1
|
Luo YM, Chen YY, Liang SF, Wu LG, Wellman A, McEvoy RD, Steier J, Eckert DJ, Polkey MI. Central sleep apnea treated by a constant low-dose CO 2 supplied by a novel device. J Appl Physiol (1985) 2023; 135:977-984. [PMID: 37675475 DOI: 10.1152/japplphysiol.00312.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
CO2 inhalation has been previously reported as a treatment for central sleep apnea both when associated with heart failure or where the cause is unknown. Here, we evaluated a novel CO2 supply system using a novel open mask capable of comfortably delivering a constantly inspired fraction of CO2 ([Formula: see text]) during sleep. We recruited 18 patients with central sleep apnea (13 patients with cardiac disease, and 5 patients idiopathic) diagnosed by diaphragm electromyogram (EMG) recordings made during overnight full polysomnography (PSG) (night 1). In each case, the optimal [Formula: see text] was determined by an overnight manual titration with PSG (night 2). Titration commenced at 1% CO2 and increased by 0.2% increments until central sleep apnea (CSA) disappeared. Patients were then treated on the third night (night 3) with the lowest therapeutically effective concentration of CO2 derived from night 2. Comparing night 1 and night 3, both apnea-hypopnea index (AHI; 31 ± 14 vs. 6 ± 3 events/h, P < 0.01) and arousal index (22 ± 8 vs. 15 ± 8 events/h, P < 0.01) were significantly improved during CO2 treatment. Sleep efficiency improved from 71 ± 18 to 80 ± 11%, P < 0.05, and sleep latency was shorter (23 ± 18 vs. 10 ± 10 min, P < 0.01). Heart rate was not different between night 1 and night 3. Our data confirm the feasibility of our CO2 delivery system and indicate that individually titrated CO2 supplementation with a novel device including a special open mask can reduce sleep disordered breathing severity and improve sleep quality. Randomized controlled studies should now be undertaken to assess therapeutic benefit for patients with CSA.NEW & NOTEWORTHY A novel device using a special mask was developed and proved that CO2 therapy using the device could eliminate central sleep apnea (CSA) events and improve sleep quality including reducing arousal index in patients with heart failure. The device would become a useful clinical treatment for heart failure patients with CSA.
Collapse
Affiliation(s)
- Yuan-Ming Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
- College of Medicine and Public Health, Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
| | - Yong-Yi Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shan-Feng Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lu-Guang Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - R Doug McEvoy
- College of Medicine and Public Health, Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
| | - Joerg Steier
- Lane Fox Respiratory Unit/Sleep Disorders Centre, London, United Kingdom
| | - Danny J Eckert
- College of Medicine and Public Health, Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
| | - Michael I Polkey
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Eser P, Marcin T, Prescott E, Prins LF, Kolkman E, Bruins W, van der Velde AE, Gil CP, Iliou MC, Ardissino D, Zeymer U, Meindersma EP, Van’t Hof AWJ, de Kluiver EP, Wilhelm M. Breathing pattern and pulmonary gas exchange in elderly patients with and without left ventricular dysfunction-modification with exercise-based cardiac rehabilitation and prognostic value. Front Cardiovasc Med 2023; 10:1219589. [PMID: 37727302 PMCID: PMC10505741 DOI: 10.3389/fcvm.2023.1219589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Background Inefficient ventilation is an established prognostic marker in patients with heart failure. It is not known whether inefficient ventilation is also linked to poor prognosis in patients with left ventricular dysfunction (LVD) but without overt heart failure. Objectives To investigate whether inefficient ventilation in elderly patients with LVD is more common than in patients without LVD, whether it improves with exercise-based cardiac rehabilitation (exCR), and whether it is associated with major adverse cardiovascular events (MACE). Methods In this large multicentre observational longitudinal study, patients aged ≥65 years with acute or chronic coronary syndromes (ACS, CCS) without cardiac surgery who participated in a study on the effectiveness of exCR in seven European countries were included. Cardiopulmonary exercise testing (CPET) was performed before, at the termination of exCR, and at 12 months follow-up. Ventilation (VE), breathing frequency (BF), tidal volume (VT), and end-expiratory carbon dioxide pressure (PETCO2) were measured at rest, at the first ventilatory threshold, and at peak exercise. Ventilatory parameters were compared between patients with and without LVD (based on cardio-echography) and related to MACE at 12 month follow-up. Results In 818 patients, age was 72.5 ± 5.4 years, 21.9% were women, 79.8% had ACS, and 151 (18%) had LVD. Compared to noLVD, in LVD resting VE was increased by 8%, resting BF by 6%, peak VE, peak VT, and peak PETCO2 reduced by 6%, 8%, and 5%, respectively, and VE/VCO2 slope increased by 11%. From before to after exCR, resting VE decreased and peak PETCO2 increased significantly more in patients with compared to without LVD. In LVD, higher resting BF, higher nadir VE/VCO2, and lower peak PETCO2 at baseline were associated with MACE. Conclusions Similarly to patients with HF, in elderly patients with ischemic LVD, inefficient resting and exercise ventilation was associated with worse outcomes, and ExCR alleviated abnormal breathing patterns and gas exchange parameters.
Collapse
Affiliation(s)
- Prisca Eser
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thimo Marcin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eva Prescott
- Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Copenhagen, Denmark
| | | | | | | | | | - Carlos Peña Gil
- Department of Cardiology, Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marie-Christine Iliou
- Department of Cardiac Rehabilitation, Assistance Publique Hopitaux de Paris, Paris, France
| | - Diego Ardissino
- Department of Cardiology, Parma University Hospital, Parma, Italy
| | - Uwe Zeymer
- Klinikum Ludwigshafen and Institut für Herzinfarktforschung Ludwigshafen, Ludwigshafen, Germany
| | | | - Arnoud W. J. Van’t Hof
- Isala Heart Centre, Zwolle, Netherlands
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Cardiology, Zuyderland Medical Center, Heerlen, Netherlands
| | | | - Matthias Wilhelm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Giannoni A, Borrelli C, Gentile F, Sciarrone P, Spießhöfer J, Piepoli M, Richerson GB, Floras JS, Coats AJS, Javaheri S, Emdin M, Passino C. Autonomic and respiratory consequences of altered chemoreflex function: clinical and therapeutic implications in cardiovascular diseases. Eur J Heart Fail 2023; 25:642-656. [PMID: 36907827 PMCID: PMC10989193 DOI: 10.1002/ejhf.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The importance of chemoreflex function for cardiovascular health is increasingly recognized in clinical practice. The physiological function of the chemoreflex is to constantly adjust ventilation and circulatory control to match respiratory gases to metabolism. This is achieved in a highly integrated fashion with the baroreflex and the ergoreflex. The functionality of chemoreceptors is altered in cardiovascular diseases, causing unstable ventilation and apnoeas and promoting sympathovagal imbalance, and it is associated with arrhythmias and fatal cardiorespiratory events. In the last few years, opportunities to desensitize hyperactive chemoreceptors have emerged as potential options for treatment of hypertension and heart failure. This review summarizes up to date evidence of chemoreflex physiology/pathophysiology, highlighting the clinical significance of chemoreflex dysfunction, and lists the latest proof of concept studies based on modulation of the chemoreflex as a novel target in cardiovascular diseases.
