1
|
Lee W, Lin SL, Chiang CS, Chen JY, Chieng WW, Huang SR, Chang TY, Linju Yen B, Hung MC, Chang KC, Lee HT, Jeng LB, Shyu WC. Role of HIF-1α-Activated IL-22/IL-22R1/Bmi1 Signaling Modulates the Self-Renewal of Cardiac Stem Cells in Acute Myocardial Ischemia. Stem Cell Rev Rep 2024:10.1007/s12015-024-10774-8. [PMID: 39264501 DOI: 10.1007/s12015-024-10774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.
Collapse
Affiliation(s)
- Wei Lee
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - Syuan-Ling Lin
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan
| | - Jui-Yu Chen
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Wee-Wei Chieng
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Shu-Rou Huang
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Ting-Yu Chang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, 350, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, CMU, Taichung, 404, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, CMUH, Taichung, 404, Taiwan
- School of Medicine, CMU, Taichung, 404, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 404, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Organ Transplantation Center, CMUH, Taichung, 404, Taiwan
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan.
- Department of Neurology, CMUH, Taichung, 404, Taiwan.
- Department of Occupational Therapy, Asia University, No. 2, Yude Rd., North Dist, Taichung City, 404332, Taiwan.
| |
Collapse
|
2
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
3
|
Aguilar S, García-Olloqui P, Amigo-Morán L, Torán JL, López JA, Albericio G, Abizanda G, Herrero D, Vales Á, Rodríguez-Diaz S, Higuera M, García-Martín R, Vázquez J, Mora C, González-Aseguinolaza G, Prosper F, Pelacho B, Bernad A. Cardiac Progenitor Cell Exosomal miR-935 Protects against Oxidative Stress. Cells 2023; 12:2300. [PMID: 37759522 PMCID: PMC10528297 DOI: 10.3390/cells12182300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.
Collapse
Affiliation(s)
- Susana Aguilar
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Paula García-Olloqui
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Lidia Amigo-Morán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - José Luis Torán
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Guillermo Albericio
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria Abizanda
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Diego Herrero
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - África Vales
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Saray Rodríguez-Diaz
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Marina Higuera
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Rubén García-Martín
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Spanish National Cardiovascular Research Center (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carmen Mora
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| | - Gloria González-Aseguinolaza
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Prosper
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Program of Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Hematology and Cell Therapy, Clínica Universidad de Navarra, 30008 Pamplona, Spain
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA), Regenerative Medicine Department, University of Navarra, 31008 Pamplona, Spain; (P.G.-O.); (G.A.); (Á.V.); (S.R.-D.); (F.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.A.); (L.A.-M.); (J.L.T.); (G.A.); (D.H.); (M.H.); (R.G.-M.); (C.M.)
| |
Collapse
|
4
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
5
|
Gallet R, Su JB, Corboz D, Chiaroni PM, Bizé A, Dai J, Panel M, Boucher P, Pallot G, Brehat J, Sambin L, Thery G, Mouri N, de Pommereau A, Denormandie P, Germain S, Lacampagne A, Teiger E, Marbán E, Ghaleh B. Three-vessel coronary infusion of cardiosphere-derived cells for the treatment of heart failure with preserved ejection fraction in a pre-clinical pig model. Basic Res Cardiol 2023; 118:26. [PMID: 37400630 DOI: 10.1007/s00395-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.
Collapse
Affiliation(s)
- Romain Gallet
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Jin-Bo Su
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Daphné Corboz
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Paul-Matthieu Chiaroni
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Alain Bizé
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jianping Dai
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Pierre Boucher
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Gaëtan Pallot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Juliette Brehat
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Lucien Sambin
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Thery
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nadir Mouri
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de biochimie-pharmacologie-biologie moléculaire-génétique médicale, Créteil, France
| | - Aurélien de Pommereau
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pierre Denormandie
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Emmanuel Teiger
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Bijan Ghaleh
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
6
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
7
|
Chen H, Xue R, Huang P, Wu Y, Fan W, He X, Dong Y, Liu C. Modified Exosomes: a Good Transporter for miRNAs within Stem Cells to Treat Ischemic Heart Disease. J Cardiovasc Transl Res 2022; 15:514-523. [PMID: 35229250 DOI: 10.1007/s12265-022-10216-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Stem cell-based therapy for ischemic heart disease (IHD) has become a promising but controversial strategy during the past two decades. The fate and effects of stem cells engrafted into ischemia myocardium are still not fully understood. Stem cell-derived exosomes, a subcategory of extracellular vesicles with nano size, have been considered as an efficient and safe transporter for microRNAs (miRNAs) and a central mediator of the cardioprotective potentials of the parental cells. Hypoxia, pharmacological intervention, and gene manipulation could alter the exosomal miRNAs cargos from stem cells and promote therapeutic potential. Furthermore, several bioengineering methods were also successfully applied to modify miRNAs content and components of exosomal membrane proteins recently. In this review, we outline relevant results about exosomal miRNAs from stem cells and focus on the current strategies to promote their therapeutic efficiency in IHD.
