1
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2024:10.1038/s41569-024-01074-2. [PMID: 39394525 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Anastasiou V, Papazoglou AS, Gossios T, Zegkos T, Daios S, Moysidis DV, Koutsiouroumpa O, Parcharidou D, Tziomalos G, Katranas S, Rouskas P, Didagelos M, Karamitsos T, Ziakas A, McKenna WJ, Kamperidis V, Efthimiadis GK. Prognostic implications of genotype findings in non-ischaemic dilated cardiomyopathy: A network meta-analysis. Eur J Heart Fail 2024; 26:2155-2168. [PMID: 39078390 DOI: 10.1002/ejhf.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Evidence on the relative impact of diverse genetic backgrounds associated with non-ischaemic dilated cardiomyopathy (DCM) remains contradictory. This study sought to synthesize the available data regarding long-term outcomes of different gene groups in DCM. METHODS AND RESULTS Electronic databases were systematically screened to identify studies reporting prognostic data on pre-specified gene groups. Those included pathogenic/likely pathogenic (P/LP) variants, truncating titin variants (TTNtv), lamin A/C variants (LMNA), and desmosomal proteins. Outcomes were divided into composite adverse events (CAEs), malignant ventricular arrhythmic events (MVAEs) and heart failure events (HFEs). A total of 26 studies (n = 7255) were included in the meta-analysis and 6791 patients with genotyped DCM were analysed. Patients with P/LP variants had a higher risk for CAEs (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.67-2.65), MVAEs (OR 1.86, 95% CI 1.52-2.26), and HFEs (OR 2.01, 95% CI 1.08-3.73) than genotype-negative patients. The presence of TTNtv was linked to a higher risk for CAEs (OR 1.78, 95% CI 1.20-2.63), but not MVAEs or HFEs. LMNA and desmosomal groups suffered a higher risk for CAEs, MVAEs, and HFEs compared to non-LMNA and non-desmosomal groups, respectively. When genes were indirectly compared, the presence of LMNA resulted in a more detrimental effect that TTNtv, with respect to all composite outcomes but no significant difference was found between LMNA and desmosomal genes. Desmosomal genes harboured a higher risk for MVAEs compared to TTNtv. CONCLUSIONS Different genetic substrates associated with DCM result in divergent natural histories. Routine utilization of genetic testing should be employed to refine risk stratification and inform therapeutic strategies in DCM.
Collapse
Affiliation(s)
- Vasileios Anastasiou
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Thomas Gossios
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Zegkos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Daios
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ourania Koutsiouroumpa
- Evidence Synthesis Methods Team, Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
| | - Despoina Parcharidou
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tziomalos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotiris Katranas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pavlos Rouskas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthaios Didagelos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Karamitsos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Ziakas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William J McKenna
- Institute of Cardiovascular Medicine, University College London, London, UK
| | - Vasileios Kamperidis
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios K Efthimiadis
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Heart Fail Clin 2024; 20:407-417. [PMID: 39216926 DOI: 10.1016/j.hfc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
4
|
Eichhorn C, Koeckerling D, Reddy RK, Ardissino M, Rogowski M, Coles B, Hunziker L, Greulich S, Shiri I, Frey N, Eckstein J, Windecker S, Kwong RY, Siontis GCM, Gräni C. Risk Stratification in Nonischemic Dilated Cardiomyopathy Using CMR Imaging: A Systematic Review and Meta-Analysis. JAMA 2024:2823869. [PMID: 39298146 PMCID: PMC11413760 DOI: 10.1001/jama.2024.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024]
Abstract
Importance Accurate risk stratification of nonischemic dilated cardiomyopathy (NIDCM) remains challenging. Objective To evaluate the association of cardiac magnetic resonance (CMR) imaging-derived measurements with clinical outcomes in NIDCM. Data Sources MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection databases were systematically searched for articles from January 2005 to April 2023. Study Selection Prospective and retrospective nonrandomized diagnostic studies reporting on the association between CMR imaging-derived measurements and adverse clinical outcomes in NIDCM were deemed eligible. Data Extraction and Synthesis Prespecified items related to patient population, CMR imaging measurements, and clinical outcomes were extracted at the study level by 2 independent reviewers. Random-effects models were fitted using restricted maximum likelihood estimation and the method of Hartung, Knapp, Sidik, and Jonkman. Main Outcomes and Measures All-cause mortality, cardiovascular mortality, arrhythmic events, heart failure events, and major adverse cardiac events (MACE). Results A total of 103 studies including 29 687 patients with NIDCM were analyzed. Late gadolinium enhancement (LGE) presence and extent (per 1%) were associated with higher all-cause mortality (hazard ratio [HR], 1.81 [95% CI, 1.60-2.04]; P < .001 and HR, 1.07 [95% CI, 1.02-1.12]; P = .02, respectively), cardiovascular mortality (HR, 2.43 [95% CI, 2.13-2.78]; P < .001 and HR, 1.15 [95% CI, 1.07-1.24]; P = .01), arrhythmic events (HR, 2.69 [95% CI, 2.20-3.30]; P < .001 and HR, 1.07 [95% CI, 1.03-1.12]; P = .004) and heart failure events (HR, 1.98 [95% CI, 1.73-2.27]; P < .001 and HR, 1.06 [95% CI, 1.01-1.10]; P = .02). Left ventricular ejection fraction (LVEF) (per 1%) was not associated with all-cause mortality (HR, 0.99 [95% CI, 0.97-1.02]; P = .47), cardiovascular mortality (HR, 0.97 [95% CI, 0.94-1.00]; P = .05), or arrhythmic outcomes (HR, 0.99 [95% CI, 0.97-1.01]; P = .34). Lower risks for heart failure events (HR, 0.97 [95% CI, 0.95-0.98]; P = .002) and MACE (HR, 0.98 [95% CI, 0.96-0.99]; P < .001) were observed with higher LVEF. Higher native T1 relaxation times (per 10 ms) were associated with arrhythmic events (HR, 1.07 [95% CI, 1.01-1.14]; P = .04) and MACE (HR, 1.06 [95% CI, 1.01-1.11]; P = .03). Global longitudinal strain (GLS) (per 1%) was not associated with heart failure events (HR, 1.06 [95% CI, 0.95-1.18]; P = .15) or MACE (HR, 1.03 [95% CI, 0.94-1.14]; P = .43). Limited data precluded definitive analysis for native T1 relaxation times, GLS, and extracellular volume fraction (ECV) with respect to mortality outcomes. Conclusion The presence and extent of LGE were associated with various adverse clinical outcomes, whereas LVEF was not significantly associated with mortality and arrhythmic end points in NIDCM. Risk stratification using native T1 relaxation times, extracellular volume fraction, and global longitudinal strain requires further evaluation.
Collapse
Affiliation(s)
- Christian Eichhorn
- Division of Acute Medicine, University Hospital Basel, Basel, Switzerland
- Private University in the Principality of Liechtenstein, Triesen
- Department of Internal Medicine, See-Spital, Horgen, Switzerland
| | - David Koeckerling
- Department of Cardiology, Angiology and Respiratory Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Rohin K. Reddy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Maddalena Ardissino
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marek Rogowski
- Private University in the Principality of Liechtenstein, Triesen
- Agaplesion General Hospital, Hagen, Germany
| | - Bernadette Coles
- Velindre University NHS Trust Library & Knowledge Service, Cardiff University, Cardiff, Wales
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Simon Greulich
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany
| | - Isaac Shiri
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Norbert Frey
- Department of Cardiology, Angiology and Respiratory Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Eckstein
- Division of Acute Medicine, University Hospital Basel, Basel, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y. Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George C. M. Siontis
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ogawa N, Kondo H, Ishii Y, Mitarai K, Akiyoshi K, Niwa H, Kato K, Horie M, Ohno S, Takahashi N. Cardiomyopathy with an LMNA Genetic Variant Affecting Three Consecutive Generations: A Case Series. Intern Med 2024; 63:2533-2536. [PMID: 38432972 PMCID: PMC11473272 DOI: 10.2169/internalmedicine.1701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
We report the case of a family afflicted with cardiac laminopathy who showed atrial fibrillation (AF) and complete atrioventricular block across three generations. Implantable cardioverter defibrillators (ICDs) implantation, or cardiac resynchronization therapy (CRT) were delivered to the three patients (proband; 61 years old, proband's mother: 84 years old, and proband's daughter; 38 years old) to prevent sudden cardiac death or suppress heart failure progression. A novel frameshift mutation (LMNA Exon 9: c.1550dupA;p. N518Efs*34) was found in all three cases through genetic testing, and this mutation may potentially result in the relatively late appearance of a phenotype of left ventricular systolic dysfunction.
Collapse
Affiliation(s)
- Naoko Ogawa
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Hidekazu Kondo
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Kazuki Mitarai
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Kumiko Akiyoshi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Hiroko Niwa
- Department of Cardiology, Tsukumi Hospital, Japan
| | - Koichi Kato
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| |
Collapse
|
6
|
Kany S, Jurgens SJ, Rämö JT, Christophersen IE, Rienstra M, Chung MK, Olesen MS, Ackerman MJ, McNally EM, Semsarian C, Schnabel RB, Wilde AAM, Benjamin EJ, Rehm HL, Kirchhof P, Bezzina CR, Roden DM, Shoemaker MB, Ellinor PT. Genetic testing in early-onset atrial fibrillation. Eur Heart J 2024; 45:3111-3123. [PMID: 39028637 PMCID: PMC11379493 DOI: 10.1093/eurheartj/ehae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/21/2024] Open
Abstract
Atrial fibrillation (AF) is a globally prevalent cardiac arrhythmia with significant genetic underpinnings, as highlighted by recent large-scale genetic studies. A prominent clinical and genetic overlap exists between AF, heritable ventricular cardiomyopathies, and arrhythmia syndromes, underlining the potential of AF as an early indicator of severe ventricular disease in younger individuals. Indeed, several recent studies have demonstrated meaningful yields of rare pathogenic variants among early-onset AF patients (∼4%-11%), most notably for cardiomyopathy genes in which rare variants are considered clinically actionable. Genetic testing thus presents a promising opportunity to identify monogenetic defects linked to AF and inherited cardiac conditions, such as cardiomyopathy, and may contribute to prognosis and management in early-onset AF patients. A first step towards recognizing this monogenic contribution was taken with the Class IIb recommendation for genetic testing in AF patients aged 45 years or younger by the 2023 American College of Cardiology/American Heart Association guidelines for AF. By identifying pathogenic genetic variants known to underlie inherited cardiomyopathies and arrhythmia syndromes, a personalized care pathway can be developed, encompassing more tailored screening, cascade testing, and potentially genotype-informed prognosis and preventive measures. However, this can only be ensured by frameworks that are developed and supported by all stakeholders. Ambiguity in test results such as variants of uncertain significance remain a major challenge and as many as ∼60% of people with early-onset AF might carry such variants. Patient education (including pretest counselling), training of genetic teams, selection of high-confidence genes, and careful reporting are strategies to mitigate this. Further challenges to implementation include financial barriers, insurability issues, workforce limitations, and the need for standardized definitions in a fast-moving field. Moreover, the prevailing genetic evidence largely rests on European descent populations, underscoring the need for diverse research cohorts and international collaboration. Embracing these challenges and the potential of genetic testing may improve AF care. However, further research-mechanistic, translational, and clinical-is urgently needed.