Collapse
Affiliation(s)
- Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Jens Spießhöfer
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Aachen, Aachen, Germany
| | | | | | - John S Floras
- Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | - Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, Ohio, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio, and Division of Cardiology, The Ohio State University, Columbus, Ohio USA
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
4
|
Kim LJ, Pho H, Pham LV, Polotsky VY. Isocapnic CO2 administration stabilizes breathing and eliminates apneas during sleep in obese mice exposed to hypoxia. Sleep 2023; 46:zsac243. [PMID: 36183293 PMCID: PMC9905775 DOI: 10.1093/sleep/zsac243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Casarrubios AM, Pérez-Atencio LF, Martín C, Ibarz JM, Mañas E, Paul DL, Barrio LC. Neural bases for the genesis and CO 2 therapy of periodic Cheyne-Stokes breathing in neonatal male connexin-36 knockout mice. Front Neurosci 2023; 17:1045269. [PMID: 36845442 PMCID: PMC9944137 DOI: 10.3389/fnins.2023.1045269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Periodic Cheyne-Stokes breathing (CSB) oscillating between apnea and crescendo-decrescendo hyperpnea is the most common central apnea. Currently, there is no proven therapy for CSB, probably because the fundamental pathophysiological question of how the respiratory center generates this form of breathing instability is still unresolved. Therefore, we aimed to determine the respiratory motor pattern of CSB resulting from the interaction of inspiratory and expiratory oscillators and identify the neural mechanism responsible for breathing regularization induced by the supplemental CO2 administration. Analysis of the inspiratory and expiratory motor pattern in a transgenic mouse model lacking connexin-36 electrical synapses, the neonatal (P14) Cx36 knockout male mouse, with a persistent CSB, revealed that the reconfigurations recurrent between apnea and hyperpnea and vice versa result from cyclical turn on/off of active expiration driven by the expiratory oscillator, which acts as a master pacemaker of respiration and entrains the inspiratory oscillator to restore ventilation. The results also showed that the suppression of CSB by supplemental 12% CO2 in inhaled air is due to the stabilization of coupling between expiratory and inspiratory oscillators, which causes the regularization of respiration. CSB rebooted after washout of CO2 excess when the inspiratory activity depressed again profoundly, indicating that the disability of the inspiratory oscillator to sustain ventilation is the triggering factor of CSB. Under these circumstances, the expiratory oscillator activated by the cyclic increase of CO2 behaves as an "anti-apnea" center generating the crescendo-decrescendo hyperpnea and periodic breathing. The neurogenic mechanism of CSB identified highlights the plasticity of the two-oscillator system in the neural control of respiration and provides a rationale base for CO2 therapy.
Collapse
Affiliation(s)
- Ana M. Casarrubios
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain,Ph.D. Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Leonel F. Pérez-Atencio
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - Cristina Martín
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - José M. Ibarz
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - Eva Mañas
- Sleep Apnea Unit, Respiratory Department, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, United States
| | - Luis C. Barrio
- Units of Experimental Neurology and Sleep Apnea, Hospital “Ramón y Cajal” (IRYCIS), Madrid, Spain,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Luis C. Barrio, ; orcid.org/0000-0002-9016-3510
| |
Collapse
|
6
|
Cunha GJL, Maltês S, Rocha BML, Nina D, Aguiar C, Andrade MJ, Moreno L, Durazzo A, Mendes M, Agostoni P. Beyond exercise oscillatory ventilations: the prognostic impact of loop gain in heart failure. Eur J Prev Cardiol 2023; 30:zwad021. [PMID: 36707994 DOI: 10.1093/eurjpc/zwad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Exercise oscillatory ventilation (EOV) is a strong prognostic marker in patients with heart failure (HF) and left ventricular (LV) dysfunction. This phenomenon can be explained through a single quantitative measurement of ventilatory instability, the loop gain. Therefore, we aimed to evaluate whether loop gain could be a better tool than subjective EOV evaluation to identify HF patients with a higher risk of major cardiovascular complications. This was a single-center retrospective study that included patients with left ventricular ejection fraction (LVEF) ≤ 50% consecutively referred for cardiopulmonary exercise testing (CPET) from 2016-2020. Loop gain was measured through computational evaluation of the minute ventilation graph. Of the 250 patients included, the 66 that presented EOV also had higher values of loop gain, when compared to patients without EOV. Those with both EOV and higher loop gain had more severe HF, with higher NT-proBNP and VE/VCO2 slope as well as lower peak VO2 and LVEF. On multivariable analysis, loop gain was strongly correlated with the composite endpoint of cardiovascular death, urgent heart transplantation, urgent left ventricular assist device implantation or HF hospitalization, even after correcting for peak VO2, LVEF, VE/VCO2 slope and NT-proBNP. Presence of EOV was not prognostically significant in this analysis. Loop gain is an objective parameter that quantifies ventilatory instability and showed to have a strong prognostic value in a cohort of patients with HF and LVEF ≤ 50%, outperforming the classification of EOV.
