cell oxidative stress, in the neuromodulation group (1363 units to 978 units, p = 0.003) compared to sham stimulation (1146 units to 1083 units, p = 0.094). No significant difference in heart rate, blood pressure or renal function were noted between the two groups. Conclusion In this proof-of-concept pilot study, in acute systolic heart failure, neuromodulation was feasible and safe and was associated with a reduction in systemic inflammation and attenuation of cellular oxidative stress. Clinical trial NCT02898181.
Collapse
Affiliation(s)
- Tarun Dasari
- University of Oklahoma: The University of Oklahoma
| | | | - Peter Mukli
- University of Oklahoma: The University of Oklahoma
| | | | | | | | - Anna Csiszar
- University of Oklahoma: The University of Oklahoma
| | - Sunny S Po
- University of Oklahoma: The University of Oklahoma
| |
Collapse
|
25
|
Xu Y, Fei X, Fu H, Chen A, Zhu X, Zhang F, Han Y. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf) 2023; 238:e13987. [PMID: 37183727 DOI: 10.1111/apha.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
AIM Enhanced cardiac sympathetic afferent reflex (CSAR) promotes sympathetic hyperactivation in chronic heart failure (CHF). Salusin-β is a torsin family 2 member A (TOR2A) gene product and a cardiovascular active peptide closely associated with cardiovascular diseases. We aimed to determine the roles of salusin-β in the paraventricular nucleus (PVN) in modulating enhanced CSAR and sympathetic hyperactivation in rats with CHF induced by coronary artery ligation and elucidate the underlying molecular mechanisms. METHODS CSAR was evaluated based on the responses of mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) to the epicardial administration of capsaicin in rats under anesthesia. RESULTS Salusin-β protein expression was upregulated in the PVN of the CHF compared with sham-operated rats. Salusin-β microinjection into the PVN dose-dependently increased MAP and RSNA and enhanced CSAR, while anti-salusin-β IgG exerted opposite effects. The effect of salusin-β was inhibited by reactive oxygen species (ROS) scavenger or NAD(P)H oxidase inhibitor but promoted by superoxide dismutase inhibitor. The effect of anti-salusin-β IgG was interdicted by nitric oxide (NO) synthase inhibitor. Furthermore, chronic salusin-β gene knockdown in PVN attenuated CSAR, reduced sympathetic output, improved myocardial remodeling and cardiac function, decreased NAD(P)H oxidase activity and ROS levels, and increased NO levels in the CHF rats. CONCLUSION Increased salusin-β activity in the PVN contributes to sympathetic hyperactivation and CSAR in CHF by inhibiting NO release and stimulating NAD(P)H oxidase-ROS production. Reducing endogenous central salusin-β expression might be a novel strategy for preventing and treating CHF in the future.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejie Fei
- Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Hangjiang Fu
- Department of General Practice, Jinling Hospital, Nanjing, Jiangsu, China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinrui Zhu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Thuptimdang W, Chalacheva P, Coates TD, Khoo MC. McDAPS: A multi-channel physiological signals display and analysis system for clinical researchers. SOFTWAREX 2023; 23:101482. [PMID: 38009083 PMCID: PMC10673622 DOI: 10.1016/j.softx.2023.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
We introduce McDAPS, an interactive software for assessing autonomic imbalance from non-invasive multi-channel physiological recordings. McDAPS provides a graphical user interface for data visualization, beat-to-beat processing and interactive analyses. The software extracts beat-to-beat RR interval systolic blood pressure, diastolic blood pressure, the pulse amplitude of photoplethysmogram and the pulse-to-pulse interval. The analysis modules include stationary and time-varying power spectral analyses, moving-correlation analysis and univariate analyses. Analyses can also be performed in batch mode if multiple datasets have to be processed in the same way. The program exports results in standard CSV format. McDAPS runs in MATLAB, and is supported on MS Windows and MAC OS systems. The MATLAB source code is available at https://github.com/thuptimd/McDAPS.git.
Collapse
Affiliation(s)
- Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Patjanaporn Chalacheva
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Thomas D. Coates
- Hematology Section, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, United States of America
| | - Michael C.K. Khoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| |
Collapse
|
27
|
Arya AV, Bisht H, Tripathi A, Agrawal M, Konat A, Patel J, Mozumder K, Shah D, Chaturvedi D, Sharma K. A Comparative Review of Vagal Nerve Stimulation Versus Baroreceptor Activation Therapy in Cardiac Diseases. Cureus 2023; 15:e40889. [PMID: 37492836 PMCID: PMC10364457 DOI: 10.7759/cureus.40889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Sympathetic imbalance coupled with impairment of baroreceptor control is a key factor responsible for hemodynamic abnormalities in congestive heart failure. Vagal nerve stimulation (VNS) and baroreceptor activation therapy (BAT) are two novel interventions for the same. In this paper, we review the role of sympathovagal alterations in cardiac diseases like heart failure, arrhythmia, hypertension (HTN), etc. Studies like neural cardiac therapy for heart failure (NECTAR-HF), autonomic regulation therapy to enhance myocardial function and reduce progression of heart failure (ANTHEM-HF), and baroreflex activation therapy for heart failure (BEAT-HF), which comprise the history, efficacy, limitations, and current protocols, were extensively analyzed in contrast to one another. Vagal nerve stimulation reverses the reflex inhibition of cardiac vagal efferent activity, which is caused as a result of sympathetic overdrive during the course for heart failure. It has shown encouraging results in certain pre-clinical studies; however, there is also a possibility of serious cardiovascular adverse events if given in higher than the recommended dosage. Attenuated baroreflex sensitivity is attributed to cardiac arrhythmogenesis during heart failure. Baroreceptor activation therapy reverses this phenomenon. However, the surgical procedure for baroreceptor stimulation can have unwarranted complications, including worsening heart failure and hypertension. Considering the effectiveness of the given modalities and taking into account the inconclusive evidence of their adverse events, more clinical trials are needed for establishing the future prospects of these interventional approaches.