Collapse
Affiliation(s)
- Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ingrid E Christophersen
- Department of Medical Research, Baerum Hospital, Vestre Viken Hospital Trust, Rud, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mina K Chung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Heart, Vascular & Thoracic Institute, Cleveland, OH, USA
| | - Morten S Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smight Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arthur A M Wilde
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
- Department of Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, theNetherlands
- European Reference Network for RARE, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, 25 Shattuck St, 02115, Boston, MA, USA
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Connie R Bezzina
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Benjamin Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, 415 Main St, 02412, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,185 Cambridge St, 02114, Boston, MA, USA
- Harvard Medical School, 25 Shattuck St, 02115, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| |
Collapse
|
7
|
Garcia-Pavia P, Lakdawala NK, Sinagra G, Ripoll-Vera T, Afshar K, Priori SG, Ware JS, Owens A, Li H, Angeli FS, Elliott P, MacRae CA, Judge DP. Characterization and natural history of patients with LMNA-related dilated cardiomyopathy in the phase 3 REALM-DCM trial. ESC Heart Fail 2024. [PMID: 39145700 DOI: 10.1002/ehf2.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS LMNA-related dilated cardiomyopathy (DCM) is a rare disease with an incompletely defined phenotype. The phase 3 REALM-DCM trial evaluated a potential disease-modifying therapy for LMNA-related DCM but was terminated due to futility without safety concern. This study utilized pooled data from REALM-DCM to descriptively characterize the phenotype and progression of LMNA-related DCM in a contemporary cohort of patients using common heart failure (HF) measures. METHODS REALM-DCM enrolled patients with stable LMNA-related DCM, an implanted cardioverter defibrillator or cardiac resynchronization therapy defibrillator, and New York Heart Association (NYHA) Class II/III HF symptoms. RESULTS Between 2018 and 2022, 77 patients took part in REALM-DCM. The median patient age was 53 years (range: 23-72), and 57% were male. Overall, 88% of patients had a pathogenic or likely pathogenic LMNA variant, and 12% had a variant of uncertain significance with a concordant phenotype. Among patients with confirmed sequencing, 55% had a missense variant. Atrial fibrillation was present in 60% of patients; 79% of all patients had NYHA Class II and 21% had NYHA Class III HF symptoms at baseline. Median (range) left ventricular ejection fraction (LVEF), 6 min walk test (6MWT) distance, Kansas City Cardiomyopathy Questionnaire Overall Summary (KCCQ-OS) score and N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration at baseline were 42% (23-62), 403 m (173-481), 67 (18-97) and 866 pg/mL (57-5248), respectively. LVEF, 6MWT distance and KCCQ-OS score were numerically lower in patients who had NYHA Class III versus II symptoms at baseline (LVEF: 38% vs. 43%; 6MWT distance: 326 vs. 413 m; and KCCQ-OS score: 43 vs. 70), whereas NT-proBNP concentration was higher (1216 vs. 799 pg/mL). Median follow-up was 73 weeks (range: 0.4-218; 73 in NYHA Class II and 75 in NYHA Class III). Patients displayed variable change from baseline in 6MWT, KCCQ-OS and NT-proBNP values during follow-up. Overall, 25% of patients experienced ventricular tachycardia, and 8% had ventricular fibrillation. Ten (13%) patients met the composite endpoint of worsening HF (adjudicated HF-related hospitalization or urgent care visit) or all-cause death; six had NYHA Class II and four had NYHA Class III at baseline. All-cause mortality occurred in 6 (8%) patients; three had NYHA Class II and three had NYHA Class III symptoms at baseline. CONCLUSIONS Findings confirm the significant morbidity and mortality associated with LMNA-related DCM despite the standard of care management. Typical measures of HF, including 6MWT distance, KCCQ-OS score and NT-proBNP concentration, were variable but correlated with NYHA class. An unmet treatment need remains among patients with LMNA-related DCM. NCT03439514.
Collapse
Affiliation(s)
- Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Madrid, Spain
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Tomas Ripoll-Vera
- Hospital Universitario Son Llatzer, Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Mallorca, Spain
- Department of Medicine, University of the Balearic Islands, Mallorca, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Kia Afshar
- Intermountain Heart Institute, Salt Lake City, Utah, USA
| | - Silvia G Priori
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- IRCCS Istituti Clinici Scientifici Maugeri SpA SB of Pavia, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - James S Ware
- National Heart & Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Anjali Owens
- University of Pennsylvania Heart and Vascular Center, Philadelphia, Pennsylvania, USA
| | - Huihua Li
- Pfizer Inc., Collegeville, Pennsylvania, USA
| | | | | | - Calum A MacRae
- Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Judge
- Cardiovascular Genetics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Arnautu DA, Cozma D, Lala IR, Arnautu SF, Tomescu MC, Andor M. Risk Assessment and Personalized Treatment Options in Inherited Dilated Cardiomyopathies: A Narrative Review. Biomedicines 2024; 12:1643. [PMID: 39200108 PMCID: PMC11351202 DOI: 10.3390/biomedicines12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the worldwide impact of heart failure, it is crucial to develop approaches that can help us comprehend its root cause and make accurate predictions about its outcome. This is essential for lowering the suffering and death rates connected with this widespread illness. Cardiomyopathies frequently result from genetic factors, and the study of heart failure genetics is advancing quickly. Dilated cardiomyopathy (DCM) is the most prevalent kind of cardiomyopathy, encompassing both genetic and nongenetic abnormalities. It is distinguished by the enlargement of the left ventricle or both ventricles, accompanied by reduced contractility. The discovery of the molecular origins and subsequent awareness of the molecular mechanism is broadening our knowledge of DCM development. Additionally, it emphasizes the complicated nature of DCM and the necessity to formulate several different strategies to address the diverse underlying factors contributing to this disease. Genetic variants that can be transmitted from one generation to another can be a significant contributor to causing family or sporadic hereditary DCM. Genetic variants also play a significant role in determining susceptibility for acquired triggers for DCM. The genetic causes of DCM can have a large range of phenotypic expressions. It is crucial to select patients who are most probable to gain advantages from genetic testing. The purpose of this research is to emphasize the significance of identifying genetic DCM, the relationships between genotype and phenotype, risk assessment, and personalized therapy for both those affected and their relatives. This approach is expected to gain importance once treatment is guided by genotype-specific advice and disease-modifying medications.
Collapse
Affiliation(s)
- Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan-Radu Lala
- Department of Cardiology, Western University Vasile Goldis, 310025 Arad, Romania
| | - Sergiu-Florin Arnautu
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Minodora Andor
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Mistrulli R, Ferrera A, Salerno L, Vannini F, Guida L, Corradetti S, Addeo L, Valcher S, Di Gioia G, Spera FR, Tocci G, Barbato E. Cardiomyopathy and Sudden Cardiac Death: Bridging Clinical Practice with Cutting-Edge Research. Biomedicines 2024; 12:1602. [PMID: 39062175 PMCID: PMC11275154 DOI: 10.3390/biomedicines12071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Sudden cardiac death (SCD) prevention in cardiomyopathies such as hypertrophic (HCM), dilated (DCM), non-dilated left ventricular (NDLCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) remains a crucial but complex clinical challenge, especially among younger populations. Accurate risk stratification is hampered by the variability in phenotypic expression and genetic heterogeneity inherent in these conditions. This article explores the multifaceted strategies for preventing SCD across a spectrum of cardiomyopathies and emphasizes the integration of clinical evaluations, genetic insights, and advanced imaging techniques such as cardiac magnetic resonance (CMR) in assessing SCD risks. Advanced imaging, particularly CMR, not only enhances our understanding of myocardial architecture but also serves as a cornerstone for identifying at-risk patients. The integration of new research findings with current practices is essential for advancing patient care and improving survival rates among those at the highest risk of SCD. This review calls for ongoing research to refine risk stratification models and enhance the predictive accuracy of both clinical and imaging techniques in the management of cardiomyopathies.
Collapse
Affiliation(s)
- Raffaella Mistrulli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Luigi Salerno
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Federico Vannini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Leonardo Guida
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Sara Corradetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
| | - Lucio Addeo
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Corso Umberto I, 40, 80138 Naples, Italy
| | - Stefano Valcher
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
- Cardiovascular Department, Humanitas University, Via Alessandro Manzoni, 56, 20089 Rozzano, Italy
| | - Giuseppe Di Gioia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy;
| | - Francesco Raffaele Spera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| |
Collapse
|
10
|
Hespe S, Gray B, Puranik R, Peters S, Sweeting J, Ingles J. The role of genetic testing in management and prognosis of individuals with inherited cardiomyopathies. Trends Cardiovasc Med 2024:S1050-1738(24)00053-7. [PMID: 39004295 DOI: 10.1016/j.tcm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Inherited cardiomyopathies are a heterogeneous group of heart muscle conditions where disease classification has traditionally been based on clinical characteristics. However, this does not always align with genotype. While there are well described challenges of genetic testing, understanding the role of genotype in patient management is increasingly required. We take a gene-by-gene approach, reviewing current evidence for the role of genetic testing in guiding prognosis and management of individuals with inherited cardiomyopathies. In particular, focusing on causal variants in genes definitively associated with arrhythmogenic cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy. This review identifies genotype-specific disease sub-groups with strong evidence supporting the use of genetics in clinical management and highlights that at present, the spectrum of clinical utility is not reflected in current guidelines. Of 13 guideline or expert consensus statements for management of cardiomyopathies, there are seven gene-specific therapeutic recommendations that have been published from four documents. Understanding how genotype influences phenotype provides evidence for the role of genetic testing for prognostic and therapeutic purposes, moving us closer to precision-medicine based care.
Collapse
Affiliation(s)
- Sophie Hespe
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Belinda Gray
- Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rajesh Puranik
- Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Joanna Sweeting
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
11
|
Koepsel K, Dreher TC, Blockhaus C, Gotzmann M, Klein N, Kuntz T, Shin DI, Lapp H, Schiedat F, Abumayyaleh M, Beiert T, Weth C, Kovacs B, Rosenkaimer S, Kowitz J, Saguner AM, Erath JW, Duru F, Mügge A, Akin I, Aweimer A, Hamdani N, El-Battrawy I. No beneficial use of the wearable cardioverter defibrillator among patients suffering from inherited and congenital heart disease: data from a European multicenter registry. Front Cardiovasc Med 2024; 11:1384736. [PMID: 39049954 PMCID: PMC11266015 DOI: 10.3389/fcvm.2024.1384736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Data on the use of the wearable cardioverter defibrillator in patients suffering from inherited and congenital heart disease are limited. Consequently, evidence for guideline recommendations in this patient population is lacking. Methods In total 1,675 patients were included in a multicenter registry of eight European centers. In the present cohort, we included 18 patients suffering from congenital and inherited heart disease. Results Nine patients (50%) were male with a mean age of 41.3 ± 16.4 years. Four patients suffered from hypertrophic cardiomyopathy (HCM), four patients suffered from non-compaction cardiomyopathy (NCCM), two patients were diagnosed with arrhythmogenic right ventricular cardiomyopathy (ARVC) and one patient suffered from muscular dystrophy of the limb-girdle type with cardiac involvement, secondary cardiomyopathy. Three patients presented with Brugada syndrome (BrS). One patient suffered from long-QT syndrome type 1 (LQTS1). Furthermore, two patients had congenital heart defects and one patient suffered from cardiac sarcoidosis (CS). There were no appropriate/inappropriate shocks with the WCD in this cohort. One patient had recurrent self-limiting sustained ventricular tachycardia during the wear time, but actively inhibited a shock and was hospitalized. The compliance rate in this cohort was 77.8% with a mean wear time of 45.3 ± 26.9 days with a mean follow-up time of 570 ± 734 days. 55.6% (10/18) of the patients received an ICD after WCD wear time. Conclusions This retrospective study of patients with inherited and congenital heart disease shows that WCD use is not beneficial in the majority of patients with inherited and congenital heart disease.