Collapse
Affiliation(s)
- Hao Chen
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruicong Xue
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peisen Huang
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuzhong Wu
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wendong Fan
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin He
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yugang Dong
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Liu
- NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China. .,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. .,Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
9
|
Extracellular Vesicle-Based Therapeutics for Heart Repair. NANOMATERIALS 2021; 11:nano11030570. [PMID: 33668836 PMCID: PMC7996323 DOI: 10.3390/nano11030570] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell–cell communication. In recent years, EVs have been postulated as a relevant novel therapeutic option for cardiovascular diseases, including myocardial infarction (MI), partially outperforming cell therapy. EVs may present several desirable features, such as no tumorigenicity, low immunogenic potential, high stability, and fine cardiac reparative efficacy. Furthermore, the natural origin of EVs makes them exceptional vehicles for drug delivery. EVs may overcome many of the limitations associated with current drug delivery systems (DDS), as they can travel long distances in body fluids, cross biological barriers, and deliver their cargo to recipient cells, among others. Here, we provide an overview of the most recent discoveries regarding the therapeutic potential of EVs for addressing cardiac damage after MI. In addition, we review the use of bioengineered EVs for targeted cardiac delivery and present some recent advances for exploiting EVs as DDS. Finally, we also discuss some of the most crucial aspects that should be addressed before a widespread translation to the clinical arena.
Collapse
|
10
|
Fo Y, Zhang C, Chen X, Liu X, Ye T, Guo Y, Qu C, Shi S, Yang B. Chronic sigma-1 receptor activation ameliorates ventricular remodeling and decreases susceptibility to ventricular arrhythmias after myocardial infarction in rats. Eur J Pharmacol 2020; 889:173614. [PMID: 33010304 DOI: 10.1016/j.ejphar.2020.173614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
The present study aimed to assess the effect of sigma-1 receptor (S1R) stimulation on ventricular remodeling and susceptibility to ventricular arrhythmias (VAs) after myocardial infarction (MI) in rats. Wild-type male rats were placed into one of the following four treatment groups. For four weeks, animals in the Sham group and MI group received intraperitoneal (i.p.) injections of 0.9% saline (1 ml/kg/day); those in the MI + F group received fluvoxamine (FLV) (0.3 mg/kg/day); and those in the MI + F + BD group received FLV plus BD1047 (0.3 mg/kg/day). After that, the ventricular electrophysiological parameters were measured via the langendorff system. Ventricular fibrosis quantification was determined with Masson staining. Cardiac function was evaluated by echocardiography. The protein levels of S1R, connexin (Cx)43, Cav1.2, Kv4.2, Kv4.3, tyrosine hydroxylase (TH), nerve growth factor (NGF), growth-associated protein 43 (GAP43) were detected by Western blot assays. Our results indicated that fluvoxamine significantly prolonged the ventricular effective refractory period (ERP), shortened action potential duration (APD), reduced susceptibility to VAs after MI. Masson staining showed a decrease in ventricular fibrosis in the MI + F group. Furthermore, the contents of Cx43, S1R, Cav1.2, Kv4.2, Kv4.3 were increased in the MI + F group compared with the MI group (all P < 0.05). The contents of TH, NGF, GAP43 were reduced in the MI + F group compared with the MI group. (all P < 0.05). However, BD1047 reduces all of these effects of FLV. The results suggest that S1R stimulation reduces susceptibility to VAs and improves cardiac function by improving myocardial fibrosis, lightning sympathetic remodeling, electrical remodeling, gap junction remodeling and upregulating S1R content.
Collapse
Affiliation(s)
- Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
11
|
He L, Nguyen NB, Ardehali R, Zhou B. Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation: Controversy, Fallacy, and Progress. Circulation 2020; 142:275-291. [PMID: 32687441 DOI: 10.1161/circulationaha.119.045566] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ischemic heart disease is the leading cause of death worldwide. Myocardial infarction results in an irreversible loss of cardiomyocytes with subsequent adverse remodeling and heart failure. Identifying new sources for cardiomyocytes and promoting their formation represents a goal of cardiac biology and regenerative medicine. Within the past decade, many types of putative cardiac stem cells (CSCs) have been reported to regenerate the injured myocardium by differentiating into new cardiomyocytes. Some of these CSCs have been translated from bench to bed with reported therapeutic effectiveness. However, recent basic research studies on stem cell tracing have begun to question their fundamental biology and mechanisms of action, raising serious concerns over the myogenic potential of CSCs. We review the history of different types of CSCs within the past decade and provide an update of recent cell tracing studies that have challenged the origin and existence of CSCs. In addition to the potential role of CSCs in heart regeneration, proliferation of preexisting cardiomyocytes has recently gained more attention. This review will also evaluate the methodologic and technical aspects of past and current studies on CSCs and cardiomyocyte proliferation, with emphasis on technical strengths, advantages, and potential limitations of research approaches. While our understanding of cardiomyocyte generation and regeneration continues to evolve, it is important to address the shortcomings and inaccuracies in this field. This is best achieved by embracing technological advancements and improved methods to label single cardiomyocytes/progenitors and accurately investigate their developmental potential and fate/lineage commitment.