Collapse
Affiliation(s)
- Akshat V Arya
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Himanshi Bisht
- Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | | | - Manali Agrawal
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Ashwati Konat
- Zoology, Biomedical Technology and Human Genetics, Gujarat University, Ahmedabad, IND
| | - Jay Patel
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Kamalika Mozumder
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Dhrumil Shah
- Internal Medicine, Gujarat Medical Education and Research Society Medical College, Gandhinagar, IND
| | | | - Kamal Sharma
- Cardiology, Kamal Sharma Cardiology Clinic, Ahmedabad, IND
| |
Collapse
|
28
|
Esteban-Fernández A, Villar-Taibo R, Alejo M, Arroyo D, Bonilla Palomas JL, Cachero M, Joaquin C, Méndez Bailón M, Pérez-Rivera JÁ, Romero-Vigara JC, Somoza G. Diagnosis and Management of Malnutrition in Patients with Heart Failure. J Clin Med 2023; 12:3320. [PMID: 37176761 PMCID: PMC10179706 DOI: 10.3390/jcm12093320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Heart failure is a disease with an increasingly greater prevalence due to the aging population, the development of new drugs, and the organization of healthcare processes. Malnutrition has been identified as a poor prognostic factor in these patients, very often linked to frailty or to other comorbidities, meaning that early diagnosis and treatment are essential. This paper reviews some important aspects of the pathophysiology, detection, and management of malnutrition in patients with heart failure.
Collapse
Affiliation(s)
- Alberto Esteban-Fernández
- Cardiology Department, Severo Ochoa University Hospital, Calle Orellana s/n, 28911 Madrid, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
| | - Rocío Villar-Taibo
- Endocrinology Department, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Mirian Alejo
- Endocrinology Department, Hospital El Bierzo, 24404 Ponferrada, Spain;
| | - David Arroyo
- Nephrology Department, Gregorio Marañón General University Hospital, 28007 Madrid, Spain;
| | | | - Montserrat Cachero
- Endocrinology Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain; (M.C.); (C.J.)
| | - Clara Joaquin
- Endocrinology Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain; (M.C.); (C.J.)
| | - Manuel Méndez Bailón
- Internal Medicine Department, San Carlos Clinical University Hospital, 28034 Madrid, Spain;
| | - José Ángel Pérez-Rivera
- Cardiology Department, Burgos University Hospital, 09006 Burgos, Spain;
- Faculty of Health Sciences, Isabel I University, 09003 Burgos, Spain
| | | | - Gema Somoza
- Geriatric Department, Gregorio Marañón University Hospital, 28007 Madrid, Spain;
| |
Collapse
|
29
|
Zheng H, Patel TA, Liu X, Patel KP. C-type natriuretic peptide (CNP) in the paraventricular nucleus-mediated renal sympatho-inhibition. Front Physiol 2023; 14:1162699. [PMID: 37082246 PMCID: PMC10110992 DOI: 10.3389/fphys.2023.1162699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Volume reflex produces sympatho-inhibition that is mediated by the hypothalamic paraventricular nucleus (PVN). However, the mechanisms for the sympatho-inhibitory role of the PVN and the neurochemical factors involved remain to be identified. In this study, we proposed C-type natriuretic peptide (CNP) as a potential mediator of this sympatho-inhibition within the PVN. Microinjection of CNP (1.0 μg) into the PVN significantly decreased renal sympathetic nerve activity (RSNA) (-25.8% ± 1.8% vs. -3.6% ± 1.5%), mean arterial pressure (-15.0 ± 1.9 vs. -0.1 ± 0.9 mmHg) and heart rate (-23.6 ± 3.5 vs. -0.3 ± 0.9 beats/min) compared with microinjection of vehicle. Picoinjection of CNP significantly decreased the basal discharge of extracellular single-unit recordings in 5/6 (83%) rostral ventrolateral medulla (RVLM)-projecting PVN neurons and in 6/13 (46%) of the neurons that were not antidromically activated from the RVLM. We also observed that natriuretic peptide receptor type C (NPR-C) was present on the RVLM projecting PVN neurons detected by dual-labeling with retrograde tracer. Prior NPR-C siRNA microinjection into the PVN significantly blunted the decrease in RSNA to CNP microinjections into the PVN. Volume expansion-mediated reduction in RSNA was significantly blunted by prior administration of NPR-C siRNA into the PVN. These results suggest a potential role for CNP within the PVN in regulating RSNA, specifically under physiological conditions of alterations in fluid balance.
Collapse
Affiliation(s)
- Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Xuefei Liu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
30
|
Nagai M, Dote K, Kato M, Sasaki S, Oda N, Förster CY. Afterload reduction after non-invasive vagus nerve stimulation in acute heart failure. Front Hum Neurosci 2023; 17:1149449. [PMID: 37033910 PMCID: PMC10076847 DOI: 10.3389/fnhum.2023.1149449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction While central blood pressure (BP) has been recognized as a major indicator of left ventricular (LV) afterload, the reduction of central pressure decreases LV afterload and may prevent heart failure (HF) decompensation. Non-invasive transcutaneous vagus nerve stimulation (tVNS) was shown to improve cardiac function in HF patients. In this study, the relationship between active tVNS and reduction of central BP was investigated in patients with acute HF (AHF). Methods The 22 patients hospitalized for AHF after initial stabilization (median 80 yrs, males 60%) were randomly assigned to active or sham group. For 1 h daily over 5 days, low-level transcutaneous electrical stimulation (LLTS) (20 Hz, 1 mA) was performed after attaching an ear clip to the tragus (active group) or the earlobe (sham control group). Before and after stimulation, central aortic systolic pressure (CASP), brachial systolic BP (SBP), diastolic BP (DBP) as well as heart rate (HR) were noninvasively measured. Results No significant differences in baseline characteristics were observed between the active and sham groups. In the active group, CASP, SBP, DBP, and HR each decreased significantly after stimulation (all p < 0.05), whereas in the sham group, CASP, SBP, DBP, and HR each increased significantly after stimulation (all p < 0.05). All the changes in CASP, SBP, DBP and HR before and after stimulation were also significantly different between active and sham groups (all p < 0.01). There were no device-related side effects. Conclusion In this study, the left tragus tVNS resulted in an acute afterload reduction in the elderly AHF patients. Non-invasive LLTS may be useful and safe for reducing afterload in AHF. Clinical trial registration ClinicalTrials.gov, identifier UMIN000044121.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Masaya Kato
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Shota Sasaki
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Noboru Oda
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Carola Y Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Fernandes J, Costa R, Guerreiro R, Bonifácio D, Rodrigues A, Henriques C, Branco P, Araújo I, Fonseca C. Co-Administration of Albumin and Furosemide in Acute Heart Failure with Diuretics Resistance. ACTA MEDICA PORT 2023; 36:193-201. [PMID: 36762993 DOI: 10.20344/amp.17714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/11/2022] [Indexed: 02/11/2023]
Abstract
Acute heart failure is a frequent cause of hospital admission in Portugal, and has an increasing tendency given the aging population. Although most admissions for acute heart failure are caused by congestive conditions, not all patients have a congestive phenotype, reflecting the complexity of a process with multiple pathophysiological pathways. The use of diuretics, usually loop diuretics, is the mainstay of treatment for congestion. However, many patients develop resistance, thus constituting a challenge with no consensual solution to date, despite extensive debate over the years. Despite its frequent use in clinical practice, the co-administration of albumin and furosemide remains controversial in the management of patients with acute heart failure, hypoalbuminemia, and diuretic resistance. This review addresses the pathophysiological mechanisms of congestion in patients with acute heart failure and explores the theoretical basis that supports the co-administration of albumin and furosemide in this clinical context. It is intended to clarify the potential benefit of the combined approach in this specific population and identify possible gaps in the literature that could be the subject of future studies.