Collapse
Affiliation(s)
- Katharina Koepsel
- Department of Cellular and Translational Physiology and Institute für Forschung und Lehre (IFL), Institute of Physiology, Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University of Bochum, Bochum, Germany
| | - Tobias C. Dreher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Blockhaus
- Department of Cardiology, Heart Centre Niederrhein, Helios Clinic Krefeld, Krefeld, Germany
- Faculty of Health, School of Medicine, University Witten/Herdecke, Witten, Germany
| | - Michael Gotzmann
- Department of Cardiology and Rhythmology, University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
| | - Norbert Klein
- Department of Cardiology, Angiology and Internal Intensive-Care Medicine, Klinikum St. Georg GGmbH Leipzig, Leipzig, Germany
| | - Thomas Kuntz
- Department of Cardiology, Angiology and Internal Intensive-Care Medicine, Klinikum St. Georg GGmbH Leipzig, Leipzig, Germany
| | - Dong-In Shin
- Department of Cardiology, Heart Centre Niederrhein, Helios Clinic Krefeld, Krefeld, Germany
- Faculty of Health, School of Medicine, University Witten/Herdecke, Witten, Germany
| | - Hendrik Lapp
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, German
| | - Fabian Schiedat
- Department of Cardiology, Marienhospital Gelsenkirchen, Gelsenkirchen, Germany
| | - Mohammad Abumayyaleh
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Beiert
- Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, German
| | - Christian Weth
- Department of Cardiology and Angiology, Clinic Saarbrücken GGmbH, Saarbrücken, Germany
| | - Boldizsar Kovacs
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Rosenkaimer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jacqueline Kowitz
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Julia W. Erath
- Department of Cardiology, Frankfurt University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Mügge
- Department of Cellular and Translational Physiology and Institute für Forschung und Lehre (IFL), Institute of Physiology, Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University of Bochum, Bochum, Germany
- Department of Cardiology and Rhythmology, University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Assem Aweimer
- Department of Cellular and Translational Physiology and Institute für Forschung und Lehre (IFL), Institute of Physiology, Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology and Institute für Forschung und Lehre (IFL), Institute of Physiology, Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University of Bochum, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, Netherlands
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology and Institute für Forschung und Lehre (IFL), Institute of Physiology, Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
- Department of Cardiology and Rhythmology, University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Dal Ferro M, Paldino A, Gregorio C, Bessi R, Zaffalon D, De Angelis G, Severini GM, Stolfo D, Gigli M, Brun F, Massa L, Korcova R, Salvatore L, Bianco E, Mestroni L, Merlo M, Zecchin M, Sinagra G. Impact of DCM-Causing Genetic Background on Long-Term Response to Cardiac Resynchronization Therapy. JACC Clin Electrophysiol 2024; 10:1455-1464. [PMID: 38795101 DOI: 10.1016/j.jacep.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Patients with nonischemic dilated cardiomyopathy (DCM), severe left ventricular (LV) dysfunction, and complete left bundle branch block benefit from cardiac resynchronization therapy (CRT). However, a large heterogeneity of response to CRT is described. Several predictors of response to CRT have been identified, but the role of the underlying genetic background is still poorly explored. OBJECTIVES In the present study, the authors sought to define differences in LV remodeling and outcome prediction after CRT when stratifying patients according to the presence or absence of DCM-causing genetic background. METHODS From our center, 74 patients with DCM subjected to CRT and available genetic testing were retrospectively enrolled. Carriers of causative monogenic variants in validated DCM-causing genes, and/or with documented family history of DCM, were classified as affected by genetically determined disease (GEN+DCM) (n = 25). Alternatively, by idiopathic dilated cardiomyopathy (idDCM) (n = 49). The primary outcome was long-term LV remodeling and prevalence of super response to CRT (evaluated at 24-48 months after CRT); the secondary outcome was heart failure-related death/heart transplant/LV assist device. RESULTS GEN+DCM and idDCM patients were homogeneous at baseline with the exception of QRS duration, longer in idDCM. The median follow-up was 55 months. Long-term LV reverse remodeling and the prevalence of super response were significantly higher in the idDCM group (27% in idDCM vs 5% in GEN+DCM; P = 0.025). The heart failure-related death/heart transplant/LV assist device outcome occurred more frequently in patients with GEN+DCM (53% vs 24% in idDCM; P = 0.028). CONCLUSIONS Genotyping contributes to the risk stratification of patients with DCM undergoing CRT implantation in terms of LV remodeling and outcomes.
Collapse
Affiliation(s)
- Matteo Dal Ferro
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart).
| | - Alessia Paldino
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Caterina Gregorio
- Biostatistics Unit, University of Trieste, Trieste, Italy; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Riccardo Bessi
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Denise Zaffalon
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Giulia De Angelis
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Cardiology Department, Azienda Sanitaria Universitaria Friuli Occidentale (ASFO), Pordenone, Italy
| | | | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Marta Gigli
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Francesca Brun
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Laura Massa
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Renata Korcova
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Luca Salvatore
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Elisabetta Bianco
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Luisa Mestroni
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart); Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marco Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart); Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Massimo Zecchin
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy. Member of the European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart); Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Forleo C, Carella MC, Basile P, Carulli E, Dadamo ML, Amati F, Loizzi F, Sorrentino S, Dentamaro I, Dicorato MM, Ricci S, Bagnulo R, Iacoviello M, Santobuono VE, Caiati C, Pepe M, Desaphy JF, Ciccone MM, Resta N, Guaricci AI. Missense and Non-Missense Lamin A/C Gene Mutations Are Similarly Associated with Major Arrhythmic Cardiac Events: A 20-Year Single-Centre Experience. Biomedicines 2024; 12:1293. [PMID: 38927500 PMCID: PMC11201013 DOI: 10.3390/biomedicines12061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Arrhythmic risk stratification in patients with Lamin A/C gene (LMNA)-related cardiomyopathy influences clinical decisions. An implantable cardioverter defibrillator (ICD) should be considered in patients with an estimated 5-year risk of malignant ventricular arrhythmia (MVA) of ≥10%. The risk prediction score for MVA includes non-missense LMNA mutations, despite their role as an established risk factor for sudden cardiac death (SCD) has been questioned in several studies. The purpose of this study is to investigate cardiac features and find gene-phenotype correlations that would contribute to the evidence on the prognostic implications of non-missense vs. missense mutations in a cohort of LMNA mutant patients. An observational, prospective study was conducted in which 54 patients positive for a Lamin A/C mutation were enrolled, and 20 probands (37%) were included. The median age at first clinical manifestation was 41 (IQR 19) years. The median follow-up was 8 years (IQR 8). The type of LMNA gene mutation was distributed as follows: missense in 26 patients (48%), non-frameshift insertions in 16 (30%), frameshift deletions in 5 (9%), and nonsense in 7 (13%). Among the missense mutation carriers, two (8%) died and four (15%) were admitted onto the heart transplant list or underwent transplantation, with a major adverse cardiovascular event (MACE) rate of 35%. No statistically significant differences in MACE prevalence were identified according to the missense and non-missense mutation groups (p value = 0.847). Our data shift the spotlight on this considerable topic and could suggest that some missense mutations may deserve attention regarding SCD risk stratification in real-world clinical settings.
Collapse
Affiliation(s)
- Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Maria Cristina Carella
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
- Internal Medicine Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Paolo Basile
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
- Internal Medicine Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Eugenio Carulli
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
- Internal Medicine Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Luca Dadamo
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Francesca Amati
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Francesco Loizzi
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Sandro Sorrentino
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Ilaria Dentamaro
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Marco Maria Dicorato
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Stefano Ricci
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Rosanna Bagnulo
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (R.B.); (M.I.); (N.R.)
| | - Matteo Iacoviello
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (R.B.); (M.I.); (N.R.)
| | - Vincenzo Ezio Santobuono
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Carlo Caiati
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Martino Pepe
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Jean-Francois Desaphy
- Pharmacology Unit, Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (R.B.); (M.I.); (N.R.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| |
Collapse
|
14
|
Vlay SC. Cold case files: A tale of three sisters - solved by genetic testing with implications for LMNA cardiomyopathy. Pacing Clin Electrophysiol 2024; 47:711-713. [PMID: 38850393 DOI: 10.1111/pace.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Stephen C Vlay
- Division of Cardiology, Department of Medicine, SUNY Health Sciences Center, Stony Brook, New York, USA
| |
Collapse
|
15
|
Chmielewski P, Kowalik I, Truszkowska G, Michalak E, Ponińska J, Sadowska A, Kalin K, Jaworski K, Minota I, Krzysztoń-Russjan J, Zieliński T, Płoski R, Bilińska ZT. Troponin T Assessment Allows for Identification of Mutation Carriers among Young Relatives of Patients with LMNA-Related Dilated Cardiomyopathy. J Clin Med 2024; 13:3164. [PMID: 38892874 PMCID: PMC11172723 DOI: 10.3390/jcm13113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background:LMNA-related dilated cardiomyopathy (LMNA-DCM) caused by mutations in the lamin A/C gene (LMNA) is one of the most common forms of hereditary DCM. Due to the high risk of mutation transmission to offspring and the high incidence of ventricular arrhythmia and sudden death even before the onset of heart failure symptoms, it is very important to identify LMNA-mutation carriers. However, many relatives of LMNA-DCM patients do not report to specialized centers for clinical or genetic screening. Therefore, an easily available tool to identify at-risk subjects is needed. Methods: We compared two cohorts of young, asymptomatic relatives of DCM patients who reported for screening: 29 LMNA mutation carriers and 43 individuals from the control group. Receiver operating characteristic (ROC) curves for potential indicators of mutation carriership status were analyzed. Results: PR interval, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and high-sensitivity cardiac troponin T (hscTnT) serum levels were higher in the LMNA mutation carrier cohort. Neither group differed significantly with regard to creatinine concentration or left ventricular ejection fraction. The best mutation carriership discriminator was hscTnT level with an optimal cut-off value at 5.5 ng/L, for which sensitivity and specificity were 86% and 93%, respectively. The median hscTnT level was 11.0 ng/L in LMNA mutation carriers vs. <3.0 ng/L in the control group, p < 0.001. Conclusions: Wherever access to genetic testing is limited, LMNA mutation carriership status can be assessed reliably using the hscTnT assay. Among young symptomless relatives of LMNA-DCM patients, a hscTnT level >5.5 ng/L strongly suggests mutation carriers.
Collapse
Affiliation(s)
- Przemysław Chmielewski
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland; (P.C.); (E.M.)
| | - Ilona Kowalik
- Clinical Research Support Centre, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Grażyna Truszkowska
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Ewa Michalak
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland; (P.C.); (E.M.)
| | - Joanna Ponińska
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Agnieszka Sadowska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland; (P.C.); (E.M.)
| | - Katarzyna Kalin
- 1st Department of Arrhythmia, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Krzysztof Jaworski
- Department of Coronary Artery Disease and Cardiac Rehabilitation, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Ilona Minota
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | - Tomasz Zieliński
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Zofia Teresa Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland; (P.C.); (E.M.)
| |
Collapse
|
16
|
van der Lingen ALCJ, Verstraelen TE, van Erven L, Meeder JG, Theuns DA, Vernooy K, Wilde AAM, Maass AH, Allaart CP. Assessment of ICD eligibility in non-ischaemic cardiomyopathy patients: a position statement by the Task Force of the Dutch Society of Cardiology. Neth Heart J 2024; 32:190-197. [PMID: 38634993 DOI: 10.1007/s12471-024-01859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 04/19/2024] Open
Abstract
International guidelines recommend implantation of an implantable cardioverter-defibrillator (ICD) in non-ischaemic cardiomyopathy (NICM) patients with a left ventricular ejection fraction (LVEF) below 35% despite optimal medical therapy and a life expectancy of more than 1 year with good functional status. We propose refinement of these recommendations in patients with NICM, with careful consideration of additional risk parameters for both arrhythmic and non-arrhythmic death. These additional parameters include late gadolinium enhancement on cardiac magnetic resonance imaging and genetic testing for high-risk genetic variants to further assess arrhythmic risk, and age, comorbidities and sex for assessment of non-arrhythmic mortality risk. Moreover, several risk modifiers should be taken into account, such as concomitant arrhythmias that may affect LVEF (atrial fibrillation, premature ventricular beats) and resynchronisation therapy. Even though currently no valid cut-off values have been established, the proposed approach provides a more careful consideration of risks that may result in withholding ICD implantation in patients with low arrhythmic risk and substantial non-arrhythmic mortality risk.