Collapse
Affiliation(s)
- Lingjuan He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China (L.H., B.Z.)
| | - Ngoc B Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine (N.B.N., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (N.B.N., R.A.), University of California, Los Angeles
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine (N.B.N., R.A.), University of California, Los Angeles.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research (N.B.N., R.A.), University of California, Los Angeles
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China (L.H., B.Z.).,School of Life Science and Technology, ShanghaiTech University, Shanghai, China (B.Z.).,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China (B.Z.).,Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.)
| |
Collapse
|
12
|
Dergilev KV, Vasilets ID, Tsokolaeva ZI, Zubkova ES, Parfenova EV. [Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells]. TERAPEVT ARKH 2020; 92:111-120. [PMID: 32598708 DOI: 10.26442/00403660.2020.04.000634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. In recent years, researchers are attracted to the use of cell therapy based on stem cell and progenitor cells, which has been a promising strategy for cardiac repair after injury. However, conducted research using intracoronary or intramyocardial transplantation of various types of stem/progenitor cells as a cell suspension showed modest efficiency. This is due to the low degree of integration and cell survival after transplantation. To overcome these limitations, the concept of the use of multicellular spheroids modeling the natural microenvironment of cells has been proposed, which allows maintaining their viability and therapeutic properties. It is of great interest to use so-called cardial spheroids (cardiospheres) spontaneously forming three-dimensional structures under low-adhesive conditions, consisting of a heterogeneous population of myocardial progenitor cells and extracellular matrix proteins. This review presents data on methods for creating cardiospheres, directed regulation of their properties and reparative potential, as well as the results of preclinical and clinical studies on their use for the treatment of heart diseases.
Collapse
Affiliation(s)
| | | | - Z I Tsokolaeva
- National Medical Research Center for Cardiology.,Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - E S Zubkova
- National Medical Research Center for Cardiology
| | - E V Parfenova
- National Medical Research Center for Cardiology.,Lomonosov Moscow State University
| |
Collapse
|
13
|
Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, Casado Plasencia A, Gilaberte I, Belmans A, Fernández-Santos ME, Charron D, Mulet M, Yotti R, Palacios I, Luque M, Sádaba R, San Román JA, Larman M, Sánchez PL, Sanchís J, Jiménez MF, Claus P, Al-Daccak R, Lombardo E, Abad JL, DelaRosa O, Corcóstegui L, Bermejo J, Janssens S. Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With ST-Segment Elevation Myocardial Infarction and Left Ventricular Dysfunction. Circ Res 2019; 123:579-589. [PMID: 29921651 DOI: 10.1161/circresaha.118.312823] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.
Collapse
Affiliation(s)
- Francisco Fernández-Avilés
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Ricardo Sanz-Ruiz
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | | | - Ana Casado Plasencia
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Inmaculada Gilaberte
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Ann Belmans
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Maria Eugenia Fernández-Santos
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Dominique Charron
- HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (D.C., R.A.-D.)
| | - Miguel Mulet
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Raquel Yotti
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Itziar Palacios
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Manuel Luque
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Rafael Sádaba
- Department of Cardiac Surgery, Complejo Hospitalario de Navarra, Pamplona, Spain (R.S.)
| | - J Alberto San Román
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Instituto de Ciencias del Corazón (ICICOR), Valladolid, Spain (J.A.S.R.)
| | - Mariano Larman
- Department of Cardiology, Policlínia Guipuzcoa, San Sebastián, Spain (M.L.)
| | - Pedro L Sánchez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Hospital Clínico Universitario, Salamanca, Spain (P.L.S.)
| | - Juan Sanchís
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Hospital Clínico Universitario, Valencia, Spain (J.S.)
| | - Manuel F Jiménez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, IBIMA, UMA, UGC Corazón Hospital Clínico Virgen de la Victoria, Málaga, Spain (M.F.J.)
| | - Piet Claus
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Reem Al-Daccak
- HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (D.C., R.A.-D.)