Collapse
Affiliation(s)
- Jorge Fernandes
- Unidade Funcional de Medicina Interna 7.2. Hospital Curry Cabral. Centro Hospitalar Universitário de Lisboa Central. Lisboa. Portugal
| | - Rita Costa
- Serviço de Medicina Interna. Centro Hospitalar de Vila Nova de Gaia/Espinho. Vila Nova de Gaia..
| | - Renato Guerreiro
- Serviço de Medicina Interna. Hospital de São Francisco Xavier. Centro Hospitalar de Lisboa Ocidental. Lisboa. Portugal
| | - Dulce Bonifácio
- Serviço de Medicina Interna. Hospital Distrital de Torres Vedras. Centro Hospitalar do Oeste. Torres Vedras. Portugal
| | - Ana Rodrigues
- Serviço de Medicina Interna. Unidade Local de Saúde do Norte Alentejano. Hospital Santa Luzia de Elvas. Elvas. Portugal
| | - Célia Henriques
- Clínica de Insuficiência Cardíaca. Serviço de Medicina III. Hospital de São Francisco Xavier. Centro Hospitalar de Lisboa Ocidental. Lisboa; NOVA Medical School. Faculdade de Ciências Médicas. Universidade Nova de Lisboa. Lisboa. Portugal
| | - Patrícia Branco
- NOVA Medical School. Faculdade de Ciências Médicas. Universidade Nova de Lisboa. Lisboa; Serviço de Nefrologia. Hospital de Santa Cruz. Centro Hospitalar de Lisboa Ocidental. Lisboa. Portugalm
| | - Inês Araújo
- Clínica de Insuficiência Cardíaca. Serviço de Medicina III. Hospital de São Francisco Xavier. Centro Hospitalar de Lisboa Ocidental. Lisboa; NOVA Medical School. Faculdade de Ciências Médicas. Universidade Nova de Lisboa. Lisboa. Portugal
| | - Cândida Fonseca
- Clínica de Insuficiência Cardíaca. Serviço de Medicina III. Hospital de São Francisco Xavier. Centro Hospitalar de Lisboa Ocidental. Lisboa; NOVA Medical School. Faculdade de Ciências Médicas. Universidade Nova de Lisboa. Lisboa. Portugal
| |
Collapse
|
32
|
Guckel D, Eitz T, El Hamriti M, Braun M, Khalaph M, Imnadze G, Fink T, Sciacca V, Sohns C, Sommer P, Nölker G. Baroreflex activation therapy in advanced heart failure therapy: insights from a real-world scenario. ESC Heart Fail 2023; 10:284-294. [PMID: 36208130 PMCID: PMC9871720 DOI: 10.1002/ehf2.14190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Baroreflex activation therapy (BAT) is an innovative treatment option for advanced heart failure (HFrEF). We analysed patients' BAT acceptance and the outcome of BAT patients compared with HFrEF patients solely treated with a guideline-directed medical therapy (GDMT) and studied effects of sacubitril/valsartan (ARNI). METHODS In this prospective study, 40 HFrEF patients (71 ± 3 years, 20% female) answered a questionnaire on the acceptance of BAT. Follow-up visits were performed after 3, 6, and 12 months. Primary efficacy endpoints included an improvement in QoL, NYHA class, LVEF, HF hospitalization, NT-proBNP levels, and 6MHWD. RESULTS Twenty-nine patients (73%) showed interest in BAT. Ten patients (25%) opted for implantation. BAT and BAT + ARNI patients developed an increase in LVEF (BAT +10%, P-value (P) = 0.005*; BAT + ARNI +9%, P = 0.049*), an improved NYHA class (BAT -88%, P = 0.014*, BAT + ARNI -90%, P = 0.037*), QoL (BAT +21%, P = 0.020*, BAT + ARNI +22%, P = 0.012*), and reduced NT-proBNP levels (BAT -24%, P = 0.297, BAT + ARNI -37%, P = 0.297). BAT HF hospitalization rates were lower (50%) compared with control group patients (83%) (P = 0.020*). CONCLUSIONS Although BAT has generated considerable interest, acceptance appears to be ambivalent. BAT improves outcome with regard to LVEF, NYHA class, QoL, NT-proBNP levels, and HF hospitalization rates. BAT + ARNI resulted in more pronounced effects than ARNI alone.
Collapse
Affiliation(s)
- Denise Guckel
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Thomas Eitz
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mustapha El Hamriti
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Martin Braun
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Moneeb Khalaph
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Guram Imnadze
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Thomas Fink
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Vanessa Sciacca
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Christian Sohns
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Georg Nölker
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
- Clinic for Internal Medicine II/Cardiology, Christliches Klinikum Unna Mitte, Unna, Germany
| |
Collapse
|
33
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
34
|
Li N, Zhang T, Hurr C. Effect of high-intensity intermittent aerobic exercise on blood pressure, heart rate variability, and respiratory function in people with methamphetamine use disorder. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Novel Genes Involved in Hypertrophic Cardiomyopathy: Data of Transcriptome and Methylome Profiling. Int J Mol Sci 2022; 23:ijms232315280. [PMID: 36499607 PMCID: PMC9739701 DOI: 10.3390/ijms232315280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease; its pathogenesis is still being intensively studied to explain the reasons for the significant genetic and phenotypic heterogeneity of the disease. To search for new genes involved in HCM development, we analyzed gene expression profiles coupled with DNA methylation profiles in the hypertrophied myocardia of HCM patients. The transcriptome analysis identified significant differences in the levels of 193 genes, most of which were underexpressed in HCM. The methylome analysis revealed 1755 nominally significant differentially methylated positions (DMPs), mostly hypomethylated in HCM. Based on gene ontology enrichment analysis, the majority of biological processes, overrepresented by both differentially expressed genes (DEGs) and DMP-containing genes, are involved in the regulation of locomotion and muscle structure development. The intersection of 193 DEGs and 978 DMP-containing genes pinpointed eight common genes, the expressions of which correlated with the methylation levels of the neighboring DMPs. Half of these genes (AUTS2, BRSK2, PRRT1, and SLC17A7), regulated by the mechanism of DNA methylation, were underexpressed in HCM and were involved in neurogenesis and synapse functioning. Our data, suggesting the involvement of innervation-associated genes in HCM, provide additional insights into disease pathogenesis and expand the field of further research.