Collapse
Affiliation(s)
- Anne-Lotte C J van der Lingen
- Department of Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom E Verstraelen
- Department of Cardiology, Heart Centre, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Lieselot van Erven
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joan G Meeder
- Department of Cardiology, VieCuri Medical Centre Noord-Limburg, Venlo, The Netherlands
| | - Dominic A Theuns
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Heart Centre, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, University Medical Centre Groningen, Heart Centre, University of Groningen, Groningen, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Vlay SC. Thirty-five-year follow-up of 3 generations of a family with LMNA cardiomyopathy. Heart Rhythm 2024; 21:696-697. [PMID: 38253159 DOI: 10.1016/j.hrthm.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Stephen C Vlay
- Cardiology Division, Department of Medicine, SUNY Health Sciences Center, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
18
|
Setti M, Merlo M, Gigli M, Munaretto L, Paldino A, Stolfo D, Pio Loco C, Medo K, Gregorio C, De Luca A, Graw S, Castrichini M, Cannatà A, Ribichini FL, Dal Ferro M, Taylor M, Sinagra G, Mestroni L. Role of arrhythmic phenotype in prognostic stratification and management of dilated cardiomyopathy. Eur J Heart Fail 2024; 26:581-589. [PMID: 38404225 DOI: 10.1002/ejhf.3168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
AIMS Dilated cardiomyopathy (DCM) with arrhythmic phenotype combines phenotypical aspects of DCM and predisposition to ventricular arrhythmias, typical of arrhythmogenic cardiomyopathy. The definition of DCM with arrhythmic phenotype is not universally accepted, leading to uncertainty in the identification of high-risk patients. This study aimed to assess the prognostic impact of arrhythmic phenotype in risk stratification and the correlation of arrhythmic markers with high-risk arrhythmogenic gene variants in DCM patients. METHODS AND RESULTS In this multicentre study, DCM patients with available genetic testing were analysed. The following arrhythmic markers, present at baseline or within 1 year of enrolment, were tested: unexplained syncope, rapid non-sustained ventricular tachycardia (NSVT), ≥1000 premature ventricular contractions/24 h or ≥50 ventricular couplets/24 h. LMNA, FLNC, RBM20, and desmosomal pathogenic or likely pathogenic gene variants were considered high-risk arrhythmogenic genes. The study endpoint was a composite of sudden cardiac death and major ventricular arrhythmias (SCD/MVA). We studied 742 DCM patients (45 ± 14 years, 34% female, 410 [55%] with left ventricular ejection fraction [LVEF] <35%). During a median follow-up of 6 years (interquartile range 1.6-12.1), unexplained syncope and NSVT were the only arrhythmic markers associated with SCD/MVA, and the combination of the two markers carried a significant additive risk of SCD/MVA, incremental to LVEF and New York Heart Association class. The probability of identifying an arrhythmogenic genotype rose from 8% to 30% if both early syncope and NSVT were present. CONCLUSION In DCM patients, the combination of early detected NSVT and unexplained syncope increases the risk of life-threatening arrhythmic outcomes and can aid the identification of carriers of malignant arrhythmogenic genotypes.
Collapse
MESH Headings
- Humans
- Female
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/complications
- Male
- Middle Aged
- Phenotype
- Prognosis
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Adult
- Risk Assessment/methods
- Syncope/genetics
- Syncope/etiology
- Syncope/physiopathology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/diagnosis
- Stroke Volume/physiology
- Tachycardia, Ventricular/genetics
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/diagnosis
- Genetic Testing/methods
Collapse
Affiliation(s)
- Martina Setti
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Marco Merlo
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Marta Gigli
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Laura Munaretto
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Alessia Paldino
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carola Pio Loco
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Kristen Medo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caterina Gregorio
- Biostatistics Unit, University of Trieste, Trieste, Italy
- MOX-Modeling and Scientific Computing Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Antonio De Luca
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Sharon Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matteo Castrichini
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Antonio Cannatà
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
- Department of Cardiovascular Sciences, King's College London, London, UK
| | | | - Matteo Dal Ferro
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Matthew Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gianfranco Sinagra
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Chen X, Luo G, Li H, Zheng J, Zhang Q, Liao H, Zhan X, Wei W, Liang Y, Deng H, Fang X, Wu S, Xue Y, Liu Y. High prevalence and distinctive clinical features of LMNA-associated atrioventricular block in young patients. Am Heart J 2024; 269:8-14. [PMID: 38048861 DOI: 10.1016/j.ahj.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND AND AIMS Atrioventricular block (AVB) is a degenerative disease and more commonly encountered in elderly patients, but unusual and often of unknown etiology in young patients. This study aimed to investigate the potential contributions of genetic variations to AVB of unknown reasons in young patients. METHODS We enrolled 41 patients aged <55 years with high-degree AVB of unknown etiology whose clinical and genetic data were collected. RESULTS Genetic variants were identified in 20 (20/41, 48.8%) patients, 11 (11/20, 55%) of whom had LMNA variants including 3 pathogenic (c.961C > T, c.936+1G > T and c.646C > T), 4 likely pathogenic (c.1489-1G > C, c.265C > A, c.1609-2A > G and c.1129C > T) and 3 of uncertain significance (c.1158-3C > G, c.776A > G and c.674G > T). Compared to those without LMNA variants, patients with LMNA variants demonstrated a later age at onset of AVB (41.45 ± 9.89 years vs 32.93 ± 12.07 years, P = .043), had more prevalent family history of cardiac events (81.8% vs 16.7%, P < .000), suffered more frequently atrial (81.8% vs 10.0%, P < .000) and ventricular (72.7% vs 10.0%, P < .000) arrhythmias, and were more significantly associated with enlargement of left atrium (39.91 ± 7.83 mm vs 34.30 ± 7.54 mm, P = .043) and left ventricle (53.27 ± 8.53 mm vs 47.77 ± 6.66 mm, P = .036). CONCLUSIONS Our findings provide insights into the genetic etiology of AVB in young patients. LMNA variants are predominant in genotype positive patients and relevant to distinctive phenotypic properties.
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guanhao Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hezhi Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianhong Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qianhuan Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongtao Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianzhang Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanhong Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianhong Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
20
|
Sultan A, Futyma P, Metzner A, Anic A, Richter S, Roten L, Badertscher P, Conte G, Chun JKR. Management of ventricular tachycardias: insights on centre settings, procedural workflow, endpoints, and implementation of guidelines-results from an EHRA survey. Europace 2024; 26:euae030. [PMID: 38363995 PMCID: PMC10872712 DOI: 10.1093/europace/euae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
Ventricular tachycardia (VT), and its occurrence, is still one of the main reasons for sudden cardiac death and, therefore, for increased mortality and morbidity foremost in patients with structural heart [Kahle A-K, Jungen C, Alken F-A, Scherschel K, Willems S, Pürerfellner H et al. Management of ventricular tachycardia in patients with ischaemic cardiomyopathy: contemporary armamentarium. Europace 2022;24:538-51]. Catheter ablation has become a safe and effective treatment option in patients with recurrent VT [Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 2020;17:e2-154]. Previous and current guidelines provide guidance on indication for VT ablation and risk assessment and evaluation of underlying disease. However, no uniform recommendation is provided regarding procedural strategies, timing of ablation, and centre setting. Therefore, these specifics seem to differ largely, and recent data are sparse. This physician-based European Heart Rhythm Association survey aims to deliver insights on not only infrastructural settings but also procedural specifics, applied technologies, ablation strategies, and procedural endpoints. Therefore, these findings might deliver a real-world scenario of VT management and potentially are of guidance for other centres.
Collapse
Affiliation(s)
- Arian Sultan
- Department of Electrophysiology, Heart Centre University Hospital Cologne, Germany
| | - Piotr Futyma
- St. Joseph’s Heart Rhythm Centre, Rzeszów, Poland
- Medical College, University of Rzeszów, Rzeszów, Poland
| | - Andreas Metzner
- Department of Cardiology, University Heart and Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ante Anic
- Department for Cardiovascular Diseases, University Hospital Centre Split, Spilt, Croatia
| | - Sergio Richter
- Division of Electrophysiology, Department of Internal Medicine and Cardiology, Heart Centre Dresden, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Laurent Roten
- Inselspital-Bern University Hospital, Department of Electrophysiology University of Bern, Bern, Switzerland
| | - Patrick Badertscher
- Inselspital-Bern University Hospital, Department of Electrophysiology University of Bern, Bern, Switzerland
| | - Giulio Conte
- Division of Cardiology, Cardiocentro Ticino (CCT), Lugano, Switzerland
| | - Julian K R Chun
- Cardioangiologisches Centrum Bethanien, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Báez-Ferrer N, Díaz-Flores-Estévez F, Pérez-Cejas A, Avanzas P, Lorca R, Abreu-González P, Domínguez-Rodríguez A. Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein. J Clin Med 2024; 13:660. [PMID: 38337354 PMCID: PMC10856282 DOI: 10.3390/jcm13030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Introduction: Dilated cardiomyopathy (DCM) mainly affects young individuals and is the main indication of heart transplantation. The variant c.77T>C (p.Val26Ala) of the gene coding for emerin (EMD) in chromosome Xq28 has been catalogued as a pathogenic variant for the development of DCM, exhibiting an X-linked inheritance pattern. (2) Methods: A retrospective study was conducted covering the period 2015-2023 in patients with DCM of genetic origin. The primary endpoint was patient age at onset of the first composite major cardiac event, in the form of a first episode of heart failure, malignant ventricular arrhythmia, or end-stage heart failure, according to the presence of truncating variant in titin gene (TTNtv) versus the p.Val26Ala mutation in the EMD protein. (3) Results: A total of 31 and 22 patients were included in the EMD group and TTNtv group, respectively. The primary endpoint was significantly higher in the EMD group, with a hazard ratio of 4.16 (95% confidence interval: 1.83-9.46; p = 0.001). At 55 years of age, all the patients in the EMD group had already presented heart failure, nine presented malignant ventricular arrhythmia (29%), and 13 required heart transplantation (42%). (4) Conclusions: DCM secondary to the c.77T>C (p.Val26Ala) mutation in the EMD gene is associated to an increased risk of major cardiac events compared to patients with DCM due to TTNtv, with a large proportion of transplanted patients in the fifth decade of life.
Collapse
Affiliation(s)
- Néstor Báez-Ferrer
- Cardiology Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Felícitas Díaz-Flores-Estévez
- Department of Genetics, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.D.-F.-E.); (A.P.-C.)
- Department of Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Antonia Pérez-Cejas
- Department of Genetics, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.D.-F.-E.); (A.P.-C.)