| | - Eleuterio Lombardo
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - José Luis Abad
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Olga DelaRosa
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Lucia Corcóstegui
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Javier Bermejo
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Stefan Janssens
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| |
Collapse
|
14
|
Pooria A, Pourya A, Gheini A. Animal- and human-based evidence for the protective effects of stem cell therapy against cardiovascular disorders. J Cell Physiol 2019; 234:14927-14940. [PMID: 30811030 DOI: 10.1002/jcp.28330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The increasing rate of mortality and morbidity because of cardiac diseases has called for efficient therapeutic needs. With the advancement in cell-based therapies, stem cells are abundantly studied in this area. Nearly, all sources of stem cells are experimented to treat cardiac injuries. Tissue engineering has also backed this technique by providing an advantageous platform to improve stem cell therapy. After in vitro studies, primary treatment-based research studies comprise small and large animal studies. Furthermore, these studies are implemented in human models in the form of clinical trials. Purpose of this review is to highlight the animal- and human-based studies, exploiting various stem cell sources, to treat cardiovascular disorders.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Afsoun Pourya
- Student of Research committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| |
Collapse
|
15
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|
16
|
Hussain MA, Colicchia M, Veerapen J, Weeraman D, Podaru MN, Jones D, Suzuki K, Mathur A. Circulatory support and stem cell therapy in the management of advanced heart failure: a concise review of available evidence. Regen Med 2019; 14:585-593. [PMID: 31115248 DOI: 10.2217/rme-2018-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cell therapy utilizing bone marrow mononuclear cells (BMC's) is a potential strategy to treat heart failure patients with improvement in symptom profile and cardiac function. We describe a rationale for concurrent BMC and left ventricular assist device therapy in selected heart failure patients. This combination therapy has demonstrated improved myocardial perfusion and cardiac function in patients with advanced ischemic cardiomyopathy. Moreover, preclinical data support improved cell retention with left ventricular unloading. The beneficial effects of BMC's are likely through a paracrine mechanism initiating a 'cardiac-repair' process. Combination therapy of BMC's and a left ventricular assist device may exhibit a synergistic effect with improved engraftment of BMC's through left ventricular unloading.
Collapse
Affiliation(s)
- Mohsin A Hussain
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Martina Colicchia
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Jessry Veerapen
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Deshan Weeraman
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Mihai-Nicolae Podaru
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Daniel Jones
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Ken Suzuki
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Anthony Mathur
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Taylor M, Jefferies J, Byrne B, Lima J, Ambale-Venkatesh B, Ostovaneh MR, Makkar R, Goldstein B, Smith RR, Fudge J, Malliaras K, Fedor B, Rudy J, Pogoda JM, Marbán L, Ascheim DD, Marbán E, Victor RG. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology 2019; 92:e866-e878. [PMID: 30674601 PMCID: PMC6396968 DOI: 10.1212/wnl.0000000000006950] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess the feasibility, safety, and efficacy of intracoronary allogeneic cardiosphere-derived cells (CAP-1002) in patients with Duchenne muscular dystrophy (DMD). METHODS The Halt Cardiomyopathy Progression (HOPE)-Duchenne trial is a phase I/II, randomized, controlled, open-label trial (NCT02485938). Patients with DMD >12 years old, with substantial myocardial fibrosis, were randomized (1:1) to usual care (control) or global intracoronary infusion of CAP-1002 (75 million cells). Participants were enrolled at 3 US medical centers between January and August 2016 and followed for 12 months. An independent Data and Safety Monitoring Board provided safety oversight. Cardiac function and structure were assessed by MRI, and analyzed by a blinded core laboratory. Skeletal muscle function was assessed by performance of the upper limb (PUL). RESULTS Twenty-five eligible patients (mean age 17.8 years; 68% wheelchair-dependent) were randomized to CAP-1002 (n = 13) or control (n = 12). Incidence of treatment-emergent adverse events was similar between groups. Compared to baseline, MRI at 12 months revealed significant scar size reduction and improvement in inferior wall systolic thickening in CAP-1002 but not control patients. Mid-distal PUL improved at 12 months in 8 of 9 lower functioning CAP-1002 patients, and no controls (p = 0.007). CONCLUSIONS Intracoronary CAP-1002 in DMD appears safe and demonstrates signals of efficacy on both cardiac and upper limb function for up to 12 months. Thus, future clinical research on CAP-1002 treatment of DMD cardiac and skeletal myopathies is warranted. CLASSIFICATION OF EVIDENCE This phase I/II study provides Class II evidence that for patients with DMD, intracoronary CAP-1002 is feasible and appears safe and potentially effective.