Collapse
|
36
|
Yamashina A, Nishikori M, Fujimito H, Oba K. Identification of predictive factors interacting with heart rate reduction for potential beneficial clinical outcomes in chronic heart failure: A systematic literature review and meta-analysis. IJC HEART & VASCULATURE 2022; 43:101141. [PMID: 36338318 PMCID: PMC9634015 DOI: 10.1016/j.ijcha.2022.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Background There is an absence of clinical evidence on what factors modify the effect of heart rate (HR)-reducing treatment on mortality and morbidity in symptomatic heart failure patients with reduced ejection fraction (HFrEF). We performed a Bayesian meta-analysis and meta-regression to identify predictive factors that interact with HR-reducing therapy. Methods A systematic review was performed to identify randomized placebo-controlled trials that enrolled symptomatic HFrEF patients. The primary objective was to evaluate how different predictive factors modify the efficacy of HR-reducing therapy on clinical outcomes. Secondary objectives included the evaluation of subgroups stratified by a HR reduction threshold of 10 bpm. Results Data from 20 studies were synthesized and HR-reducing therapy was responsible for 16.7 %, 16.4 %, and 21.1 % risk reductions in all-cause mortality, cardiovascular (CV)-related mortality, and rehospitalization due to worsening HF (WHF), respectively. Empirical Bayes meta-regression showed that type 2 diabetes mellitus (T2DM) significantly modified the efficacy of HR-reducing therapy on all-cause mortality (slope = 0.012 in log risk ratio (RR) per 1 %-unit [95 % credible interval (CrI) 0.004, 0.021]) and CV-related mortality (0.01 in log RR per 1 %-unit [95 % CrI 0.0003, 0.0200]). There were insufficient studies to perform a meta-regression when stratifying by a HR reduction threshold of 10 bpm; however, when including all studies, we observed a significant effect modification for rehospitalization due to WHF (p = 0.004). Conclusions This meta-analysis focused on the central tenet of HR-reducing therapy and revealed that T2DM is a predictor of HR-reducing treatment effect on all-cause mortality and CV-related mortality in HFrEF patients.
Collapse
Key Words
- AF, atrial fibrillation
- Bayesian analysis
- CV, cardiovascular
- Chronic heart failure
- CrI, credible interval
- HF, heart failure
- HFrEF, HF with reduced ejection fraction
- HR, heart rate
- Heart failure with reduced ejection fraction
- Heart rate
- LVEF, left ventricular ejection fraction
- MI, myocardial infarction
- Meta-analysis
- NYHA, New York Heart Association
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- Predictive factors
- RR, risk ratio
- T2DM, type 2 diabetes mellitus
- WHF, worsening heart failure
Collapse
Affiliation(s)
- Akira Yamashina
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
- Department of Health Sciences, Kiryu University, Gunma, Japan
| | | | - Hiroaki Fujimito
- Medical Affairs Division, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Koji Oba
- Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Li YL. Stellate Ganglia and Cardiac Sympathetic Overactivation in Heart Failure. Int J Mol Sci 2022; 23:ijms232113311. [PMID: 36362099 PMCID: PMC9653702 DOI: 10.3390/ijms232113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is a major public health problem worldwide, especially coronary heart disease (myocardial infarction)-induced HF with reduced ejection fraction (HFrEF), which accounts for over 50% of all HF cases. An estimated 6 million American adults have HF. As a major feature of HF, cardiac sympathetic overactivation triggers arrhythmias and sudden cardiac death, which accounts for nearly 50–60% of mortality in HF patients. Regulation of cardiac sympathetic activation is highly integrated by the regulatory circuitry at multiple levels, including afferent, central, and efferent components of the sympathetic nervous system. Much evidence, from other investigators and us, has confirmed the afferent and central neural mechanisms causing sympathoexcitation in HF. The stellate ganglion is a peripheral sympathetic ganglion formed by the fusion of the 7th cervical and 1st thoracic sympathetic ganglion. As the efferent component of the sympathetic nervous system, cardiac postganglionic sympathetic neurons located in stellate ganglia provide local neural coordination independent of higher brain centers. Structural and functional impairments of cardiac postganglionic sympathetic neurons can be involved in cardiac sympathetic overactivation in HF because normally, many effects of the cardiac sympathetic nervous system on cardiac function are mediated via neurotransmitters (e.g., norepinephrine) released from cardiac postganglionic sympathetic neurons innervating the heart. This review provides an overview of cardiac sympathetic remodeling in stellate ganglia and potential mechanisms and the role of cardiac sympathetic remodeling in cardiac sympathetic overactivation and arrhythmias in HF. Targeting cardiac sympathetic remodeling in stellate ganglia could be a therapeutic strategy against malignant cardiac arrhythmias in HF.
Collapse
Affiliation(s)
- Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; ; Tel.: +1-402-559-3016; Fax: +1-402-559-9659
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
38
|
Bai Y, Yun M, Nie B, Shan L, Liu W, Hacker M, Nie S, Zhou Y, Li S, Shan B, Zhang X, Li X. Neurometabolism and Ventricular Dyssynchrony in Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol 2022; 80:1884-1896. [PMID: 36357089 DOI: 10.1016/j.jacc.2022.08.801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The brain coordinates the heart through the autonomic nervous system (ANS). Numerous mediator signals along the brain-heart axis interact with the neuronal-metabolic system in heart failure (HF). Disturbances in cardio-neural interactions influence the disease progression in patients with HF. OBJECTIVES The purpose of this study was to investigate the interactome between ANS-associated neurometabolism and ventricular dyssynchrony in patients with heart failure with reduced ejection fraction (HFrEF). Further, we studied the association of neurometabolism with major arrhythmic events (MAEs). METHODS A total of 197 patients with HFrEF who underwent gated single-photon emission computed tomography myocardial perfusion imaging and the brain 18F-fluorodeoxyglucose positron emission tomography/computed tomography were prospectively enrolled. Relationships between the brain metabolism and MAEs were assessed using Cox models and mediation analyses. Finally, metabolic central autonomic networks were constructed and statistically compared between patients with and without MAEs. RESULTS In total, 35 (17.8%) patients experienced MAEs during a median follow-up of 3.1 years. In patients with HFrEF (age 58 years [IQR: 50-64 years], left ventricular ejection fraction: 20.0% [IQR: 15.0%-25.0%]), glucose hypometabolism in the insula, hippocampus, amygdala, cingulate gyrus, and caudate nucleus were independent predictors for MAEs (all P < 0.05). Cerebral hypometabolism was related to ventricular dyssynchrony, which was the predominant risk factor of MAEs. Additionally, patients who experienced MAEs presented hypoconnectivity in the metabolic central autonomic network compared with those without MAEs (P < 0.05). CONCLUSIONS We found an interaction of the neuronal metabolic-ventricular dyssynchronization axis in HF, which might be related to MAEs. This new brain-heart axis could expand our understanding of the distinct pathomechanisms of HFrEF.