Collapse
Affiliation(s)
- Gonçalo J L Cunha
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Sérgio Maltês
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Bruno M L Rocha
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | | | - Carlos Aguiar
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Maria J Andrade
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Luís Moreno
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Anaí Durazzo
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Miguel Mendes
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Carnaxide, Portugal
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| |
Collapse
|
7
|
Abstract
Es hat sich viel getan in der Welt der Schlafmedizin in der Kardiologie, weshalb eine vollwertige Überarbeitung des Positionspapiers „Schlafmedizin in der Kardiologie“ erforderlich wurde. In der aktuellen neuartigen Version finden sich nicht nur alle verfügbaren Studien, Literaturstellen und Updates zu Pathophysiologie, Diagnostik- und Therapieempfehlungen, sondern auch Ausblicke auf neue Entwicklungen und zukünftige Forschungserkenntnisse. Dieses überarbeitete Positionspapier gibt Empfehlungen für Diagnostik und Therapie von Patienten mit kardiovaskulären Erkrankungen mit schlafassoziierten Atmungsstörungen und erteilt darüber hinaus einen fundierten Überblick über verfügbare Therapien und Evidenzen, gibt aber ebenso Ratschläge wie mit Komorbiditäten umzugehen ist. Insbesondere enthält dieses überarbeitete Positionspapier aktualisierte Stellungnahmen zu schlafassoziierten Atmungsstörungen bei Patienten mit koronarer Herzerkrankung, Herzinsuffizienz, arterieller Hypertonie, aber auch für Patienten mit Vorhofflimmern. Darüber hinaus finden sich erstmals Empfehlungen zur Telemedizin als eigenes, neues Kapitel. Dieses Positionspapier bietet Kardiologen sowie Ärzten in der Behandlung von kardiovaskulären Patienten die Möglichkeit einer evidenzbasierten Behandlung der wachsend bedeutsamen und mit zunehmender Aufmerksamkeit behafteten Komorbidität schlafassoziierter Atmungsstörungen. Und nicht zuletzt besteht mit diesem neuen Positionspapier eine enge Verknüpfung mit dem neuen Curriculum Schlafmedizin der Deutschen Gesellschaft für Kardiologie, weshalb dieses Positionspapier eine Orientierung für die erworbenen Fähigkeiten des Curriculums im Umgang von kardiovaskulären Patienten mit schlafassoziierten Atmungsstörungen darstellt.
Collapse
|
8
|
Orr JE, Ayappa I, Eckert DJ, Feldman JL, Jackson CL, Javaheri S, Khayat RN, Martin JL, Mehra R, Naughton MT, Randerath WJ, Sands SA, Somers VK, Badr MS. Research Priorities for Patients with Heart Failure and Central Sleep Apnea. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 203:e11-e24. [PMID: 33719931 PMCID: PMC7958519 DOI: 10.1164/rccm.202101-0190st] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Central sleep apnea (CSA) is common among patients with heart failure and has been strongly linked to adverse outcomes. However, progress toward improving outcomes for such patients has been limited. The purpose of this official statement from the American Thoracic Society is to identify key areas to prioritize for future research regarding CSA in heart failure. Methods: An international multidisciplinary group with expertise in sleep medicine, pulmonary medicine, heart failure, clinical research, and health outcomes was convened. The group met at the American Thoracic Society 2019 International Conference to determine research priority areas. A statement summarizing the findings of the group was subsequently authored using input from all members. Results: The workgroup identified 11 specific research priorities in several key areas: 1) control of breathing and pathophysiology leading to CSA, 2) variability across individuals and over time, 3) techniques to examine CSA pathogenesis and outcomes, 4) impact of device and pharmacological treatment, and 5) implementing CSA treatment for all individuals Conclusions: Advancing care for patients with CSA in the context of heart failure will require progress in the arenas of translational (basic through clinical), epidemiological, and patient-centered outcome research. Given the increasing prevalence of heart failure and its associated substantial burden to individuals, society, and the healthcare system, targeted research to improve knowledge of CSA pathogenesis and treatment is a priority.
Collapse
|
9
|
Morelli MS, Vanello N, Callara AL, Hartwig V, Maestri M, Bonanni E, Emdin M, Passino C, Giannoni A. Breath-hold task induces temporal heterogeneity in electroencephalographic regional field power in healthy subjects. J Appl Physiol (1985) 2021; 130:298-307. [PMID: 33300854 DOI: 10.1152/japplphysiol.00232.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated that changes in CO2 values cause oscillations in the cortical activity in δ-and α-bands. The analysis of the regional field power (RFP) showed evidence that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We suppose that the different cortical time delays likely expresse specific ascending pathways to the cortex, generated by chemoreceptor nuclei in the brain stem. Although the brain stem is in charge of the automatic control of ventilation, the cortex is involved in the voluntary control of breathing but also receives inputs from the brain stem, which influences the perception of breathing, the arousal state and sleep architecture in conditions of hypoxia/hypercapnia. We evaluated in 11 healthy subjects the effects of breath hold (BH; 30 s of apneas and 30 s of normal breathing) and BH-related CO2/O2 changes on electroencephalogram (EEG) global field power (GFP) and RFP in nine different areas (3 rostrocaudal sections: anterior, central, and posterior; and 3 sagittal sections: left, middle, and right) in the δ- and α-bands by cross correlation analysis. No significant differences were observed in GFP or RFP when comparing free breathing (FB) with the BH task. Within the BH task, the shift from apnea to normal ventilation was accompanied by an increase in the δ-power and a decrease in the α-power. The end-tidal pressure of CO2 ([Formula: see text]) was positively correlated with the δ-band and negatively with the α- band with a positive time shift, whereas an opposite behavior was found for the end-tidal pressure of O2 ([Formula: see text]). Notably, the time shift between [Formula: see text] / [Formula: see text] signals and cortical activity at RFP was heterogenous and seemed to follow a hierarchical activation, with the δ-band responding earlier than the α-band. Overall, these findings suggest that the effect of BH on the cortex may follow specific ascending pathways from the brain stem and be related to chemoreflex stimulation.NEW & NOTEWORTHY We demonstrated that the end tidal CO2 oscillation causes oscillations of delta and alpha bands. The analysis of the regional field power showed that different cortical areas respond with different time delays to CO2 challenges. An opposite behavior was found for the end-tidal O2. We can suppose that the different cortical time delay response likely expresses specific ascending pathways to the cortex generated by chemoreceptor nuclei in the brainstem.