- Department of Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (P.A.); (R.L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (P.A.); (R.L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33003 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Pedro Abreu-González
- Physiology Department, Faculty of Medicine, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Alberto Domínguez-Rodríguez
- Cardiology Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, 38300 Tenerife, Spain
| |
Collapse
|
22
|
Corrado D, Anastasakis A, Basso C, Bauce B, Blomström-Lundqvist C, Bucciarelli-Ducci C, Cipriani A, De Asmundis C, Gandjbakhch E, Jiménez-Jáimez J, Kharlap M, McKenna WJ, Monserrat L, Moon J, Pantazis A, Pelliccia A, Perazzolo Marra M, Pillichou K, Schulz-Menger J, Jurcut R, Seferovic P, Sharma S, Tfelt-Hansen J, Thiene G, Wichter T, Wilde A, Zorzi A. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol 2024; 395:131447. [PMID: 37844667 DOI: 10.1016/j.ijcard.2023.131447] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late‑gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy.
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carina Blomström-Lundqvist
- Department of Cardiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis, Brussel - Vrije Universiteit Brussel, Belgium
| | - Estelle Gandjbakhch
- Sorbonne Universitè, APHP, Centre de Référence des Maladies Cardiaques héréditaires Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Maria Kharlap
- Department of cardiac arrhythmias, National Centre for Therapy and Preventive Medicine, Moscow, Petroverigsky, Russia
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Lorenzo Monserrat
- Cardiovascular Genetics, Medical Department, Dilemma Solutions SL, A Coruña, Spain
| | - James Moon
- CMR Service, Barts Heart Centre, University College London, United Kingdom
| | - Antonis Pantazis
- Inherited Cardiovascular Conditions services, The Royal Brompton and Harefield Hospitals, London, United Kingdom
| | | | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Kalliopi Pillichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Jeanette Schulz-Menger
- Charité, Universitätsmedizin Berlin, Campus Buch - ECRC and Helios Clinics, DZHK Partnersite Berlin, Germany
| | - Ruxandra Jurcut
- Expert Center for Rare Genetic Cardiovascular Diseases, Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", UMF "Carol Davila", Bucharest, Romania
| | - Petar Seferovic
- University of Belgrade, Faculty of Medicine and Heart Failure Center, Belgrade University Medical Center, Belgrade
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, United Kingdom
| | - Jacob Tfelt-Hansen
- Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gaetano Thiene
- University of Padua Medical School, ARCA Associazione Ricerche Cardiopatie Aritmiche ETS, Padova, Italy
| | - Thomas Wichter
- Dept. of Internal Medicine / Cardiology, Heart Center Osnabrück - Bad Rothenfelde, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Amsterdam, the Netherlands
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| |
Collapse
|
23
|
Houweling AC, Lekanne Deprez RH, Wilde AAM. Human Genetics of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:977-990. [PMID: 38884765 DOI: 10.1007/978-3-031-44087-8_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The identification of a disease-causing variant in a patient diagnosed with cardiomyopathy allows for presymptomatic testing in at risk relatives. Carriers of a pathogenic variant can subsequently be screened at intervals by a cardiologist to assess the risk for potentially life-threatening arrhythmias which can be life-saving. In addition, gene-specific recommendations for risk stratification and disease specific pharmacological options for therapy are beginning to emerge. The large variability in disease penetrance, symptoms, and prognosis, and in some families even in cardiomyopathy subtype, makes genetic counseling both of great importance and complicated.
Collapse
Affiliation(s)
- Arjan C Houweling
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Argentiero A, Carella MC, Mandunzio D, Greco G, Mushtaq S, Baggiano A, Fazzari F, Fusini L, Muscogiuri G, Basile P, Siena P, Soldato N, Napoli G, Santobuono VE, Forleo C, Garrido EC, Di Marco A, Pontone G, Guaricci AI. Cardiac Magnetic Resonance as Risk Stratification Tool in Non-Ischemic Dilated Cardiomyopathy Referred for Implantable Cardioverter Defibrillator Therapy-State of Art and Perspectives. J Clin Med 2023; 12:7752. [PMID: 38137821 PMCID: PMC10743710 DOI: 10.3390/jcm12247752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) is a disease characterized by left ventricular dilation and systolic dysfunction. Patients with DCM are at higher risk for ventricular arrhythmias and sudden cardiac death (SCD). According to current international guidelines, left ventricular ejection fraction (LVEF) ≤ 35% represents the main indication for prophylactic implantable cardioverter defibrillator (ICD) implantation in patients with DCM. However, LVEF lacks sensitivity and specificity as a risk marker for SCD. It has been seen that the majority of patients with DCM do not actually benefit from the ICD implantation and, on the contrary, that many patients at risk of SCD are not identified as they have preserved or mildly depressed LVEF. Therefore, the use of LVEF as unique decision parameter does not maximize the benefit of ICD therapy. Multiple risk factors used in combination could likely predict SCD risk better than any single risk parameter. Several predictors have been proposed including genetic variants, electric indexes, and volumetric parameters of LV. Cardiac magnetic resonance (CMR) can improve risk stratification thanks to tissue characterization sequences such as LGE sequence, parametric mapping, and feature tracking. This review evaluates the role of CMR as a risk stratification tool in DCM patients referred for ICD.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Maria Cristina Carella
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Donato Mandunzio
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Giulia Greco
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Fabio Fazzari
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
| | | | - Paolo Basile
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Paola Siena
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Nicolò Soldato
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Gianluigi Napoli
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Cinzia Forleo
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| | - Eduard Claver Garrido
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (E.C.G.); (A.D.M.)
- Department of Cardiology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Andrea Di Marco
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (E.C.G.); (A.D.M.)
- Department of Cardiology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (A.B.); (F.F.); (L.F.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (A.A.); (M.C.C.); (D.M.); (G.G.); (P.B.); (P.S.); (N.S.); (G.N.); (V.E.S.); (C.F.)
| |
Collapse
|
25
|
Rosario KF, Karra R, Amos K, Landstrom AP, Lakdawala NK, Brezitski K, Kim H, Devore AD. LMNA Cardiomyopathy: Important Considerations for the Heart Failure Clinician. J Card Fail 2023; 29:1657-1666. [PMID: 37659618 DOI: 10.1016/j.cardfail.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND A diagnosis of Lamin proteins A and C cardiomyopathy (LMNA-CM) not only impacts disease prognosis, but also leads to specific guideline-recommended treatment options for these patients. This etiology is fundamentally different from other genetic causes of dilated CM. METHODS AND RESULTS LMNA-CM often presents early in the third to fourth decades and there is an age-dependent penetrance of nearly 90% among those with a positive genotype for LMNA-CM. Oftentimes, electrical abnormalities with either conduction disturbances and/or either atrial or ventricular arrhythmias manifest before there is imaging evidence of left ventricular dysfunction. Given these subtle early findings, cardiac magnetic resonance provides helpful guidance regarding patterns of enhancement associated with LMNA-CM, often before there is significant left ventricular dilation and/or a decrease in the ejection fraction and could be used for further understanding of risk stratification and prognosis of asymptomatic genotype-positive individuals. Among symptomatic patients with LMNA-CM, approximately one-quarter of individuals progress to needing advanced heart failure therapies such as heart transplantation. CONCLUSIONS In the era of precision medicine, increased recognition of clinical findings associated with LMNA-CM and increased detection by genetic testing among patients with idiopathic nonischemic CM is of increasing importance. Not only does a diagnosis of LMNA-CM have implications for management and risk stratification, but new gene-based therapies continue to be evaluated for this group. Clinicians must be aware not only of the general indications for genetic testing in arrhythmogenic and dilated cardiomyopathies and of when to suspect LMNA-CM, but also of the clinical trials underway targeted toward the different genetic cardiomyopathies.
Collapse
Affiliation(s)
| | - Ravi Karra
- Duke University Medical Center, Durham, North Carolina
| | - Kaitlyn Amos
- Duke University Medical Center, Durham, North Carolina
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kyla Brezitski
- Duke University School of Medicine, Durham, North Carolina
| | - Han Kim
- Duke University Medical Center, Durham, North Carolina
| | - Adam D Devore
- Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
26
|
Zeppenfeld K, Kimura Y, Ebert M. Mapping and Ablation of Ventricular Tachycardia in Inherited Left Ventricular Cardiomyopathies. JACC Clin Electrophysiol 2023:S2405-500X(23)00816-2. [PMID: 38127011 DOI: 10.1016/j.jacep.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Advances in the field of human genetics have led to an accumulating understanding of the genetic basis of distinct nonischemic cardiomyopathies associated with ventricular tachycardias (VTs) and sudden cardiac death. To date, there is an increasing proportion of patients with inherited cardiomyopathies requiring catheter ablation for VTs. This review provides an overview of disease-causing gene mutations frequently encountered and relevant for clinical electrophysiologists. Available data on VT ablation in patients with an inherited etiology and a phenotype of a nondilated left ventricular cardiomyopathy, dilated cardiomyopathy, or hypertrophic cardiomyopathy are summarized. VTs amenable to catheter ablation are related to nonischemic fibrosis. Recent insights into genotype-phenotype relations of subtype and location of fibrosis have important implications for treatment planning. Current strategies to delineate nonischemic fibrosis and related arrhythmogenic substrates using multimodal imaging, image integration, and electroanatomical mapping are provided. The ablation approach depends on substrate location and extension. Related procedural aspects including patient-tailored (enhanced) ablation strategies and outcomes are outlined. Challenging substrates for VT and the underlying inherited etiologies with a high risk for rapid progressive heart failure contribute to poor outcomes after catheter ablation. Electroanatomical data obtained during ablation may allow the identification of patients at particular risk who need to be considered for early work-up for left ventricular assist device implantation or heart transplantation.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Willem Einthoven Center of Arrhythmia Research and Management, Leiden, the Netherlands, and Aarhus, Denmark.
| | - Yoshitaka Kimura
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Willem Einthoven Center of Arrhythmia Research and Management, Leiden, the Netherlands, and Aarhus, Denmark
| | - Micaela Ebert
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Division of Electrophysiology, Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Cardiol Clin 2023; 41:545-555. [PMID: 37743077 DOI: 10.1016/j.ccl.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
29
|
Seferović PM, Polovina M, Rosano G, Bozkurt B, Metra M, Heymans S, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Olivotto I, Rapezzi C, Linhart A, Corrado D, Tschöpe C, Milinković I, Bayes Genis A, Filippatos G, Keren A, Ašanin M, Krljanac G, Maksimović R, Skouri H, Ben Gal T, Moura B, Volterrani M, Abdelhamid M, Lopatin Y, Chioncel O, Coats AJS. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur J Heart Fail 2023; 25:1899-1922. [PMID: 37470300 DOI: 10.1002/ejhf.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Cardiomyopathies represent significant contributors to cardiovascular morbidity and mortality. Over the past decades, a progress has occurred in characterization of the genetic background and major pathophysiological mechanisms, which has been incorporated into a more nuanced diagnostic approach and risk stratification. Furthermore, medications targeting core disease processes and/or their downstream adverse effects have been introduced for several cardiomyopathies. Combined with standard care and prevention of sudden cardiac death, these novel and emerging targeted therapies offer a possibility of improving the outcomes in several cardiomyopathies. Therefore, the aim of this document is to summarize practical approaches to the treatment of cardiomyopathies, which includes the evidence-based novel therapeutic concepts and established principles of care, tailored to the individual patient aetiology and clinical presentation of the cardiomyopathy. The scope of the document encompasses contemporary treatment of dilated, hypertrophic, restrictive and arrhythmogenic cardiomyopathy. It was based on an expert consensus reached at the Heart Failure Association online Workshop, held on 18 March 2021.