Collapse
|
39
|
Heart rate variability and the risk of heart failure and its subtypes in post-menopausal women: The Women's Health Initiative study. PLoS One 2022; 17:e0276585. [PMID: 36282885 PMCID: PMC9595519 DOI: 10.1371/journal.pone.0276585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Low heart rate variability (HRV), a measure of autonomic imbalance, is associated with increased risk of coronary heart disease (CHD) and heart failure (HF). However, its relationship with HF subtypes; heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) has not been studied prior. Methods and findings We conducted a longitudinal study in Women’s Health Initiative study cohort to investigate the association of baseline quartiles of resting heart rate (rHR) and HRV measures; SDNN (SD of normal-to-normal RR interval) and RMSSD (root mean square of successive difference of RR interval) measured by twelve-lead electrocardiogram (ECG) on enrollment, with the risk of hospitalized HF and its subtypes. Total of 28,603 post-menopausal women, predominantly non-Hispanic whites (69%), with a mean (SD) age of 62.6 (7.1) years, free of baseline CHD and HF were included. In a fully adjusted cox-proportional hazards regression model which adjusted for age, race, BMI, alcohol intake, education, physical activity, hyperlipidemia, hypertension, left ventricular hypertrophy, use of beta-blocker, calcium-channel blocker, hormone therapy, and time-varying incident CHD, the hazard ratios of lowest quartile of HRV (Q1) with HF risk were significant (Q1 SDNN compared to Q4 SDNN: 1.22, 95% CI 1.07, 1.39; Q1 RMSSD compared to Q4 RMSSD: 1.17, 95% CI 1.02, 1.33). On subgroup analysis of HF subtypes, low HRV was associated with elevated HFpEF risk (Q1 vs Q4 SDNN: 1.22, 95% CI 1.02, 1.47) but not with HFrEF (Q1 vs Q4 SDNN: 1.19, 95% CI 0.95, 1.50; Q1 RMSSD: 1.13, 95% CI 0.90, 1.43). Conclusion Low HRV is associated with elevated overall hospitalized HF risk and HFpEF risk in post-menopausal women. Whether interventions to increase HRV through healthy lifestyle changes will decrease HF risk warrants further investigation.
Collapse
|
40
|
Amisaki R, Kato M, Fujiyama M, Matsuda E, Hattori Y, Hirai M, Yanagihara K, Kinugasa Y, Yamamoto K. Difficulty initiating sleep in patients with heart failure: Impact of left atrial pressure. J Cardiol 2022; 80:365-372. [PMID: 35725947 DOI: 10.1016/j.jjcc.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients with heart failure (HF) often complain of sleep discomfort. Previous reports described that difficulty initiating sleep increased the cardiovascular risk in the general population. However, the association between difficulty initiating sleep and cardiac function in patients with HF remains unclear. This study aimed to investigate the associations between difficulty initiating sleep and clinical characteristics and cardiac function in patients with HF. METHODS Eighty-seven patients with HF who underwent overnight polysomnography for suspected sleep-disordered breathing were included. Patients were divided into two groups of the longer sleep latency (SL) group (SL ≥14 min, n = 44) and the shorter SL group (SL <14 min, n = 43). The median value of SL was defined as the time from lights-off to falling asleep. We compared the patients' characteristics, laboratory data, and polysomnographic and echocardiographic indices between the two groups. RESULTS The patients' median age was 67 years, and 85.1 % were men. There was lower beta blocker use [25 (56.8 %) vs. 34 (79.1 %), p = 0.046] and a higher peak mitral early filling velocity to mitral annular velocity ratio (E/e') [16.5 (14.2-21.7) vs. 13.7 (10.9-16.2), p = 0.005] in the longer SL group than in the shorter SL group. In multivariate logistic analysis, E/e' (odds ratio: 1.10, 95 % confidence interval: 1.01 to 1.19; p = 0.032) and systolic blood pressure before sleeping (odds ratio: 1.05, 95 % confidence interval: 1.00 to 1.10; p = 0.033) were significantly associated with a longer SL in patients with HF. CONCLUSIONS Increased left atrial pressure suggested by increased E/e' and increased systolic blood pressure before sleeping is independently associated with difficulty initiating sleep in patients with HF. Management of these hemodynamic imbalances is required to improve difficulty initiating sleep in patients with HF.
Collapse
Affiliation(s)
- Ryosuke Amisaki
- Department of Multidisciplinary Internal Medicine, Division of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiko Kato
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Misato Fujiyama
- Division of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eriko Matsuda
- Division of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yuiko Hattori
- Division of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masayuki Hirai
- Department of Multidisciplinary Internal Medicine, Division of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyotaka Yanagihara
- Department of Multidisciplinary Internal Medicine, Division of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiharu Kinugasa
- Department of Multidisciplinary Internal Medicine, Division of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuhiro Yamamoto
- Department of Multidisciplinary Internal Medicine, Division of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
41
|
Spiesshoefer J, Giannoni A, Borrelli C, Sciarrone P, Husstedt I, Emdin M, Passino C, Kahles F, Dawood T, Regmi B, Naughton M, Dreher M, Boentert M, Macefield VG. Effects of hyperventilation length on muscle sympathetic nerve activity in healthy humans simulating periodic breathing. Front Physiol 2022; 13:934372. [PMID: 36134331 PMCID: PMC9483206 DOI: 10.3389/fphys.2022.934372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Periodic breathing (PB) is a cyclical breathing pattern composed of alternating periods of hyperventilation (hyperpnea, HP) and central apnea (CA). Differences in PB phenotypes mainly reside in HP length. Given that respiration modulates muscle sympathetic nerve activity (MSNA), which decreases during HP and increases during CA, the net effects of PB on MSNA may critically depend on HP length.Objectives: We hypothesized that PB with shorter periods of HP is associated with increased MSNA and decreased heart rate variability.Methods: 10 healthy participants underwent microelectrode recordings of MSNA from the common peroneal nerve along with non-invasive recording of HRV, blood pressure and respiration. Following a 10-min period of tidal breathing, participants were asked to simulate PB for 3 min following a computed respiratory waveform that emulated two PB patterns, comprising a constant CA of 20 s duration and HP of two different lengths: short (20 s) vs long (40 s). Results: Compared to (3 min of) normal breathing, simulated PB with short HP resulted in a marked increase in mean and maximum MSNA amplitude (from 3.2 ± 0.8 to 3.4 ± 0.8 µV, p = 0.04; from 3.8 ± 0.9 to 4.3 ± 1.1 µV, p = 0.04, respectively). This was paralleled by an increase in LF/HF ratio of heart rate variability (from 0.9 ± 0.5 to 2.0 ± 1.3; p = 0.04). In contrast, MSNA response to simulated PB with long HP did not change as compared to normal breathing. Single CA events consistently resulted in markedly increased MSNA (all p < 0.01) when compared to the preceding HPs, while periods of HP, regardless of duration, decreased MSNA (p < 0.05) when compared to normal breathing.Conclusion: Overall, the net effects of PB in healthy subjects over time on MSNA are dependent on the relative duration of HP: increased sympathetic outflow is seen during PB with a short but not with a long period of HP.