Collapse
Affiliation(s)
- Maria Sole Morelli
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Nicola Vanello
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Valentina Hartwig
- Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | | | - Enrica Bonanni
- Departement of Neuroscience, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
10
|
Effects of central apneas on sympathovagal balance and hemodynamics at night: impact of underlying systolic heart failure. Sleep Breath 2020; 25:965-977. [PMID: 32700287 PMCID: PMC8195752 DOI: 10.1007/s11325-020-02144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 10/30/2022]
Abstract
BACKGROUND Increased sympathetic drive is the key determinant of systolic heart failure progression, being associated with worse functional status, arrhythmias, and increased mortality. Central sleep apnea is highly prevalent in systolic heart failure, and its effects on sympathovagal balance (SVB) and hemodynamics might depend on relative phase duration and background pathophysiology. OBJECTIVE This study compared the effects of central apneas in patients with and without systolic heart failure on SVB and hemodynamics during sleep. METHODS During polysomnography, measures of SVB (heart rate and diastolic blood pressure variability) were non-invasively recorded and analyzed along with baroreceptor reflex sensitivity and hemodynamic parameters (stroke volume index, cardiac index, total peripheral resistance index). Data analysis focused on stable non-rapid eye movement N2 sleep, comparing normal breathing with central sleep apnea in subjects with and without systolic heart failure. RESULTS Ten patients were enrolled per group. In heart failure patients, central apneas had neutral effects on SVB (all p > 0.05 for the high, low, and very low frequency components of heart rate and diastolic blood pressure variability). Patients without heart failure showed an increase in very low and low frequency components of diastolic blood pressure variability in response to central apneas (63 ± 18 vs. 39 ± 9%; p = 0.001, 43 ± 12 vs. 31 ± 15%; p = 0.002). In all patients, central apneas had neutral hemodynamic effects when analyzed over a period of 10 min, but had significant acute hemodynamic effects. CONCLUSION Effects of central apneas on SVB during sleep depend on underlying systolic heart failure, with neutral effects in heart failure and increased sympathetic drive in idiopathic central apneas.
Collapse
|
11
|
Abstract
Synchronization of molecular, metabolic, and cardiovascular circadian oscillations is fundamental to human health. Sleep-disordered breathing, which disrupts such temporal congruence, elicits hemodynamic, autonomic, chemical, and inflammatory disturbances with acute and long-term consequences for heart, brain, and circulatory and metabolic function. Sleep apnea afflicts a substantial proportion of adult men and women but is more prevalent in those with established cardiovascular diseases and especially fluid-retaining states. Despite the experimental, epidemiological, observational, and interventional evidence assembled in support of these concepts, this substantial body of work has had relatively modest pragmatic impact, thus far, on the discipline of cardiology. Contemporary estimates of cardiovascular risk still are derived typically from data acquired during wakefulness. The impact of sleep-related breathing disorders rarely is entered into such calculations or integrated into diagnostic disease-specific algorithms or therapeutic recommendations. Reasons for this include absence of apnea-related symptoms in most with cardiovascular disease, impediments to efficient diagnosis at the population level, debate as to target, suboptimal therapies, difficulties mounting large randomized trials of sleep-specific interventions, and the challenging results of those few prospective cardiovascular outcome trials that have been completed and reported. The objectives of this review are to delineate the bidirectional interrelationship between sleep-disordered breathing and cardiovascular disease, consider the findings and implications of observational and randomized trials of treatment, frame the current state of clinical equipoise, identify principal current controversies and potential paths to their resolution, and anticipate future directions.
Collapse
Affiliation(s)
- John S Floras
- From the University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Giannoni A, Gentile F, Navari A, Borrelli C, Mirizzi G, Catapano G, Vergaro G, Grotti F, Betta M, Piepoli MF, Francis DP, Passino C, Emdin M. Contribution of the Lung to the Genesis of Cheyne-Stokes Respiration in Heart Failure: Plant Gain Beyond Chemoreflex Gain and Circulation Time. J Am Heart Assoc 2019; 8:e012419. [PMID: 31237174 PMCID: PMC6662365 DOI: 10.1161/jaha.119.012419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/22/2019] [Indexed: 01/26/2023]
Abstract
Background The contribution of the lung or the plant gain ( PG ; ie, change in blood gases per unit change in ventilation) to Cheyne-Stokes respiration ( CSR ) in heart failure has only been hypothesized by mathematical models, but never been directly evaluated. Methods and Results Twenty patients with systolic heart failure (age, 72.4±6.4 years; left ventricular ejection fraction, 31.5±5.8%), 10 with relevant CSR (24-hour apnea-hypopnea index [ AHI ] ≥10 events/h) and 10 without ( AHI <10 events/h) at 24-hour cardiorespiratory monitoring underwent evaluation of chemoreflex gain (CG) to hypoxia ([Formula: see text]) and hypercapnia ([Formula: see text]) by rebreathing technique, lung-to-finger circulation time, and PG assessment through a visual system. PG test was feasible and reproducible (intraclass correlation coefficient, 0.98; 95% CI , 0.91-0.99); the best-fitting curve to express the PG was a hyperbola ( R2≥0.98). Patients with CSR showed increased PG , [Formula: see text] (but not [Formula: see text]), and lung-to-finger circulation time, compared with patients without CSR (all P<0.05). PG was the only predictor of the daytime AHI ( R=0.56, P=0.01) and together with the [Formula: see text] also predicted the nighttime AHI ( R=0.81, P=0.0003) and the 24-hour AHI ( R=0.71, P=0.001). Lung-to-finger circulation time was the only predictor of CSR cycle length ( R=0.82, P=0.00006). Conclusions PG is a powerful contributor of CSR and should be evaluated together with the CG and circulation time to individualize treatments aimed at stabilizing breathing in heart failure.
Collapse
Affiliation(s)
- Alberto Giannoni
- Fondazione Toscana G. MonasterioPisaItaly
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | | | | | | | | | | - Giuseppe Vergaro
- Fondazione Toscana G. MonasterioPisaItaly
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | | | | | | - Darrel P. Francis
- International Center for Circulatory HealthNational Heart and Lung InstituteImperial College LondonLondonUnited Kingdom
| | - Claudio Passino
- Fondazione Toscana G. MonasterioPisaItaly
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | - Michele Emdin
- Fondazione Toscana G. MonasterioPisaItaly
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| |
Collapse
|
13
|
Matsumoto H, Kasai T. Central Sleep Apnea in Heart Failure: Pathogenesis and Management. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0125-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Borrelli C, Aimo A, Mirizzi G, Passino C, Vergaro G, Emdin M, Giannoni A. How to take arms against central apneas in heart failure. Expert Rev Cardiovasc Ther 2017; 15:743-755. [PMID: 28777017 DOI: 10.1080/14779072.2017.1364626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Introduction Despite being a risk mediator in several observational studies, central apneas are currently orphan of treatment in heart failure. After the neutral effects on survival of two randomized controlled trials (RCTs) based on the use of positive airway pressure (the CANPAP and SERVE-HF trials), two alternative hypotheses have been formulated: 1) Periodic breathing/Cheyne-Stokes respiration (PB/CSR) in HF is protective. Indeed, the Naughton's hypothesis assumes that hyperventilation leads to increased cardiac output, lung volume, oxygen storage and reduced muscle sympathetic nerve activity, while central apnea to respiratory muscle rest and hypoxia-induced erythropoiesis. 2) The use of positive airway pressure is just a wrong treatment for PB/CSR. If this is the case, the search for novel potential alternative treatment approaches is mandatory in HF. Areas covered This review will focus on the crucial issue of whether PB/CSR should be treated or not in HF, first by outlining the ideal design of pathophysiological studies to test the Naughton's hypothesis and second by summarizing the treatment strategies so far proposed for PB/CSR in HF and identifying the most promising options to be tested in future RCTs. Expert commentary It is likely that PB/CSR may be compensatory in some cases, but after a certain threshold (to be defined) it becomes maladaptive with negative prognostic meaning in HF. The development of a pathophysiologically based treatment targeting feedback resetting and neurohormonal activation underlying PB/CSR is likely to be the best option to obtain survival benefits in HF.