Collapse
Affiliation(s)
- Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Biykem Bozkurt
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute, Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children's Hospital and Careggi University Hospital, Florence, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Aleš Linhart
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Milinković
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antoni Bayes Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ružica Maksimović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Center for Radiology and Magnetic Resonance, University Clinical Center of Serbia, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu' Bucharest; University for Medicine and Pharmacy 'Carol Davila' Bucharest, Bucharest, Romania
| | | |
Collapse
|
30
|
Palmieri G, D’Ambrosio MF, Correale M, Brunetti ND, Santacroce R, Iacoviello M, Margaglione M. The Role of Genetics in the Management of Heart Failure Patients. Int J Mol Sci 2023; 24:15221. [PMID: 37894902 PMCID: PMC10607512 DOI: 10.3390/ijms242015221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Over the last decades, the relevance of genetics in cardiovascular diseases has expanded, especially in the context of cardiomyopathies. Its relevance extends to the management of patients diagnosed with heart failure (HF), given its capacity to provide invaluable insights into the etiology of cardiomyopathies and identify individuals at a heightened risk of poor outcomes. Notably, the identification of an etiological genetic variant necessitates a comprehensive evaluation of the family lineage of the affected patients. In the future, these genetic variants hold potential as therapeutic targets with the capability to modify gene expression. In this complex setting, collaboration among cardiologists, specifically those specializing in cardiomyopathies and HF, and geneticists becomes paramount to improving individual and family health outcomes, as well as therapeutic clinical results. This review is intended to offer geneticists and cardiologists an updated perspective on the value of genetic research in HF and its implications in clinical practice.
Collapse
Affiliation(s)
- Gianpaolo Palmieri
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Maria Francesca D’Ambrosio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| | - Michele Correale
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Natale Daniele Brunetti
- School of Cardiology, Department of Medical and Surgical Sciences, University of Foggia, 70122 Foggia, Italy; (G.P.); (M.C.); (N.D.B.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| | - Massimo Iacoviello
- University Cardiology Unit, Polyclinic Hospital of Bari, 70124 Bari, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.F.D.); (R.S.); (M.M.)
| |
Collapse
|
31
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 440] [Impact Index Per Article: 440.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
32
|
Tan K, Foo R, Loh M. Cardiomyopathy in Asian Cohorts: Genetic and Epigenetic Insights. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:496-506. [PMID: 37589150 DOI: 10.1161/circgen.123.004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Previous studies on cardiomyopathies have been particularly valuable for clarifying pathological mechanisms in heart failure, an etiologically heterogeneous disease. In this review, we specifically focus on cardiomyopathies in Asia, where heart failure is particularly pertinent. There has been an increase in prevalence of cardiomyopathies in Asia, in sharp contrast with the decline observed in Western countries. Indeed, important disparities in cardiomyopathy incidence, clinical characteristics, and prognosis have been reported in Asian versus White cohorts. These have been accompanied by emerging descriptions of a distinct rare and common genetic basis for disease among Asian cardiomyopathy patients marked by an increased burden of variants with uncertain significance, reclassification of variants deemed pathogenic based on evidence from predominantly White cohorts, and the discovery of Asian-specific cardiomyopathy-associated loci with underappreciated pathogenicity under conventional classification criteria. Findings from epigenetic studies of heart failure, particularly DNA methylation studies, have complemented genetic findings in accounting for the phenotypic variability in cardiomyopathy. Though extremely limited, findings from Asian ancestry-focused DNA methylation studies of cardiomyopathy have shown potential to contribute to general understanding of cardiomyopathy pathophysiology by proposing disease and cause-relevant pathophysiological mechanisms. We discuss the value of multiomics study designs incorporating genetic, methylation, and transcriptomic information for future DNA methylation studies in Asian cardiomyopathy cohorts to yield Asian ancestry-specific insights that will improve risk stratification in the Asian population.
Collapse
Affiliation(s)
- Konstanze Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore (K.T., M.L.)
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore (R.F.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore (R.F.)
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore (K.T., M.L.)
- Genome Institute of Singapore, Singapore (GIS), Agency for Science, Technology and Research (A*STAR) (M.L.)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (M.L.)
- National Skin Centre, Singapore (M.L.)
| |
Collapse
|
33
|
Wong J, Peters S, Marwick TH. Phenotyping heart failure by genetics and associated conditions. Eur Heart J Cardiovasc Imaging 2023; 24:1293-1301. [PMID: 37279791 DOI: 10.1093/ehjci/jead125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Heart failure is a highly heterogeneous disease, and genetic testing may allow phenotypic distinctions that are incremental to those obtainable from imaging. Advances in genetic testing have allowed for the identification of deleterious variants in patients with specific heart failure phenotypes (dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and hypertrophic cardiomyopathy), and many of these have specific treatment implications. The diagnostic yield of genetic testing in heart failure is modest, and many rare variants are associated with incomplete penetrance and variable expressivity. Environmental factors and co-morbidities have a large role in the heterogeneity of the heart failure phenotype. Future endeavours should concentrate on the cumulative impact of genetic polymorphisms in the development of heart failure.
Collapse
Affiliation(s)
- Joshua Wong
- Baker Heart and Diabetes Institute and Department of Cardiometabolic Health, University of Melbourne, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Stacey Peters
- Baker Heart and Diabetes Institute and Department of Cardiometabolic Health, University of Melbourne, PO Box 6492, Melbourne, VIC 3004, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute and Department of Cardiometabolic Health, University of Melbourne, PO Box 6492, Melbourne, VIC 3004, Australia
| |
Collapse
|
34
|
Bui QM, Ding J, Hong KN, Adler EA. The Genetic Evaluation of Dilated Cardiomyopathy. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2023; 7:100200. [PMID: 37745678 PMCID: PMC10512006 DOI: 10.1016/j.shj.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure and is the primary indication for heart transplantation. A genetic etiology can be found in 20-35% of patients with DCM, especially in those with a family history of cardiomyopathy or sudden cardiac death at an early age. With advancements in genome sequencing, the understanding of genotype-phenotype relationships in DCM has expanded with over 60 genes implicated in the disease. Subsequently, these findings have increased adoption of genetic testing in the management of DCM, which has allowed for improved risk stratification and identification of at risk family members. In this review, we discuss the genetic evaluation of DCM with a focus on practical genetic testing considerations, genotype-phenotype associations, and insights into upcoming personalized therapies.
Collapse
Affiliation(s)
- Quan M. Bui
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey Ding
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Kimberly N. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric A. Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Desai YB, Parikh VN. Genetic Risk Stratification in Arrhythmogenic Left Ventricular Cardiomyopathy. Card Electrophysiol Clin 2023; 15:391-399. [PMID: 37558308 DOI: 10.1016/j.ccep.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Arrhythmogenic left ventricular cardiomyopathy is characterized by early malignant ventricular arrhythmia associated with varying degrees and times of onset of left ventricular dysfunction. Variants in numerous genes have been associated with this phenotype. Here, the authors review the literature on recent cohort studies of patients with variants in desmoplakin, lamin A/C, filamin-C, phospholamban, RBM20, TMEM43, and selected channelopathy genes also associated with structural disease. Unlike traditional sudden cardiac death risk assessment in nonischemic cardiomyopathy, left ventricular systolic function is an insensitive predictor of risk in patients with these genetic diagnoses.
Collapse
Affiliation(s)
- Yaanik B Desai
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Falk CRVC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Victoria N Parikh
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Falk CRVC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Moura B, Aimo A, Al-Mohammad A, Keramida K, Ben Gal T, Dorbala S, Todiere G, Cameli M, Barison A, Bayes-Genis A, von Bardeleben RS, Bucciarelli-Ducci C, Delgado V, Mordi IR, Seferovic P, Savarese G, Čelutkienė J, Rapezzi C, Emdin M, Coats A, Metra M, Rosano G. Diagnosis and management of patients with left ventricular hypertrophy: Role of multimodality cardiac imaging. A scientific statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2023; 25:1493-1506. [PMID: 37581253 DOI: 10.1002/ejhf.2997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
Left ventricular (LV) hypertrophy consists in an increased LV wall thickness. LV hypertrophy can be either secondary, in response to pressure or volume overload, or primary, i.e. not explained solely by abnormal loading conditions. Primary LV hypertrophy may be due to gene mutations or to the deposition or storage of abnormal substances in the extracellular spaces or within the cardiomyocytes (more appropriately defined as pseudohypertrophy). LV hypertrophy is often a precursor to subsequent development of heart failure. Cardiovascular imaging plays a key role in the assessment of LV hypertrophy. Echocardiography, the first-line imaging technique, allows a comprehensive assessment of LV systolic and diastolic function. Cardiovascular magnetic resonance provides added value as it measures accurately LV and right ventricular volumes and mass and characterizes myocardial tissue properties, which may provide important clues to the final diagnosis. Additionally, scintigraphy with bone tracers is included in the diagnostic algorithm of cardiac amyloidosis. Once the diagnosis is established, imaging findings may help predict future disease evolution and inform therapy and follow-up. This consensus document by the Heart Failure Association of the European Society of Cardiology provides an overview of the role of different cardiac imaging techniques for the differential diagnosis and management of patients with LV hypertrophy.
Collapse
Affiliation(s)
- Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | - Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Abdallah Al-Mohammad
- South Yorkshire Cardiothoracic Centre (Northern General Hospital), Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kalliopi Keramida
- Cardiology Department, General Anti-Cancer, Oncological Hospital Agios Savvas, Athens, Greece
| | - Tuvia Ben Gal
- Rabin Medical Center, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharmila Dorbala
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Giancarlo Todiere
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Matteo Cameli
- Cardiology Division, University Hospital of Siena, Siena, Italy
| | | | - Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | | | | | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Petar Seferovic
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Jelena Čelutkienė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Michele Emdin
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Porto, Portugal
| | | | - Marco Metra
- Cardiology, ASST Spedali Civili and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | |
Collapse
|
37
|
Toyosaki E, Mochizuki Y, Den H, Ichikawa S, Miyazaki H, Chino S, Hachiya R, Fukuoka H, Kokaze A, Matsuyama T, Shinke T. Relationship Between Results of Pathological Evaluation of Endomyocardial Biopsy and Echocardiographic Indices in Patients With Non-Ischemic Cardiomyopathy. Circ Rep 2023; 5:331-337. [PMID: 37564876 PMCID: PMC10411993 DOI: 10.1253/circrep.cr-23-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Endomyocardial biopsy (EMB) is a useful modality in diagnosing the origin of cardiomyopathy and the condition of the impaired myocardium. However, the usefulness of obtaining an EMB from the right and left ventricles (RV and LV, respectively), and its associations with echocardiographic parameters, have not been explored. Methods and Results: Ninety-five consecutive patients with non-ischemic cardiomyopathy excluding myocarditis who underwent EMB between July 2017 and May 2019 were studied. Seventy-nine RV and 93 LV biopsy specimens were pathologically analyzed. The relationships among echocardiographic data before EMB and pathologically measured cardiomyocyte diameter (CMD) and interstitial fibrosis (IF) were evaluated. CMD in both LV and RV specimens correlated with echocardiographic LV morphology, but only CMD in the LV was significantly correlated with cardiac function evaluation, including LV ejection fraction, E' and E/E'. In contrast, there were no significant correlations between IF in either the LV or RV and any echocardiographic parameters measured. Furthermore, CMD of both ventricles was significantly correlated with B-type natriuretic peptide (BNP) concentration at EMB, whereas IF of the LV was barely related and IF of the RV was not significantly correlated with BNP concentrations. Conclusions: Pathologically evaluated CMD of EMB specimens of the LV may be more related to functional parameters for heart failure status and LV geometry on echocardiographic examination, than IF.