Collapse
Affiliation(s)
- Michael Taylor
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece.
| | - John Jefferies
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Barry Byrne
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Joao Lima
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Bharath Ambale-Venkatesh
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Mohammad R Ostovaneh
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Raj Makkar
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Bryan Goldstein
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Rachel Ruckdeschel Smith
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - James Fudge
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Konstantinos Malliaras
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Brian Fedor
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Jeff Rudy
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Janice M Pogoda
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Linda Marbán
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Deborah D Ascheim
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Eduardo Marbán
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| | - Ronald G Victor
- From The Heart Institute (M.T., J.J., B.G.), Cincinnati Children's Hospital Medical Center, OH; Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center (B.B.), and Division of Pediatric Cardiology, Congenital Heart Center (J.F.), University of Florida, Gainesville; Department of Cardiology (J.L., B.A.-V., M.R.O.), Johns Hopkins University, Baltimore, MD; Smidt Heart Institute (R.M., E.M., R.G.V.), Cedars-Sinai Medical Center, Los Angeles, CA; Capricor Therapeutics (R.R.S., B.F., J.R., J.M.P., L.M., D.D.A.), Beverly Hills, CA; and Department of Cardiology (K.M.), Laikon Hospital, Athens, Greece
| |
Collapse
|
18
|
Abstract
After a myocardial infarction, heart tissue becomes irreversibly damaged, leading to scar formation and inevitably ischemic heart failure. Of the many available interventions after a myocardial infarction, such as percutaneous intervention or pharmacological optimization, none can reverse the ischemic insult on the heart and restore cardiac function. Thus, the only available cure for patients with scarred myocardium is allogeneic heart transplantation, which comes with extensive costs, risks, and complications. However, multiple studies have shown that the heart is, in fact, not an end-stage organ and that there are endogenous mechanisms in place that have the potential to spark regeneration. Stem cell therapy has emerged as a potential tool to tap into and activate this endogenous framework. Particularly promising are stem cells derived from cardiac tissue itself, referred to as cardiosphere-derived cells (CDCs). CDCs can be extracted and isolated from the patient's myocardium and then administered by intramyocardial injection or intracoronary infusion. After early success in the animal model, multiple clinical trials have demonstrated the safety and efficacy of autologous CDC therapy in humans. Clinical trials with allogeneic CDCs showed early promising results and pose a potential "off-the-shelf" therapy for patients in the acute setting after a myocardial infarction. The mechanism responsible for CDC-induced cardiac regeneration seems to be a combination of triggering native cardiomyocyte proliferation and recruitment of endogenous progenitor cells, which most prominently occurs via paracrine effects. A further understanding of the mediators involved in paracrine signaling can help with the development of a stem cell-free therapy, with all the benefits and none of the associated complications.
Collapse
|
19
|
Nana-Leventaki E, Nana M, Poulianitis N, Sampaziotis D, Perrea D, Sanoudou D, Rontogianni D, Malliaras K. Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis. J Cardiovasc Pharmacol Ther 2018; 24:70-77. [DOI: 10.1177/1074248418784287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Cardiosphere-derived cells (CDCs) have yielded promising efficacy signals in early-phase clinical trials of ischemic and nonischemic cardiomyopathy. The potential efficacy of CDCs in acute myocarditis, an inflammatory cardiomyopathy without effective therapy, remains unexplored. Given that CDCs produce regenerative, cardioprotective, anti-inflammatory, and anti-fibrotic effects (all of which could be beneficial in acute myocarditis), we investigated the efficacy of intracoronary delivery of CDCs in a rat model of experimental autoimmune myocarditis. Methods: Lewis rats underwent induction of experimental autoimmune myocarditis by subcutaneous footpad injection of purified porcine cardiac myosin supplemented with Mycobacterium tuberculosis on days 1 and 7. On day 10, rats were randomly assigned to receive global intracoronary delivery of 500 000 CDCs or vehicle. Global intracoronary delivery was performed by injection of cells or vehicle into the left ventricular (LV) cavity during transient occlusion of the aortic root. Rats were euthanized 18 days after infusion. Cardiac volumes and systolic function were assessed by serial echocardiography, performed on days 1, 10, and 28. Myocardial inflammation, T-cell infiltration, and cardiac fibrosis were evaluated by histology. Results: Experimental autoimmune myocarditis was successfully induced in 14/14 rats that completed follow-up. Left ventricular ejection fraction (LVEF) and volumes were comparable on days 1 and 10 between groups. CDC infusion resulted in increased LVEF (81.5% ± 3% vs 65.4% ± 8%, P < .001) and decreased LV end-systolic volume (43 ± 15 vs 100 ± 24 μL, P < .001) compared to placebo administration at 18 days post-infusion. Cardiosphere-derived cell infusion decreased myocardial inflammation (7.4% ± 7% vs 20.7% ± 4% of myocardium, P = .007), cardiac fibrosis (16.6% ± 13% vs 38.1% ± 3% of myocardium, P = .008), and myocardial T-cell infiltration (30.4 ± 29 vs 125.8 ± 49 cells per field, P = .005) at 18 days post-infusion compared to placebo administration. Conclusion: Intracoronary delivery of CDCs attenuates myocardial inflammation, T-cell infiltration, and fibrosis while preventing myocarditis-induced systolic dysfunction and adverse remodeling in rats with experimental autoimmune myocarditis.