Collapse
Affiliation(s)
- Chiara Borrelli
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy
| | - Alberto Aimo
- b Cardiology Division , University of Pisa , Pisa , Italy
| | - Gianluca Mirizzi
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| | - Claudio Passino
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| | - Giuseppe Vergaro
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy
| | - Michele Emdin
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| | - Alberto Giannoni
- a Cardiology and Cardiovascular Medicine Department , Fondazione Toscana Gabriele Monasterio , Pisa , Italy.,c Institute of Life Sciences , Scuola Superiore Sant'Anna , Pisa , Italy
| |
Collapse
|
15
|
Sands SA, Mebrate Y, Edwards BA, Nemati S, Manisty CH, Desai AS, Wellman A, Willson K, Francis DP, Butler JP, Malhotra A. Resonance as the Mechanism of Daytime Periodic Breathing in Patients with Heart Failure. Am J Respir Crit Care Med 2017; 195:237-246. [PMID: 27559818 DOI: 10.1164/rccm.201604-0761oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In patients with chronic heart failure, daytime oscillatory breathing at rest is associated with a high risk of mortality. Experimental evidence, including exaggerated ventilatory responses to CO2 and prolonged circulation time, implicates the ventilatory control system and suggests feedback instability (loop gain > 1) is responsible. However, daytime oscillatory patterns often appear remarkably irregular versus classic instability (Cheyne-Stokes respiration), suggesting our mechanistic understanding is limited. OBJECTIVES We propose that daytime ventilatory oscillations generally result from a chemoreflex resonance, in which spontaneous biological variations in ventilatory drive repeatedly induce temporary and irregular ringing effects. Importantly, the ease with which spontaneous biological variations induce irregular oscillations (resonance "strength") rises profoundly as loop gain rises toward 1. We tested this hypothesis through a comparison of mathematical predictions against actual measurements in patients with heart failure and healthy control subjects. METHODS In 25 patients with chronic heart failure and 25 control subjects, we examined spontaneous oscillations in ventilation and separately quantified loop gain using dynamic inspired CO2 stimulation. MEASUREMENTS AND MAIN RESULTS Resonance was detected in 24 of 25 patients with heart failure and 18 of 25 control subjects. With increased loop gain-consequent to increased chemosensitivity and delay-the strength of spontaneous oscillations increased precipitously as predicted (r = 0.88), yielding larger (r = 0.78) and more regular (interpeak interval SD, r = -0.68) oscillations (P < 0.001 for all, both groups combined). CONCLUSIONS Our study elucidates the mechanism underlying daytime ventilatory oscillations in heart failure and provides a means to measure and interpret these oscillations to reveal the underlying chemoreflex hypersensitivity and reduced stability that foretells mortality in this population.
Collapse
Affiliation(s)
- Scott A Sands
- 1 Division of Sleep and Circadian Disorders and.,2 Department of Allergy, Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Victoria, Australia
| | - Yoseph Mebrate
- 3 International Center for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,4 Department of Clinical Engineering, Royal Brompton Hospital, London, United Kingdom
| | - Bradley A Edwards
- 1 Division of Sleep and Circadian Disorders and.,5 Sleep and Circadian Medicine Laboratory, Department of Physiology, and.,6 School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | | | - Charlotte H Manisty
- 7 Institute of Cardiovascular Sciences, University College London, London, United Kingdom; and
| | - Akshay S Desai
- 8 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Keith Willson
- 3 International Center for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Darrel P Francis
- 3 International Center for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Atul Malhotra
- 1 Division of Sleep and Circadian Disorders and.,9 Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Abstract
Central sleep apnea is common in heart failure and contributes to morbidity and mortality. Symptoms are often similar to those associated with heart failure and a high index of suspicion is needed. Testing is typically done in the sleep laboratory, but home testing equipment can distinguish between central and obstructive events. Treatments are limited. Mask-based therapies have been the primary treatment. Oxygen has some data but lacks long-term studies. Neurostimulation of the phrenic nerve is a new technology that has demonstrated improvement. Coordination of care between sleep specialists and cardiologists is important as the field of central sleep apnea continues to develop.
Collapse
Affiliation(s)
- Robin Germany
- Cardiovascular Division, University of Oklahoma College of Medicine, 800 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|
17
|
Orr JE, Malhotra A, Sands SA. Pathogenesis of central and complex sleep apnoea. Respirology 2016; 22:43-52. [PMID: 27797160 DOI: 10.1111/resp.12927] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/01/2022]
Abstract
Central sleep apnoea (CSA) - the temporary absence or diminution of ventilatory effort during sleep - is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, that is elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via continuous positive airway pressure (CPAP), tracheostomy or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, that is low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, for example CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO2 difference and supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalized interventions for CSA.