Collapse
Affiliation(s)
- Eiji Toyosaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Yasuhide Mochizuki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Hiroki Den
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Tokyo Japan
| | - Saaya Ichikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Haruka Miyazaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Saori Chino
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Rumi Hachiya
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Hiroto Fukuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Akatsuki Kokaze
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Tokyo Japan
| | | | - Toshiro Shinke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| |
Collapse
|
38
|
Porta-Sánchez A, Priori SG. Genetic Abnormalities of the Sinoatrial Node and Atrioventricular Conduction. Cardiol Clin 2023; 41:333-347. [PMID: 37321685 DOI: 10.1016/j.ccl.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The peculiar electrophysiological properties of the sinoatrial node and the cardiac conduction system are key components of the normal physiology of cardiac impulse generation and propagation. Multiple genes and transcription factors and metabolic proteins are involved in their development and regulation. In this review, we have summarized the genetic underlying causes, key clinical findings, and the latest available clinical evidence. We will discuss clinical diagnosis and management of the genetic conditions associated with conduction disorders that are more prevalent in clinical practice, for this reason, very rare genetic diseases presenting sinus node or cardiac conduction system abnormalities are not discussed.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Cardiología Molecular, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, Spain; Departamento de Cardiología, Unidad de Arritmias, Hospital Universitario Quironsalud Madrid, Spain; Departamento de Medicina, Universidad Europea de Madrid, Spain
| | - Silvia Giuliana Priori
- Cardiología Molecular, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, Spain; Molecular Medicine Department, University of Pavia, Italy; Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy.
| |
Collapse
|
39
|
Del Monte-Monge A, Ruiz-Polo de Lara Í, Gonzalo P, Espinós-Estévez C, González-Amor M, de la Fuente-Pérez M, Andrés-Manzano MJ, Fanjul V, Gimeno JR, Barriales-Villa R, Dorado B, Andrés V. Lamin A/C Ablation Restricted to Vascular Smooth Muscle Cells, Cardiomyocytes, and Cardiac Fibroblasts Causes Cardiac and Vascular Dysfunction. Int J Mol Sci 2023; 24:11172. [PMID: 37446344 DOI: 10.3390/ijms241311172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Íñigo Ruiz-Polo de Lara
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carla Espinós-Estévez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María González-Amor
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel de la Fuente-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Juan R Gimeno
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiac Department, Hospital Clínico Universitario Virgen Arrixaca, 30120 Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario A Coruña (INIBIC-CHUAC), 15006 A Coruña, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
40
|
Lubin SR, Paulraj S, Ahmed J. Lamin A/C cardiomyopathy presenting as high-grade atrioventricular (AV) block, atrial fibrillation, heart failure and ventricular tachycardia in a single-family cluster. BMJ Case Rep 2023; 16:e255605. [PMID: 37348923 PMCID: PMC10314414 DOI: 10.1136/bcr-2023-255605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Mutations in the lamin A/C (LMNA) gene have been associated with both cardiac and skeletal muscle abnormalities. Cardiac manifestations in LMNA cardiomyopathy have a variable age of onset and range from mild to life-threatening. We describe a case series illustrating manifestations of LMNA mutation in a single family with an extensive history of cardiac disease, including sudden cardiac death, and the implications for diagnosis and management. This discussion highlights potential presentations of LMNA mutations and the importance of genetic testing in patients with a family history of conduction abnormalities.
Collapse
Affiliation(s)
| | - Shweta Paulraj
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamal Ahmed
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
41
|
Silvetti E, Lanza O, Romeo F, Martino A, Fedele E, Lanzillo C, Crescenzi C, Fanisio F, Calò L. The pivotal role of ECG in cardiomyopathies. Front Cardiovasc Med 2023; 10:1178163. [PMID: 37404739 PMCID: PMC10315483 DOI: 10.3389/fcvm.2023.1178163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of pathologies characterized by structural and functional alterations of the heart. Recent technological advances in cardiovascular imaging offer an opportunity for deep phenotypic and etiological definition. Electrocardiogram (ECG) is the first-line diagnostic tool in the evaluation of both asymptomatic and symptomatic individuals. Some electrocardiographic signs are pathognomonic or fall within validated diagnostic criteria of individual cardiomyopathy such as the inverted T waves in right precordial leads (V1-V3) or beyond in individuals with complete pubertal development in the absence of complete right bundle branch block for the diagnosis of arrhythmogenic cardiomyopathy of the right ventricle (ARVC) or the presence of low voltages typically seen in more than 60% of patients with amyloidosis. Most other electrocardiographic findings such as the presence of depolarization changes including QRS fragmentation, the presence of epsilon wave, the presence of reduced or increased voltages as well as alterations in the repolarization phase including the negative T waves in the lateral leads, or the profound inversion of the T waves or downsloping of the ST tract are more non-specific signs which can however raise the clinical suspicion of cardiomyopathy in order to initiate a diagnostic procedure especially using imaging techniques for diagnostic confirmation. Such electrocardiographic alterations not only have a counterpart in imaging investigations such as evidence of late gadolinium enhancement on magnetic resonance imaging, but may also have an important prognostic value once a definite diagnosis has been made. In addition, the presence of electrical stimulus conduction disturbances or advanced atrioventricular blocks that can be seen especially in conditions such as cardiac amyloidosis or sarcoidosis, or the presence of left bundle branch block or posterior fascicular block in dilated or arrhythmogenic left ventricular cardiomyopathies are recognized as a possible expression of advanced pathology. Similarly, the presence of ventricular arrhythmias with typical patterns such as non-sustained or sustained ventricular tachycardia of LBBB morphology in ARVC or non-sustained or sustained ventricular tachycardia with an RBBB morphology (excluding the "fascicular pattern") in arrhythmogenic left ventricle cardiomyopathy could have a significant impact on the course of each disease. It is therefore clear that a learned and careful interpretation of ECG features can raise suspicion of the presence of a cardiomyopathy, identify diagnostic "red flags" useful for orienting the diagnosis toward specific forms, and provide useful tools for risk stratification. The purpose of this review is to emphasize the important role of the ECG in the diagnostic workup, describing the main ECG findings of different cardiomyopathies.
Collapse
|
42
|
Pietrafesa G, De Zio R, Scorza SI, Armentano MF, Pepe M, Forleo C, Procino G, Gerbino A, Svelto M, Carmosino M. Targeting unfolded protein response reverts ER stress and ER Ca 2+ homeostasis in cardiomyocytes expressing the pathogenic variant of Lamin A/C R321X. J Transl Med 2023; 21:340. [PMID: 37217929 DOI: 10.1186/s12967-023-04170-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND We previously demonstrated that an Italian family affected by a severe dilated cardiomyopathy (DCM) with history of sudden deaths at young age, carried a mutation in the Lmna gene encoding for a truncated variant of the Lamin A/C protein (LMNA), R321X. When expressed in heterologous systems, such variant accumulates into the endoplasmic reticulum (ER), inducing the activation of the PERK-CHOP pathway of the unfolded protein response (UPR), ER dysfunction and increased rate of apoptosis. The aim of this work was to analyze whether targeting the UPR can be used to revert the ER dysfunction associated with LMNA R321X expression in HL-1 cardiac cells. METHODS HL-1 cardiomyocytes stably expressing LMNA R321X were used to assess the ability of 3 different drugs targeting the UPR, salubrinal, guanabenz and empagliflozin to rescue ER stress and dysfunction. In these cells, the state of activation of both the UPR and the pro-apoptotic pathway were analyzed monitoring the expression levels of phospho-PERK, phospho-eIF2α, ATF4, CHOP and PARP-CL. In addition, we measured ER-dependent intracellular Ca2+ dynamics as indicator of proper ER functionality. RESULTS We found that salubrinal and guanabenz increased the expression levels of phospho-eIF2α and downregulated the apoptosis markers CHOP and PARP-CL in LMNA R321X-cardiomyocytes, maintaining the so-called adaptive UPR. These drugs also restored ER ability to handle Ca2+ in these cardiomyocytes. Interestingly, we found that empagliflozin downregulated the apoptosis markers CHOP and PARP-CL shutting down the UPR itself through the inhibition of PERK phosphorylation in LMNA R321X-cardiomyocytes. Furthermore, upon empagliflozin treatment, ER homeostasis, in terms of ER ability to store and release intracellular Ca2+ was also restored in these cardiomyocytes. CONCLUSIONS We provided evidence that the different drugs, although interfering with different steps of the UPR, were able to counteract pro-apoptotic processes and to preserve the ER homeostasis in R321X LMNA-cardiomyocytes. Of note, two of the tested drugs, guanabenz and empagliflozin, are already used in the clinical practice, thus providing preclinical evidence for ready-to-use therapies in patients affected by the LMNA R321X associated cardiomyocytes.
Collapse
Affiliation(s)
- Giusy Pietrafesa
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Roberta De Zio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Simona Ida Scorza
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | | | - Martino Pepe
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy.
| |
Collapse
|
43
|
Lazzeroni D, Crocamo A, Ziveri V, Notarangelo MF, Rizzello D, Spoladori M, Donelli D, Cacciola G, Ardissino D, Niccoli G, Peretto G. Personalized Management of Sudden Death Risk in Primary Cardiomyopathies: From Clinical Evaluation and Multimodality Imaging to Ablation and Cardioverter-Defibrillator Implant. J Pers Med 2023; 13:jpm13050877. [PMID: 37241047 DOI: 10.3390/jpm13050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Sudden cardiac death represents the leading cause of death worldwide; although the majority of sudden deaths occur in an elderly population with coronary artery disease, some occur in young and otherwise healthy individuals, as is the case of cardiomyopathies. The aim of the present review is to provide a stepwise hierarchical approach for the global sudden death risk estimation in primary cardiomyopathies. Each individual risk factor is analyzed for its contribution to the overall risk of sudden death for each specific cardiomyopathy as well as across all primary myocardial diseases. This stepwise hierarchical and personalized approach starts from the clinical evaluation, subsequently passes through the role of electrocardiographic monitoring and multimodality imaging, and finally concludes with genetic evaluation and electro-anatomical mapping. In fact, the sudden cardiac death risk assessment in cardiomyopathies depends on a multiparametric approach. Moreover, current indications for ventricular arrhythmia ablation and defibrillator implantation are discussed.