Collapse
Affiliation(s)
- E. Nana-Leventaki
- Third Department of Cardiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - M. Nana
- Third Department of Cardiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - N. Poulianitis
- Department of Pathology, Evangelismos Hospital, Athens, Greece
| | - D. Sampaziotis
- Department of Pathology, Evangelismos Hospital, Athens, Greece
| | - D. Perrea
- Laboratory for Experimental Surgery and Surgical Research “N.S. Christeas”, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - D. Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - D. Rontogianni
- Department of Pathology, Evangelismos Hospital, Athens, Greece
| | - K. Malliaras
- Third Department of Cardiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
20
|
Cellular self-assembly into 3D microtissues enhances the angiogenic activity and functional neovascularization capacity of human cardiopoietic stem cells. Angiogenesis 2018; 22:37-52. [PMID: 30014173 DOI: 10.1007/s10456-018-9635-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/24/2022]
Abstract
While cell therapy has been proposed as next-generation therapy to treat the diseased heart, current strategies display only limited clinical efficacy. Besides the ongoing quest for the ideal cell type, in particular the very low retention rate of single-cell (SC) suspensions after delivery remains a major problem. To improve cellular retention, cellular self-assembly into 3D microtissues (MTs) prior to transplantation has emerged as an encouraging alternative. Importantly, 3D-MTs have also been reported to enhance the angiogenic activity and neovascularization potential of stem cells. Therefore, here using the chorioallantoic membrane (CAM) assay we comprehensively evaluate the impact of cell format (SCs versus 3D-MTs) on the angiogenic potential of human cardiopoietic stem cells, a promising second-generation cell type for cardiac repair. Biodegradable collagen scaffolds were seeded with human cardiopoietic stem cells, either as SCs or as 3D-MTs generated by using a modified hanging drop method. Thereafter, seeded scaffolds were placed on the CAM of living chicken embryos and analyzed for their perfusion capacity in vivo using magnetic resonance imaging assessment which was then linked to a longitudinal histomorphometric ex vivo analysis comprising blood vessel density and characteristics such as shape and size. Cellular self-assembly into 3D-MTs led to a significant increase of vessel density mainly driven by a higher number of neo-capillary formation. In contrast, SC-seeded scaffolds displayed a higher frequency of larger neo-vessels resulting in an overall 1.76-fold higher total vessel area (TVA). Importantly, despite that larger TVA in SC-seeded group, the mean perfusion capacity (MPC) was comparable between groups, therefore suggesting functional superiority together with an enhanced perfusion efficacy of the neo-vessels in 3D-MT-seeded scaffolds. This was further underlined by a 1.64-fold higher perfusion ratio when relating MPC to TVA. Our study shows that cellular self-assembly of human cardiopoietic stem cells into 3D-MTs substantially enhances their overall angiogenic potential and their functional neovascularization capacity. Hence, the concept of 3D-MTs may be considered to increase the therapeutic efficacy of future cell therapy concepts.
Collapse
|
21
|
Cambier L, Giani JF, Liu W, Ijichi T, Echavez AK, Valle J, Marbán E. Angiotensin II-Induced End-Organ Damage in Mice Is Attenuated by Human Exosomes and by an Exosomal Y RNA Fragment. Hypertension 2018; 72:370-380. [PMID: 29866742 DOI: 10.1161/hypertensionaha.118.11239] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Abstract
Hypertension often leads to cardiovascular disease and kidney dysfunction. Exosomes secreted from cardiosphere-derived cells (CDC-exo) and their most abundant small RNA constituent, the Y RNA fragment EV-YF1, exert therapeutic benefits after myocardial infarction. Here, we investigated the effects of CDC-exo and EV-YF1, each administered individually, in a model of cardiac hypertrophy and kidney injury induced by chronic infusion of Ang (angiotensin) II. After 2 weeks of Ang II, multiple doses of CDC-exo or EV-YF1 were administered retro-orbitally. Ang II infusion induced an elevation in systolic blood pressure that was not affected by CDC-exo or EV-YF1. Echocardiography confirmed that Ang II infusion led to cardiac hypertrophy. CDC-exo and EV-YF1 both attenuated cardiac hypertrophy and reduced cardiac inflammation and fibrosis. In addition, both CDC-exo and EV-YF1 improved kidney function and diminished renal inflammation and fibrosis. The beneficial effects of CDC-exo and EV-YF1 were associated with changes in the expression of the anti-inflammatory cytokine IL (interleukin)-10 in plasma, heart, spleen, and kidney. In summary, infusions of CDC-exo or EV-YF1 attenuated cardiac hypertrophy and renal injury induced by Ang II infusion, without affecting blood pressure, in association with altered IL-10 expression. Exosomes and their defined noncoding RNA contents may represent potential new therapeutic approaches for hypertension-associated cardiovascular and renal damage.