Collapse
Affiliation(s)
- Jens Spiesshoefer
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- *Correspondence: Jens Spiesshoefer,
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Imke Husstedt
- Department of Neurology with Institute for Translational Neurology, University of Muenster, Muenster, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Florian Kahles
- Department of Cardiology and Vascular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Tye Dawood
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Binaya Regmi
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Matthew Naughton
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Matthias Boentert
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Medicine, UKM Marienhospital Steinfurt, Steinfurt, Germany
| | - Vaughan G. Macefield
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Coats AJ, Abraham WT, Zile MR, Lindenfeld JA, Weaver FA, Fudim M, Bauersachs J, Duval S, Galle E, Zannad F. Baroreflex activation therapy with the Barostim™ device in patients with heart failure with reduced ejection fraction: a patient level meta-analysis of randomized controlled trials. Eur J Heart Fail 2022; 24:1665-1673. [PMID: 35713888 PMCID: PMC9796660 DOI: 10.1002/ejhf.2573] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) remains associated with high morbidity and mortality, poor quality of life (QoL) and significant exercise limitation. Sympatho-vagal imbalance has been shown to predict adverse prognosis and symptoms in HFrEF, yet it has not been specifically targeted by any guideline-recommended device therapy to date. Barostim™, which directly addresses this imbalance, is the first Food and Drug Administration approved neuromodulation technology for HFrEF. We aimed to analyse all randomized trial evidence to evaluate the effect of baroreflex activation therapy (BAT) on heart failure symptoms, QoL and N-terminal pro-brain natriuretic peptide (NT-proBNP) in HFrEF. METHODS AND RESULTS An individual patient data (IPD) meta-analysis was performed on all eligible trials that randomized HFrEF patients to BAT + guideline-directed medical therapy (GDMT) or GDMT alone (open label). Endpoints included 6-month changes in 6-min hall walk (6MHW) distance, Minnesota Living With Heart Failure (MLWHF) QoL score, NT-proBNP, and New York Heart Association (NYHA) class in all patients and three subgroups. A total of 554 randomized patients were included. In all patients, BAT provided significant improvement in 6MHW distance of 49 m (95% confidence interval [CI] 33, 64), MLWHF QoL of -13 points (95% CI -17, -10), and 3.4 higher odds of improving at least one NYHA class (95% CI 2.3, 4.9) when comparing from baseline to 6 months. These improvements were similar, or better, in patients who had baseline NT-proBNP <1600 pg/ml, regardless of the cardiac resynchronization therapy indication status. CONCLUSION An IPD meta-analysis suggests that BAT improves exercise capacity, NYHA class, and QoL in HFrEF patients receiving GDMT. These clinically meaningful improvements were consistent across the range of patients studies. BAT was also associated with an improvement in NT-proBNP in subjects with a lower baseline NT-proBNP.
Collapse
Affiliation(s)
| | - William T. Abraham
- Division of Cardiovascular MedicineThe Ohio State UniversityColumbusOHUSA
| | - Michael R. Zile
- The Medical University of South Carolina and the RHJ Department of Veterans Affairs Medical CenterCharlestonSCUSA
| | | | - Fred A. Weaver
- Division of Vascular Surgery and Endovascular Therapy, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Marat Fudim
- Duke University Medical CenterDurhamNCUSA,Duke Clinical Research InstituteDurhamNCUSA
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Sue Duval
- Cardiovascular DivisionUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | | | - Faiez Zannad
- Université de Lorraine, Inserm Centre d'Investigation, CHUUniversité de LorraineNancyFrance
| |
Collapse
|
43
|
Vieira S, Aguilar BA, Veiga AC, Philbois SV, Freitas ACS, Rodrigues KP, Tank J, Souza HCD. Integrative physiological study of adaptations induced by aerobic physical training in hypertensive hearts. Front Physiol 2022; 13:920196. [PMID: 36060681 PMCID: PMC9437217 DOI: 10.3389/fphys.2022.920196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Aerobic physical training reduces arterial pressure in patients with hypertension owing to integrative systemic adaptations. One of the key factors is the decrease in cardiac sympathetic influence. Thus, we hypothesized that among other causes, cardiac sympathetic influence reduction might be associated with intrinsic cardiac adaptations that provide greater efficiency. Therefore, 14 spontaneously hypertensive rats (SHR group) and 14 normotensive Wistar Kyoto rats (WKY group) were used in this study. Half of the rats in each group were trained to swim for 12 weeks. All animals underwent the following experimental protocols: double blockade of cardiac autonomic receptors with atropine and propranolol; echocardiography; and analysis of coronary bed reactivity and left ventricle contractility using the Langendorff technique. The untrained SHR group had a higher sympathetic tone, cardiac hypertrophy, and reduced ejection fraction compared with the untrained WKY group. In addition, reduced coronary bed reactivity due to increased flow, and less ventricular contractile response to dobutamine and salbutamol administration were observed. The trained SHR group showed fewer differences in echocardiographic parameters as the untrained SHR group. However, the trained SHR group showed a reduction in the cardiac sympathetic influence, greater coronary bed reactivity, and increased left intraventricular pressure. In conclusion, aerobic physical training seems to reduce cardiac sympathetic influence and increase contractile strength in SHR rats, besides the minimal effects on cardiac morphology. This reduction suggests intrinsic cardiac adaptations resulting in beneficial adjustments of coronary bed reactivity associated with greater left ventricular contraction.