Collapse
Affiliation(s)
- Jeremy E Orr
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California, USA
| | - Atul Malhotra
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, California, USA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Allergy Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Engoren M, Brown RR, Dubovoy A. A retrospective analysis of the effect of blood transfusion on cerebral oximetry entropy and acute kidney injury. Perfusion 2016; 32:35-43. [DOI: 10.1177/0267659116661050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose: Acute anemia is associated with both cerebral dysfunction and acute kidney injury and is often treated with red blood cell transfusion. We sought to determine if blood transfusion changed the cerebral oximetry entropy, a measure of the complexity or irregularity of the oximetry values, and if this change was associated with subsequent acute kidney injury. Methods: This was a retrospective, case-control study of patients undergoing cardiac surgery with cardiopulmonary bypass at a tertiary care hospital, comparing those who received a red blood cell transfusion to those who did not. Acute kidney injury was defined as a perioperative increase in serum creatinine by ⩾26.4 μmol/L or by ⩾50% increase. Entropy was measured using approximate entropy, sample entropy, forbidden word entropy and basescale4 entropy in 500-point sets. Results: Forty-four transfused patients were matched to 88 randomly selected non-transfused patients. All measures of entropy had small changes in the transfused group, but increased in the non-transfused group (p<0.05, for all comparisons). Thirty-five of 132 patients (27%) suffered acute kidney injury. Based on preoperative factors, patients who suffered kidney injury were similar to those who did not, including baseline cerebral oximetry levels. After analysis with hierarchical logistic regression, the change in basescale4 entropy (odds ratio = 1.609, 95% confidence interval = 1.057–2.450, p = 0.027) and the interaction between basescale entropy and transfusion were significantly associated with subsequent development of acute kidney injury. Conclusions: The transfusion of red blood cells was associated with a smaller rise in entropy values compared to non-transfused patients, suggesting a change in the regulation of cerebral oxygenation, and these changes in cerebral oxygenation are also associated with acute kidney injury.
Collapse
Affiliation(s)
- Milo Engoren
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, Mercy St. Vincent Medical Center, Toledo, OH, USA
| | - Russell R. Brown
- Department of Information Technology Services, Promedica Health System, Toledo, OH, USA
| | - Anna Dubovoy
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Abstract
Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Department of Allergy, Immunology and Respiratory Medicine and Central Clinical School, Alfred Hospital and Monash University, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Robert L Owens
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Mulchrone A, Shokoueinejad M, Webster J. A review of preventing central sleep apnea by inspired CO2. Physiol Meas 2016; 37:R36-45. [DOI: 10.1088/0967-3334/37/5/r36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Tomita Y, Kasai T, Kisaka T, Rossiter HB, Kihara Y, Wasserman K, Daida H. Altered breathing syndrome in heart failure: newer insights and treatment options. Curr Heart Fail Rep 2015; 12:158-65. [PMID: 25576448 DOI: 10.1007/s11897-014-0250-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In patients with heart failure (HF), altered breathing patterns, including periodic breathing, Cheyne-Stokes breathing, and oscillatory ventilation, are seen in several situations. Since all forms of altered breathing cause similar detrimental effects on clinical outcomes, they may be considered collectively as an "altered breathing syndrome." Altered breathing syndrome should be recognized as a comorbid condition of HF and as a potential therapeutic target. In this review, we discuss mechanisms and therapeutic options of altered breathing while sleeping, while awake at rest, and during exercise.
Collapse
Affiliation(s)
- Yasuhiro Tomita
- Cardiovascular Center, Toranomon Hospital, 2-2-2 Toranomon, Minatoku, Tokyo, 105-8470, Japan,
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Department of Allergy, Immunology and Respiratory Medicine and Central Clinical School, Alfred Hospital and Monash University, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Robert L Owens
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Baruah R, Giannoni A, Willson K, Manisty CH, Mebrate Y, Kyriacou A, Yadav H, Unsworth B, Sutton R, Mayet J, Hughes AD, Francis DP. Novel cardiac pacemaker-based human model of periodic breathing to develop real-time, pre-emptive technology for carbon dioxide stabilisation. Open Heart 2014; 1:e000055. [PMID: 25332798 PMCID: PMC4189223 DOI: 10.1136/openhrt-2014-000055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/23/2014] [Accepted: 07/15/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Constant flow and concentration CO2 has previously been efficacious in attenuating ventilatory oscillations in periodic breathing (PB) where oscillations in CO2 drive ventilatory oscillations. However, it has the undesirable effect of increasing end-tidal CO2, and ventilation. We tested, in a model of PB, a dynamic CO2 therapy that aims to attenuate pacemaker-induced ventilatory oscillations while minimising CO2 dose. METHODS First, pacemakers were manipulated in 12 pacemaker recipients, 6 with heart failure (ejection fraction (EF)=23.7±7.3%) and 6 without heart failure, to experimentally induce PB. Second, we applied a real-time algorithm of pre-emptive dynamic exogenous CO2 administration, and tested different timings. RESULTS We found that cardiac output alternation using pacemakers successfully induced PB. Dynamic CO2 therapy, when delivered coincident with hyperventilation, attenuated 57% of the experimentally induced oscillations in end-tidal CO2: SD/mean 0.06±0.01 untreated versus 0.04±0.01 with treatment (p<0.0001) and 0.02±0.01 in baseline non-modified breathing. This translated to a 56% reduction in induced ventilatory oscillations: SD/mean 0.19±0.09 untreated versus 0.14±0.06 with treatment (p=0.001) and 0.10±0.03 at baseline. Of note, end-tidal CO2 did not significantly rise when dynamic CO2 was applied to the model (4.84±0.47 vs 4.91± 0.45 kPa, p=0.08). Furthermore, mean ventilation was also not significantly increased by dynamic CO2 compared with untreated (7.8±1.2 vs 8.4±1.2 L/min, p=0.17). CONCLUSIONS Cardiac pacemaker manipulation can be used to induce PB experimentally. In this induced PB, delivering CO2 coincident with hyperventilation, ventilatory oscillations can be substantially attenuated without a significant increase in end-tidal CO2 or ventilation. Dynamic CO2 administration might be developed into a clinical treatment for PB. TRIAL REGISTRATION NUMBER ISRCTN29344450.