Collapse
Affiliation(s)
- Linda Cambier
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.).,Department of Biomedical Sciences (L.C., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jorge F Giani
- Department of Biomedical Sciences (L.C., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Weixin Liu
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Takeshi Ijichi
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Antonio K Echavez
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Jackelyn Valle
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Eduardo Marbán
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| |
Collapse
|
22
|
Xu J, Lian W, Li L, Huang Z. Generation of induced cardiac progenitor cells via somatic reprogramming. Oncotarget 2018; 8:29442-29457. [PMID: 28199972 PMCID: PMC5438743 DOI: 10.18632/oncotarget.15272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that cardiac progenitor cells (CPCs) represent a more effective cell-based therapy for treatment of myocardial infarction. Unfortunately, their therapeutic application is limited by low yield of cell harvesting, declining quality and quantity during the ageing process, and the need for highly invasive heart biopsy. Therefore, there is an emerging interest in generating CPC-like stem cells from somatic cells via somatic reprogramming. This novel approach would provide an unlimited source of stem cells with cardiac differentiation potential. Here we would firstly discuss the different types of CPC and their importance in stem cell therapy for treatment of myocardial infarction; secondly, the necessity of generating induced CPC from somatic cells via somatic reprogramming; and finally the current progress of somatic reprogramming in cardiac cells, especially induced CPC generation.
Collapse
Affiliation(s)
- Jianyong Xu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Wei Lian
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| |
Collapse
|
23
|
Aminzadeh MA, Rogers RG, Fournier M, Tobin RE, Guan X, Childers MK, Andres AM, Taylor DJ, Ibrahim A, Ding X, Torrente A, Goldhaber JM, Lewis M, Gottlieb RA, Victor RA, Marbán E. Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Reports 2018; 10:942-955. [PMID: 29478899 PMCID: PMC5918344 DOI: 10.1016/j.stemcr.2018.01.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic deficiency of dystrophin leads to disability and premature death in Duchenne muscular dystrophy (DMD), affecting the heart as well as skeletal muscle. Here, we report that clinical-stage cardiac progenitor cells, known as cardiosphere-derived cells (CDCs), improve cardiac and skeletal myopathy in the mdx mouse model of DMD. Injection of CDCs into the hearts of mdx mice augments cardiac function, ambulatory capacity, and survival. Exosomes secreted by human CDCs reproduce the benefits of CDCs in mdx mice and in human induced pluripotent stem cell-derived Duchenne cardiomyocytes. Surprisingly, CDCs and their exosomes also transiently restored partial expression of full-length dystrophin in mdx mice. The findings further motivate the testing of CDCs in Duchenne patients, while identifying exosomes as next-generation therapeutic candidates.
Collapse
Affiliation(s)
- Mark A Aminzadeh
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Mario Fournier
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Rachel E Tobin
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Xuan Guan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Martin K Childers
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Allen M Andres
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Xiangming Ding
- UCLA Technology Center for Genomics & Bioinformatics, Los Angeles, CA 90095, USA
| | - Angelo Torrente
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Joshua M Goldhaber
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Michael Lewis
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Ronald A Victor
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite AHSP 3100, Los Angeles, CA 90048, USA.
| |
Collapse
|
24
|
Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 2017; 9:337-352. [PMID: 28167565 PMCID: PMC5331234 DOI: 10.15252/emmm.201606924] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiosphere‐derived cells (CDCs) reduce myocardial infarct size via secreted extracellular vesicles (CDC‐EVs), including exosomes, which alter macrophage polarization. We questioned whether short non‐coding RNA species of unknown function within CDC‐EVs contribute to cardioprotection. The most abundant RNA species in CDC‐EVs is a Y RNA fragment (EV‐YF1); its relative abundance in CDC‐EVs correlates with CDC potency in vivo. Fluorescently labeled EV‐YF1 is actively transferred from CDCs to target macrophages via CDC‐EVs. Direct transfection of macrophages with EV‐YF1 induced transcription and secretion of IL‐10. When cocultured with rat cardiomyocytes, EV‐YF1‐primed macrophages were potently cytoprotective toward oxidatively stressed cardiomyocytes through induction of IL‐10. In vivo, intracoronary injection of EV‐YF1 following ischemia/reperfusion reduced infarct size. A fragment of Y RNA, highly enriched in CDC‐EVs, alters Il10 gene expression and enhances IL‐10 protein secretion. The demonstration that EV‐YF1 confers cardioprotection highlights the potential importance of diverse exosomal contents of unknown function, above and beyond the usual suspects (e.g., microRNAs and proteins).