Collapse
Affiliation(s)
- Suenimeire Vieira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Bruno A. Aguilar
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Catarine Veiga
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Stella V. Philbois
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Caroline S. Freitas
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karine P. Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hugo C. D. Souza
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Hugo C. D. Souza,
| |
Collapse
|
44
|
Abstract
Autonomic imbalance with a sympathetic dominance is acknowledged to be a critical determinant of the pathophysiology of chronic heart failure with reduced ejection fraction (HFrEF), regardless of the etiology. Consequently, therapeutic interventions directly targeting the cardiac autonomic nervous system, generally referred to as neuromodulation strategies, have gained increasing interest and have been intensively studied at both the pre-clinical level and the clinical level. This review will focus on device-based neuromodulation in the setting of HFrEF. It will first provide some general principles about electrical neuromodulation and discuss specifically the complex issue of dose-response with this therapeutic approach. The paper will thereafter summarize the rationale, the pre-clinical and the clinical data, as well as the future prospectives of the three most studied form of device-based neuromodulation in HFrEF. These include cervical vagal nerve stimulation (cVNS), baroreflex activation therapy (BAT), and spinal cord stimulation (SCS). BAT has been approved by the Food and Drug Administration for use in patients with HfrEF, while the other two approaches are still considered investigational; VNS is currently being investigated in a large phase III Study.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Department of Veteran's Affairs Medical Center , Charleston, SC , USA
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| |
Collapse
|
45
|
Katayama K, Saito M, Ishida K, Shimizu K, Shiozawa K, Mizuno S, Ogoh S. Sympathetic vasomotor outflow during low-intensity leg cycling in healthy older males. Exp Physiol 2022; 107:825-833. [PMID: 35749656 DOI: 10.1113/ep090497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sympathetic vasomotor outflow is reduced during low-intensity dynamic leg exercise in younger individuals: does ageing influence the sympathoinhibitory effect during low-intensity leg cycling? What is the main finding and its importance? Muscle sympathetic nerve activity during low-intensity cycling decreased in older males, as seen in young males. It is possible that cardiopulmonary baroreflex-mediated inhibition of sympathetic vasomotor outflow during dynamic leg exercise is preserved in healthy older males. ABSTRACT Muscle sympathetic nerve activity (MSNA) is reduced during low-intensity dynamic leg exercise in young males. It is suggested that this inhibition is mediated by loading of the cardiopulmonary baroreceptors. The purpose of this study was to clarify the impact of age on MSNA during dynamic leg exercise. Nine younger males (YM, mean ± SD, 20 ± 1 years) and nine older males (OM, 72 ± 3 years) completed the study. The subjects performed two 4-min cycling exercises at 10% of their heart rate reserve using a cycle ergometer in a semirecumbent position (MSNA and estimated central venous pressure (eCVP) trials). MSNA was recorded via microneurography of the left radial nerve. The CVP was estimated based on peripheral venous pressure, which was monitored using a cannula in the right large antecubital vein. The magnitude of the increase in mean arterial blood pressure during leg cycling was larger in OM (+9.3 ± 5.5 mmHg) compared with YM (+2.8 ± 4.7 mmHg). MSNA burst frequency was decreased during cycling in both YM (-8.1 ± 3.8 bursts/min) and OM (-10.6 ± 3.3 bursts/min), but no significant difference was found between the two groups. The eCVP increased during exercise in both groups, and there was no difference in the changes in eCVP between YM (+1.1 ± 0.4 mmHg) and OM (+1.2 ± 0.7 mmHg). These data indicate that inhibition of sympathetic vasomotor outflow during low-intensity cycling appears in OM as seen in YM. It is possible that the muscle pump-induced loading of the cardiopulmonary baroreflex is preserved during cycling in healthy older males.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Shimizu
- Faculty of Human Development, Kokugakuin University, Yokohama, Japan
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Sahiro Mizuno
- Research and Development, Hosei University, Tokyo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
46
|
Spiesshoefer J, Regmi B, Ottaviani MM, Kahles F, Giannoni A, Borrelli C, Passino C, Macefield V, Dreher M. Sympathetic and Vagal Nerve Activity in COPD: Pathophysiology, Presumed Determinants and Underappreciated Therapeutic Potential. Front Physiol 2022; 13:919422. [PMID: 35845993 PMCID: PMC9281604 DOI: 10.3389/fphys.2022.919422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
This article explains the comprehensive state of the art assessment of sympathetic (SNA) and vagal nerve activity recordings in humans and highlights the precise mechanisms mediating increased SNA and its corresponding presumed clinical determinants and therapeutic potential in the context of chronic obstructive pulmonary disease (COPD). It is known that patients with COPD exhibit increased muscle sympathetic nerve activity (MSNA), as measured directly using intraneural microelectrodes—the gold standard for evaluation of sympathetic outflow. However, the underlying physiological mechanisms responsible for the sympathoexcitation in COPD and its clinical relevance are less well understood. This may be related to the absence of a systematic approach to measure the increase in sympathetic activity and the lack of a comprehensive approach to assess the underlying mechanisms by which MSNA increases. The nature of sympathoexcitation can be dissected by distinguishing the heart rate increasing properties (heart rate and blood pressure variability) from the vasoconstrictive drive to the peripheral vasculature (measurement of catecholamines and MSNA) (Graphical Abstract Figure 1). Invasive assessment of MSNA to the point of single unit recordings with analysis of single postganglionic sympathetic firing, and hence SNA drive to the peripheral vasculature, is the gold standard for quantification of SNA in humans but is only available in a few centres worldwide because it is costly, time consuming and requires a high level of training. A broad picture of the underlying pathophysiological determinants of the increase in sympathetic outflow in COPD can only be determined if a combination of these tools are used. Various factors potentially determine SNA in COPD (Graphical Abstract Figure 1): Obstructive sleep apnoea (OSA) is highly prevalent in COPD, and leads to repeated bouts of upper airway obstructions with hypoxemia, causing repetitive arousals. This probably produces ongoing sympathoexcitation in the awake state, likely in the “blue bloater” phenotype, resulting in persistent vasoconstriction. Other variables likely describe a subset of COPD patients with increase of sympathetic drive to the heart, clinically likely in the “pink puffer” phenotype. Pharmacological treatment options of increased SNA in COPD could comprise beta blocker therapy. However, as opposed to systolic heart failure a similar beneficial effect of beta blocker therapy in COPD patients has not been shown. The point is made that although MSNA is undoubtedly increased in COPD (probably independently from concomitant cardiovascular disease), studies designed to determine clinical improvements during specific treatment will only be successful if they include adequate patient selection and translational state of the art assessment of SNA. This would ideally include intraneural recordings of MSNA and—as a future perspective—vagal nerve activity all of which should ideally be assessed both in the upright and in the supine position to also determine baroreflex function.