Collapse
Affiliation(s)
- Resham Baruah
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK
| | - Alberto Giannoni
- Fondazione Gabriele Monasterio and Scuola Superiore Sant'Anna , Pisa , Italy
| | - Keith Willson
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK
| | - Charlotte H Manisty
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK ; The Heart Hospital, University College London , UK
| | - Yoseph Mebrate
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK ; Royal Brompton and Harefield NHS FoundationTrust , London , UK
| | - Andreas Kyriacou
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK ; Royal Brompton and Harefield NHS FoundationTrust , London , UK
| | - Hemang Yadav
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK ; Mayo Clinic , Rochester, Minnesota USA
| | - Beth Unsworth
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK
| | - Richard Sutton
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK
| | - Jamil Mayet
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK
| | - Alun D Hughes
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK ; Cardiovascular Physiology and Pharmacology, University College London , UK
| | - Darrel P Francis
- International Centre for Circulatory Health, Imperial College Healthcare NHS Trust and Imperial College , London , UK
| |
Collapse
|
24
|
Grayburn RL, Kaka Y, Tang WHW. Contemporary insights and novel treatment approaches to central sleep apnea syndrome in heart failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:322. [PMID: 24874028 DOI: 10.1007/s11936-014-0322-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OPINION STATEMENT Central sleep apnea (CSA) is a common and under-diagnosed condition commonly associated with Cheyne-Stokes respiration. It is particularly prevalent in the heart failure population affecting up to 40 % of all patients with heart failure. The pathophysiology associated with CSA is based on the underlying effects of hypoventilation and hyperventilation, with neurologic dysregulation of respiratory control as the primary defect. However, therapeutic options are limited because of the prevailing perception that CSA is a consequence, rather than cause of morbidity and mortality. At present, the main focus remains treating the underlying problem (ie, intensifying heart failure therapeutics, decongestion), whereas additional suggestions of using acetazolamide, progesterone, nocturnal oxygen, and theophylline have not been validated with contemporary clinical trials. Positive pressure ventilation is currently the primary recommendation for all patients with sleep-disordered breathing (CSA included), and in some patients may effectively reduce the apnea-hypopnea index. However, significant research is ongoing to determine how to treat this complex patient population.
Collapse
Affiliation(s)
- Ryan L Grayburn
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, USA
| | | | | |
Collapse
|
25
|
Emdin M, Passino C. Targeting Periodic Breathing in Heart Failure Patients, and Treating It—Gently. J Card Fail 2014; 20:289-91. [DOI: 10.1016/j.cardfail.2014.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
|
26
|
Abstract
Divergent approaches to treatment of hypocapnic central sleep apnea syndromes reflect the difficulties in taming a hyperactive respiratory chemoreflex. As both sleep fragmentation and a narrow CO2 reserve or increased loop gain drive the disease, sedatives (to induce longer periods of stable non-rapid eye movement (NREM) sleep and reduce the destabilizing effects of arousals in NREM sleep) and CO2-based stabilization approaches are logical. Adaptive ventilation reduces mean hyperventilation yet can induce ventilator-patient dyssynchrony, while enhanced expiratory rebreathing space (EERS, dead space during positive pressure therapy) and CO2 manipulation directly stabilize respiratory control by moving CO2 above the apnea threshold. Carbonic anhydrase inhibition can provide further adjunctive benefits. Provent and Winx may be less likely to trigger central apneas or periodic breathing in those with a narrow CO2 reserve. An oral appliance can meaningfully reduce positive pressure requirements and thus enable treatment of complex apnea. Novel pharmacological approaches may target mediators of carotid body glomus cell excitation, such as the balance between gas neurotransmitters. In complex apnea patients, single mode therapy is not always successful, and multi-modality therapy might need to be considered. Phenotyping of sleep apnea beyond conventional scoring approaches is the key to optimal management.
Collapse
|
27
|
|
28
|
Apostolo A, Agostoni P, Contini M, Antonioli L, Swenson ER. Acetazolamide and inhaled carbon dioxide reduce periodic breathing during exercise in patients with chronic heart failure. J Card Fail 2014; 20:278-88. [PMID: 24418726 DOI: 10.1016/j.cardfail.2014.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Periodic breathing (PB) during sleep and exercise in heart failure (HF) is related to respiratory acid-base status, CO2 chemosensitivity, and temporal dynamics of CO2 and O2 sensing. We studied inhaled CO2 and acetazolamide to alter these factors and reduce PB. METHODS AND RESULTS We measured expired and arterial gases and PB amplitude and duration in 20 HF patients during exercise before and after acetazolamide given acutely (500 mg intravenously) and prolonged (24 hours, 2 g orally), and we performed overnight polysomnography. We studied CO2 inhalation (1%-2%) during constant workload exercise. PB disappeared in 19/20 and 2/7 patients during 2% and 1% CO2. No changes in cardiorespiratory parameters were observed after acute acetazolamide. With prolonged acetazolamide at rest: ventilation +2.04 ± 4.0 L/min (P = .001), tidal volume +0.11 ± 1.13 L (P = .003), respiratory rate +1.24 ± 4.63 breaths/min (NS), end-tidal PO2 +4.62 ± 2.43 mm Hg (P = .001), and end-tidal PCO2 -2.59 ± 9.7 mm Hg (P < .001). At maximum exercise: Watts -10% (P < .02), VO2 -61 ± 109 mL/min (P = .04) and VCO2 101 ± 151 mL/min (P < .02). Among 20 patients, PB disappeared in 1 and 7 subjects after acute and prolonged acetazolamide, respectively. PB was present 80% ± 26, 65% ± 28, and 43% ± 39 of exercise time before and after acute and prolonged acetazolamide, respectively. Overnight apnea/hypopnea index decreased from 30.8 ± 83.8 to 21.1 ± 16.9 (P = .003). CONCLUSIONS In HF, inhaled CO2 and acetazolamide reduce exercise PB with additional benefits of acetazolamide on sleep PB.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | | | | | - Erik R Swenson
- Pulmonary and Critical Care Medicine, Veterans Administration Puget Sound Health Care System, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Abstract
Neurophysiologically, central apnea is due to a temporary failure in the pontomedullary pacemaker generating breathing rhythm. As a polysomnographic finding, central apneas occur in many pathophysiological conditions. Depending on the cause or mechanism, central apneas may not be clinically significant, for example, those that occur normally at sleep onset. In contrast, central apneas occur in a number of disorders and result in pathophysiological consequences. Central apneas occur commonly in high-altitude sojourn, disrupt sleep, and cause desaturation. Central sleep apnea also occurs in number of disorders across all age groups and both genders. Common causes of central sleep apnea in adults are congestive heart failure and chronic use of opioids to treat pain. Under such circumstances, diagnosis and treatment of central sleep apnea may improve quality of life, morbidity, and perhaps mortality. The mechanisms of central sleep apnea have been best studied in congestive heart failure and hypoxic conditions when there is increased CO2 sensitivity below eupnea resulting in lowering eupneic PCO2 below apneic threshold causing cessation of breathing until the PCO2 rises above the apneic threshold when breathing resumes. In many other disorders, the mechanism of central sleep apnea (CSA) remains to be investigated.