Collapse
Affiliation(s)
- Davide Lazzeroni
- Prevention and Rehabilitation Unit of Parma, IRCCS Fondazione Don Gnocchi, 43100 Parma, Italy
| | - Antonio Crocamo
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Valentina Ziveri
- Prevention and Rehabilitation Unit of Parma, IRCCS Fondazione Don Gnocchi, 43100 Parma, Italy
| | | | - Davide Rizzello
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Matteo Spoladori
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Davide Donelli
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Giovanna Cacciola
- Prevention and Rehabilitation Unit of Parma, IRCCS Fondazione Don Gnocchi, 43100 Parma, Italy
| | - Diego Ardissino
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Giampaolo Niccoli
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
44
|
Monda E, Lioncino M, Caiazza M, Simonelli V, Nesti C, Rubino M, Perna A, Mauriello A, Budillon A, Pota V, Bruno G, Varone A, Nigro V, Santorelli FM, Pacileo G, Russo MG, Frisso G, Sampaolo S, Limongelli G. Clinical, Genetic, and Histological Characterization of Patients with Rare Neuromuscular and Mitochondrial Diseases Presenting with Different Cardiomyopathy Phenotypes. Int J Mol Sci 2023; 24:ijms24109108. [PMID: 37240454 DOI: 10.3390/ijms24109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiomyopathies are mostly determined by genetic mutations affecting either cardiac muscle cell structure or function. Nevertheless, cardiomyopathies may also be part of complex clinical phenotypes in the spectrum of neuromuscular (NMD) or mitochondrial diseases (MD). The aim of this study is to describe the clinical, molecular, and histological characteristics of a consecutive cohort of patients with cardiomyopathy associated with NMDs or MDs referred to a tertiary cardiomyopathy clinic. Consecutive patients with a definitive diagnosis of NMDs and MDs presenting with a cardiomyopathy phenotype were described. Seven patients were identified: two patients with ACAD9 deficiency (Patient 1 carried the c.1240C>T (p.Arg414Cys) homozygous variant in ACAD9; Patient 2 carried the c.1240C>T (p.Arg414Cys) and the c.1646G>A (p.Ar549Gln) variants in ACAD9); two patients with MYH7-related myopathy (Patient 3 carried the c.1325G>A (p.Arg442His) variant in MYH7; Patient 4 carried the c.1357C>T (p.Arg453Cys) variant in MYH7); one patient with desminopathy (Patient 5 carried the c.46C>T (p.Arg16Cys) variant in DES); two patients with mitochondrial myopathy (Patient 6 carried the m.3243A>G variant in MT-TL1; Patient 7 carried the c.253G>A (p.Gly85Arg) and the c.1055C>T (p.Thr352Met) variants in MTO1). All patients underwent a comprehensive cardiovascular and neuromuscular evaluation, including muscle biopsy and genetic testing. This study described the clinical phenotype of rare NMDs and MDs presenting as cardiomyopathies. A multidisciplinary evaluation, combined with genetic testing, plays a main role in the diagnosis of these rare diseases, and provides information about clinical expectations, and guides management.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | | | - Claudia Nesti
- Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Marta Rubino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Alessia Perna
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Alfredo Mauriello
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
| | - Alberta Budillon
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Vincenzo Pota
- NeuroMuscular Omnicentre (NEMO), AORN dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Giorgia Bruno
- Pediatric Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, 80122 Naples, Italy
| | - Antonio Varone
- Pediatric Neurology Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, 80122 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi De Crecchio 7, 80138 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Maria Giovanna Russo
- Paediatric Cardiology Unit, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81100 Caserta, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80138 Naples, Italy
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, AORN dei Colli, Monaldi Hospital, 81031 Naples, Italy
- NeuroMuscular Omnicentre (NEMO), AORN dei Colli, Monaldi Hospital, 80131 Naples, Italy
- Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, Gower St, London WC1E 6DD, UK
| |
Collapse
|
45
|
Cesar S, Campuzano O, Cruzalegui J, Fiol V, Moll I, Martínez-Barrios E, Zschaeck I, Natera-de Benito D, Ortez C, Carrera L, Expósito J, Berrueco R, Bautista-Rodriguez C, Dabaj I, Gómez García-de-la-Banda M, Quijano-Roy S, Brugada J, Nascimento A, Sarquella-Brugada G. Characterization of cardiac involvement in children with LMNA-related muscular dystrophy. Front Cell Dev Biol 2023; 11:1142937. [PMID: 36968203 PMCID: PMC10036759 DOI: 10.3389/fcell.2023.1142937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: LMNA-related muscular dystrophy is a rare entity that produce "laminopathies" such as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.
Collapse
Affiliation(s)
- Sergi Cesar
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, Universitat de Girona, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jose Cruzalegui
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Victori Fiol
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Isaac Moll
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Estefania Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| | - Irene Zschaeck
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Laura Carrera
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jessica Expósito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rubén Berrueco
- Servicio de Hematología Pediátrica, Hospital Sant Joan de Déu Barcelona, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu de Barcelona (IRP-HSJD), Universitat de Barcelona, Barcelona, Spain
| | - Carles Bautista-Rodriguez
- Paediatric Cardiology Services, Royal Brompton Hospital, Guy’s and St Thomas NHS Foundation Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ivana Dabaj
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Marta Gómez García-de-la-Banda
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Susana Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Josep Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Arrhythmia Section, Cardiology Service, Hospital Clínic, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
- Investigación Aplicada en Enfermedades Neuromusculares, Neurociències, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto Nacional de Investigación Biomédica de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, España
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, Netherlands
| |
Collapse
|
46
|
Rootwelt-Norberg C, Christensen AH, Skjølsvik ET, Chivulescu M, Vissing CR, Bundgaard H, Aabel EW, Bogsrud MP, Hasselberg NE, Lie ØH, Haugaa KH. Timing of cardioverter-defibrillator implantation in patients with cardiac laminopathies-External validation of the LMNA-risk ventricular tachyarrhythmia calculator. Heart Rhythm 2023; 20:423-429. [PMID: 36494026 DOI: 10.1016/j.hrthm.2022.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND LMNA genotype-positive patients have high risk of experiencing life-threatening ventricular tachyarrhythmias (VTAs). The LMNA-risk VTA calculator published in 2019 has not been externally validated. OBJECTIVE The purpose of this study was to validate the LMNA-risk VTA calculator. METHODS We included LMNA genotype-positive patients without previous VTAs from 2 large Scandinavian centers. Patients underwent electrocardiography, 24-hour Holter monitoring, and echocardiographic examinations at baseline and repeatedly during follow-up. Validation of the LMNA-risk VTA calculator was performed using Harrell's C-statistic derived from multivariable Cox regression analysis. RESULTS We included 118 patients (age 37 years [IQR 27-49 years]; 39 [33%] probands; 65 [55%] women; 100 [85%] with non-missense LMNA variants). Twenty-three patients (19%) experienced VTA during 6.1 years (interquartile range 3.0-9.1 years) follow-up, resulting in 3.0% (95% confidence interval 2.0%-4.5%) yearly incidence rate. Atrioventricular block and reduced left ventricular ejection fraction were independent predictors of VTAs, while nonsustained ventricular tachycardia, male sex, and non-missense LMNA variants were not. The LMNA-risk VTA calculator showed 83% sensitivity and 26% specificity for identifying patients with VTAs during the coming 5 years, and a Harrell's C-statistic of 0.85, when applying ≥7% predicted 5-year VTA risk as threshold. The sensitivity increased to 100% when reevaluating risk at the time of last consultation before VTA. The calculator overestimated arrhythmic risk in patients with mild and moderate phenotype, particularly in men. CONCLUSION Validation of the LMNA-risk VTA calculator showed high sensitivity for subsequent VTAs, but overestimated arrhythmic risk when using ≥7% predicted 5-year risk as threshold. Frequent reevaluation of risk was necessary to maintain the sensitivity of the model.
Collapse
Affiliation(s)
- Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alex Hørby Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark; Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Eystein T Skjølsvik
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christoffer R Vissing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Eivind W Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Nina E Hasselberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden; Cardiovascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
47
|
Wang Y, Dobreva G. Epigenetics in LMNA-Related Cardiomyopathy. Cells 2023; 12:cells12050783. [PMID: 36899919 PMCID: PMC10001118 DOI: 10.3390/cells12050783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in the gene for lamin A/C (LMNA) cause a diverse range of diseases known as laminopathies. LMNA-related cardiomyopathy is a common inherited heart disease and is highly penetrant with a poor prognosis. In the past years, numerous investigations using mouse models, stem cell technologies, and patient samples have characterized the phenotypic diversity caused by specific LMNA variants and contributed to understanding the molecular mechanisms underlying the pathogenesis of heart disease. As a component of the nuclear envelope, LMNA regulates nuclear mechanostability and function, chromatin organization, and gene transcription. This review will focus on the different cardiomyopathies caused by LMNA mutations, address the role of LMNA in chromatin organization and gene regulation, and discuss how these processes go awry in heart disease.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| |
Collapse
|
48
|
Granger A, Beecher G, Liewluck T, Nicolau S, Flanigan KM, Laughlin RS, Milone M. Inherited myopathy plus: Double-trouble from rare neuromuscular disorders. Neuromuscul Disord 2023; 33:153-160. [PMID: 36628841 DOI: 10.1016/j.nmd.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
A rare disorder in the USA is one that affects <200,000 people, making inherited myopathies rare diseases. Increasing access to genetic testing has been instrumental for the diagnosis of inherited myopathies. Genetic findings, however, require clinical correlation due to variable phenotype, polygenic etiology of certain inherited disorders, and possible co-existing independent neuromuscular disorders. We searched the Mayo Clinic Rochester medical record (2004-2020) to identify adult patients carrying pathogenic variants or likely pathogenic variants in genes causative of myopathies and having a coexisting independent neuromuscular disorder classified as rare at https://rarediseases.info.nih.gov/. One additional patient was identified at Nationwide Children's hospital. Clinical and laboratory findings were reviewed. We identified 14 patients from 13 families fulfilling search criteria. Seven patients had a "double-trouble" inherited myopathy; two had an inherited myopathy with coexistent idiopathic myositis; three had an inherited myopathy with coexisting rare neuromuscular disorder of neurogenic type; a female DMD carrier had co-existing distal spinal muscular atrophy, which was featuring the clinical phenotype; and a patient with a MYH7 pathogenic variant had Sandhoff disease causing motor neuron disease. These cases highlight the relevance of correlating genetic findings, even when diagnostic, with clinical features, to allow precise diagnosis, optimal care, and accurate prognosis.
Collapse
Affiliation(s)
- Andre Granger
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | |
Collapse
|
49
|
Muhammed A, Abdelazeem M, Elewa MG, Sharief M, Ammar A. Primary prevention implantable cardioverter-defibrillator use in non-ischemic dilated cardiomyopathy based on arrhythmic risk stratification and left ventricular reverse remodeling prediction. Heart Fail Rev 2023; 28:229-240. [PMID: 35587303 PMCID: PMC9902308 DOI: 10.1007/s10741-022-10246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Sudden cardiac death (SCD) and significant ventricular arrhythmias in patients with dilated cardiomyopathy (DCM) have been markedly reduced over the last couple of decades as a result of the advances in pharmacological and non-pharmacological treatment. Primary prevention implantable cardioverter-defibrillator (ICD) plays an important role in the treatment of patients at risk of SCD caused by ventricular arrhythmias. However, the arrhythmic risk stratification in patients with DCM remains extremely challenging, and the decision for primary prevention ICD implantation based on left ventricular ejection fraction (LVEF) solely appears to be insufficient. This review provides an update on current evidence for primary prevention ICD implantation, arrhythmic risk stratification, and left ventricular reverse remodeling (LVRR) prediction in patients with DCM in addition to most recent guideline recommendations for primary prevention ICD implantation in DCM patients and a proposed multiparametric algorithm based on arrhythmic risk stratification and left ventricular reverse remodeling (LVRR) prediction to better identify patients who are likely to benefit from primary prevention ICD.
Collapse
MESH Headings
- Humans
- Defibrillators, Implantable/adverse effects
- Stroke Volume
- Ventricular Function, Left
- Risk Factors
- Cardiomyopathy, Dilated/complications
- Cardiomyopathy, Dilated/therapy
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/prevention & control
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Ventricular Remodeling
- Risk Assessment
- Primary Prevention
Collapse
Affiliation(s)
- Ahmed Muhammed
- Cardiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Abdelazeem
- Cardiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medicine, St. Elizabeth’s Medical Center, Boston, MA USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA USA
| | | | - Mohamed Sharief
- Cardiology Department, Mansoura University Hospital, El Mansoura, Egypt
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Ahmed Ammar
- Cardiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Cardiology Department, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
50
|
Lin L, Liu S, Chen Z, Xia Y, Xie J, Fu M, Lu D, Wu Y, Shen H, Yang P, Qian J. Anatomically resolved transcriptome and proteome landscapes reveal disease‐relevant molecular signatures and systematic changes in heart function of end‐stage dilated cardiomyopathy. VIEW 2022. [DOI: 10.1002/viw.20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ling Lin
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Shanshan Liu
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Zhangwei Chen
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yan Xia
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Juanjuan Xie
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Mingqiang Fu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Danbo Lu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yuan Wu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Huali Shen
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of chemistry Fudan University Shanghai China
| | - Juying Qian
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|