Collapse
Affiliation(s)
- Jens Spiesshoefer
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- *Correspondence: Jens Spiesshoefer, , orcid.org/0000-0001-8205-1749
| | - Binaya Regmi
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Florian Kahles
- Department of Cardiology and Vascular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Vaughan Macefield
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
47
|
Low-Dose Propranolol Prevents Functional Decline in Catecholamine-Induced Acute Heart Failure in Rats. TOXICS 2022; 10:toxics10050238. [PMID: 35622651 PMCID: PMC9148026 DOI: 10.3390/toxics10050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Severe hyper-catecholaminergic states likely cause heart failure and cardiac fibrosis. While previous studies demonstrated the effects of beta-blockade in experimental models of single-catecholamine excess states, the detailed benefits of beta-blockade in more realistic models of hyper-adrenergic states are less clearly understood. In this study, we examined different therapeutic dosages and the effects of propranolol in rats with hyper-acute catecholamine-induced heart failure, and subsequent cardiopulmonary changes. Rats (n = 41) underwent a 6 h infusion of epinephrine and norepinephrine alone, with additional low-dose (1 mg/kg) or high-dose propranolol (10 mg/kg) at hour 1. Cardiac and pulmonary tissues were examined after 6 h. Catecholamine-only groups had the lowest survival rate. Higher doses of propranolol (15 mg/kg) caused similarly low survival rates and were not further analyzed. All low-dose propranolol rats survived, with a modest survival improvement in the high-dose propranolol groups. Left ventricular (LV) systolic pressure and LV end-diastolic pressure improved maximally with low-dose propranolol. Cardiac immunohistochemistry revealed an LV upregulation of FGF-23 in the catecholamine groups, and this improved in low-dose propranolol groups. These results suggest catecholamine-induced heart failure initiates early pre-fibrotic pathways through FGF-23 upregulation. Low-dose propranolol exerted cardio-preventative effects through FGF-23 downregulation and hemodynamic-parameter improvement in our model of hyper-acute catecholamine-induced heart failure.
Collapse
|
48
|
Giannoni A, Gentile F, Buoncristiani F, Borrelli C, Sciarrone P, Spiesshoefer J, Bramanti F, Iudice G, Javaheri S, Emdin M, Passino C. Chemoreflex and Baroreflex Sensitivity Hold a Strong Prognostic Value in Chronic Heart Failure. JACC: HEART FAILURE 2022; 10:662-676. [DOI: 10.1016/j.jchf.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
|
49
|
Sugimoto H, Hamaoka T, Murai H, Hirai T, Mukai Y, Kusayama T, Takashima S, Kato T, Takata S, Usui S, Sakata K, Kawashiri M, Takamura M. Relationships between muscle sympathetic nerve activity and novel indices of arterial stiffness using single oscillometric cuff in patients with hypertension. Physiol Rep 2022; 10:e15270. [PMID: 35587702 PMCID: PMC9118049 DOI: 10.14814/phy2.15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023] Open
Abstract
The arterial velocity pulse index (AVI) and arterial pressure-volume index (API) have been proposed as new arterial stiffness indices that can be measured using an oscillometric cuff. Sympathetic nerve activity (SNA) contributes to arterial stiffness via increasing vascular smooth muscle tone. However, the associations between SNA and the AVI or API are not understood. The purpose of this study was to evaluate the relationships between muscle sympathetic nerve activity (MSNA) and the AVI or API in healthy individuals and patients with hypertension (HT). Forty healthy individuals (40.1 ± 15.2 years, 8 females) (healthy group) and 40 patients with HT (60.2 ± 13.6, 18 females) (HT group) were included in this study. The AVI, API, MSNA, beat-by-beat blood pressure, and heart rate were recorded simultaneously. The AVI and API were higher in the HT group than in the healthy group (AVI, 26.1 ± 7.6 vs. 16.5 ± 4.0, p < 0.001; API, 31.2 ± 8.6 vs. 25.5 ± 7.2, p = 0.002). MSNA in the HT group was also higher than in the healthy group (p < 0.001). MSNA was correlated with the AVI, but not with the API, in both the healthy group (R = 0.52, p = 0.001) and HT group (R = 0.57, p < 0.001). MSNA was independently correlated with the AVI in multivariate analysis (ß = 0.34, p = 0.001). In conclusion, AVI, obtained by a simple and less user-dependent method, was related to the MSNA in healthy individuals and patients with HT.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takuto Hamaoka
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Hisayoshi Murai
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
- Kanazawa Municipal HospitalKanazawaJapan
| | - Tadayuki Hirai
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yusuke Mukai
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takashi Kusayama
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Shinichiro Takashima
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takeshi Kato
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | | | - Soichiro Usui
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Kenji Sakata
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Masa‐Aki Kawashiri
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Masayuki Takamura
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| |
Collapse
|
50
|
Kharbanda RK, van der Does WFB, van Staveren LN, Taverne YJHJ, Bogers AJJC, de Groot NMS. Vagus Nerve Stimulation and Atrial Fibrillation: Revealing the Paradox. Neuromodulation 2022; 25:356-365. [PMID: 35190246 DOI: 10.1016/j.neurom.2022.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE The cardiac autonomic nervous system (CANS) plays an important role in the pathophysiology of atrial fibrillation (AF). Cardiovascular disease can cause an imbalance within the CANS, which may contribute to the initiation and maintenance of AF. Increased understanding of neuromodulation of the CANS has resulted in novel emerging therapies to treat cardiac arrhythmias by targeting different circuits of the CANS. Regarding AF, neuromodulation therapies targeting the vagus nerve have yielded promising outcomes. However, targeting the vagus nerve can be both pro-arrhythmogenic and anti-arrhythmogenic. Currently, these opposing effects of vagus nerve stimulation (VNS) have not been clearly described. The aim of this review is therefore to discuss both pro-arrhythmogenic and anti-arrhythmogenic effects of VNS and recent advances in clinical practice and to provide future perspectives for VNS to treat AF. MATERIALS AND METHODS A comprehensive review of current literature on VNS and its pro-arrhythmogenic and anti-arrhythmogenic effects on atrial tissue was performed. Both experimental and clinical studies are reviewed and discussed separately. RESULTS VNS exhibits both pro-arrhythmogenic and anti-arrhythmogenic effects. The anatomical site and stimulation settings during VNS play a crucial role in determining its effect on cardiac electrophysiology. Since the last decade, there is accumulating evidence from experimental studies and randomized clinical studies that low-level VNS (LLVNS), below the bradycardia threshold, is an effective treatment for AF. CONCLUSION LLVNS is a promising novel therapeutic modality to treat AF and further research will further elucidate the underlying anti-arrhythmogenic mechanisms, optimal stimulation settings, and site to apply LLVNS.
Collapse
Affiliation(s)
- Rohit K Kharbanda
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|