Collapse
Affiliation(s)
- S Javaheri
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | |
Collapse
|
30
|
Xie A, Teodorescu M, Pegelow DF, Teodorescu MC, Gong Y, Fedie JE, Dempsey JA. Effects of stabilizing or increasing respiratory motor outputs on obstructive sleep apnea. J Appl Physiol (1985) 2013; 115:22-33. [PMID: 23599393 DOI: 10.1152/japplphysiol.00064.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To determine how the obstructive sleep apnea (OSA) patient's pathophysiological traits predict the success of the treatment aimed at stabilization or increase in respiratory motor outputs, we studied 26 newly diagnosed OSA patients [apnea-hypopnea index (AHI) 42 ± 5 events/h with 92% of apneas obstructive] who were treated with O2 supplementation, an isocapnic rebreathing system in which CO2 was added only during hyperpnea to prevent transient hypocapnia, and a continuous rebreathing system. We also measured each patient's controller gain below eupnea [change in minute volume/change in end-tidal Pco2 (ΔVe/ΔPetCO2)], CO2 reserve (eupnea-apnea threshold PetCO2), and plant gain (ΔPetCO2/ΔVe), as well as passive upper airway closing pressure (Pcrit). With isocapnic rebreathing, 14/26 reduced their AHI to 31 ± 6% of control (P < 0.01) (responder); 12/26 did not show significant change (nonresponder). The responders vs. nonresponders had a greater controller gain (6.5 ± 1.7 vs. 2.1 ± 0.2 l·min(-1)·mmHg(-1), P < 0.01) and a smaller CO2 reserve (1.9 ± 0.3 vs. 4.3 ± 0.4 mmHg, P < 0.01) with no differences in Pcrit (-0.1 ± 1.2 vs. 0.2 ± 0.9 cmH2O, P > 0.05). Hypercapnic rebreathing (+4.2 ± 1 mmHg PetCO2) reduced AHI to 15 ± 4% of control (P < 0.001) in 17/21 subjects with a wide range of CO2 reserve. Hyperoxia (SaO2 ∼95-98%) reduced AHI to 36 ± 11% of control in 7/19 OSA patients tested. We concluded that stabilizing central respiratory motor output via prevention of transient hypocapnia prevents most OSA in selected patients with a high chemosensitivity and a collapsible upper airway, whereas increasing respiratory motor output via moderate hypercapnia eliminates OSA in most patients with a wider range of chemosensitivity and CO2 reserve. Reducing chemosensitivity via hyperoxia had a limited and unpredictable effect on OSA.
Collapse
Affiliation(s)
- Ailiang Xie
- James B. Skatrud Laboratory of Pulmonary and Sleep Medicine, William S. Middleton Memorial Veterans Affairs Hospital, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Marco Guazzi
- Heart Failure Unit, Cardiology, I.R.C.C.S., Policlinico San Donato, Department of Medical Sciences, University of Milano, Piazza Malan 1 20097, San Donato Milanese, Milano, Italy.
| | | |
Collapse
|
32
|
Abstract
Sleep apnea is frequently observed in patients with heart failure (HF). In general, sleep apnea consists of two types: obstructive and central sleep apnea (OSA and CSA, respectively). OSA results from upper airway collapse, whereas CSA arises from reductions in central respiratory drive. In patients with OSA, blood pressure is frequently elevated as a result of sympathetic nervous system overactivation. The generation of exaggerated negative intrathoracic pressure during obstructive apneas further increases left ventricular (LV) afterload, reduces cardiac output, and may promote the progression of HF. Intermittent hypoxia and post-apneic reoxygenation cause vascular endothelial damage and possibly atherosclerosis and consequently coronary artery disease and ischemic cardiomyopathy. CSA is also characterized by apnea, hypoxia, and increased sympathetic nervous activity and, when present in HF, is associated with increased risk of death. In patients with HF, abolition of coexisting OSA by continuous positive airway pressure (CPAP) improves LV function and may contribute to the improvement of long-term outcomes. Although treatment options of CSA vary compared with OSA treatment, CPAP and other types of positive airway ventilation improve LV function and may be a promising adjunctive therapy for HF patients with CSA. Since HF remains one of the major causes of mortality in the industrialized countries, the significance of identifying and managing sleep apnea should be more emphasized to prevent the development or progression of HF.
Collapse
Affiliation(s)
- Takatoshi Kasai
- Cardio-Respiratory Sleep Medicine, Department of Cardiology, Juntendo University, School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Wan ZH, Wen FJ, Hu K. Dynamic CO₂ inhalation: a novel treatment for CSR-CSA associated with CHF. Sleep Breath 2012; 17:487-93. [PMID: 22622694 DOI: 10.1007/s11325-012-0719-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/08/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) is very common in patients with chronic congestive heart failure (CHF). A current concept of the key pathophysiological mechanism leading to CSR-CSA is a fluctuation of PaCO2 below and above the apneic threshold. A number of therapeutic approaches for CSR-CSA have been proposed-all with varying success, some of which include various modes of positive airway pressure among other strategies. However, CO2 oscillations seen in CSR-CSA have yet to be looked at as a specific therapeutic target by current treatments. DISCUSSION Previous studies have shown that delivery of constant CO2 is efficacious in eliminating CSR-CSA by raising PaCO2, but there are serious concerns about the potential side effects, such as unwanted elevations in ventilation, work of breathing, and sympathetic nerve activity (SNA), and consequently CO2 inhalation therapy has not been recommended as a routine option for therapy. However, recent new studies into CO2 inhalation therapy have been made that may reshape its role as therapeutic. In this review, we will focus on the recent developments of administration of dynamic CO2 in the management of CSR-CSA in CHF patients.
Collapse
Affiliation(s)
- Zhi Hui Wan
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan 430060, China
| | | | | |
Collapse
|
34
|
Momomura SI. Treatment of Cheyne–Stokes respiration–central sleep apnea in patients with heart failure. J Cardiol 2012; 59:110-6. [DOI: 10.1016/j.jjcc.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/28/2022]
|
35
|
Guntheroth WG. Real-Time Dynamic Carbon Dioxide Administration. J Am Coll Cardiol 2011; 57:1789; author reply 1789-90. [DOI: 10.1016/j.jacc.2010.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/21/2010] [Indexed: 11/28/2022]
|
36
|
Baruah R, Giannoni A, Willson K, Mebrate Y, Mayet J, Emdin M, Hughes AD, Manisty CH, Francis DP. Reply. J Am Coll Cardiol 2011. [DOI: 10.1016/j.jacc.2011.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Oldenburg O, Horstkotte D. Respiratory Instability in Patients With Chronic Heart Failure. J Am Coll Cardiol 2010; 56:1838-9. [DOI: 10.1016/j.jacc.2010.06.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 10/18/2022]
|