Collapse
Affiliation(s)
- Linda Cambier
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey de Couto
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Antonio K Echavez
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jackelyn Valle
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Weixin Liu
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
25
|
Abstract
INTRODUCTION In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
Collapse
Affiliation(s)
- Ming-Sing Si
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Richard G Ohye
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
26
|
Varela A, Mavroidis M, Katsimpoulas M, Sfiroera I, Kappa N, Mesa A, Kostomitsopoulos NG, Cokkinos DV. The neuroprotective agent Rasagiline mesylate attenuates cardiac remodeling after experimental myocardial infarction. ESC Heart Fail 2017; 4:331-340. [PMID: 28772050 PMCID: PMC5542732 DOI: 10.1002/ehf2.12140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
AIM Rasagiline mesylate (N-propargyl-1 (R)-aminoindan) (RG) is a selective, potent irreversible inhibitor of monoamine oxidase-B with cardioprotective and anti-apoptotic properties. We investigated whether it could be cardioprotective in a rat model undergoing experimental myocardial infarction (MI) by permanent ligation of the left anterior descending coronary artery. METHODS AND RESULTS RG was administered, intraperitoneally, for 28 days (2 mg/kg) starting 24 h after MI induction. Echocardiography analysis revealed a significant reduction in left ventricular end-systolic and diastolic dimensions and preserved fractional shortening in RG-treated compared with normal saline group at 28 days post-MI (31.6 ± 2.3 vs. 19.6 ± 1.8, P < 0.0001), respectively. Treatment with RG prevented tissue fibrosis as indicated by interstitial collagen estimation by immunofluorescence staining and hydroxyproline content and attenuated the number of apoptotic myocytes in the border zone (65%) as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Caspase 3 relative protein levels were significantly decreased in the non-infarcted myocardium. Markedly decreased malondialdehyde levels in the border zone indicate a reduction in tissue oxidative stress. CONCLUSIONS Our study demonstrates a positive effect of RG in the post-MI period with a significant attenuation in cardiac remodelling.
Collapse
Affiliation(s)
- Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Athens, Greece
| | - Manolis Mavroidis
- Basic Research Center, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | | | - Irini Sfiroera
- Basic Research Center, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Niki Kappa
- Basic Research Center, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Angelica Mesa
- Clinical, Experimental Surgery and Translational Research Center, Athens, Greece
| | | | - Dennis V Cokkinos
- Clinical, Experimental Surgery and Translational Research Center, Athens, Greece
| |
Collapse
|
27
|
Zhang WB, Liu YQ, Zhang X, Lin L, Yin SL. The role of β-adrenergic receptors and p38MAPK signaling pathways in physiological processes of cardiosphere-derived cells. J Cell Biochem 2017; 119:1204-1214. [PMID: 28722223 DOI: 10.1002/jcb.26292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 07/18/2017] [Indexed: 01/21/2023]
Abstract
The effects of β adrenergic receptors (β-ARs) and p38 mitogen-activated protein kinases (MAPK) pathways on cardiosphere-derived cells (CDCs) are largely unknown. This study aimed to investigate the roles of β-ARs and p38MAPK pathways on the proliferation, apoptosis, and differentiation capacity of CDCs. The CDCs were treated with β1-AR blocker (Met group), β2-AR antagonist (ICI group), and p38MAPK inhibitor (SB group), non-selective β-AR blocker (PRO group), and β-AR agonist (ISO group). The viability, apoptotic rate and differentiation status of CDCs were determined by MST-1 assay, flow cytometery, and Western blot, respectively. The CDCs viability significantly reduced in ICI group (all P < 0.05), and SB group had a significant high viability after 48 h treatment (P < 0.05). Compared with control group, all treated groups had a low apoptotic rate. After treatment for 72 h, ISO treatment elevated the expression of Nkx2.5, and could partially or fully attenuate the inhibitory effects of β-AR antagonists and/or p38MAPK inhibitor. A similar overall trend of protein expression levels among all groups could be observed between protein pairs of cTnT and β1-AR as well as c-Kit and β2-AR, respectively. These results suggested that β-ARs and p38MAPK signaling pathways play crucial roles in the proliferation and differentiation of CDCs. Our findings should be helpful for better understanding the molecular mechanism underlying the physiological processes of CDCs.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Department of Cardiac Surgery Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun-Qi Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Lin
- Department of Cardiac Surgery Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng-Li Yin
- Department of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Abstract
For >4 decades, the holy grail in the treatment of acute myocardial infarction has been the mitigation of lethal injury. Despite promising initial results and decades of investigation by the cardiology research community, the only treatment with proven efficacy is early reperfusion of the occluded coronary artery. The remarkable record of failure has led us and others to wonder if cardioprotection is dead. The path to translation, like the ascent to Everest, is certainly littered with corpses. We do, however, highlight a therapeutic principle that provides a glimmer of hope: cellular postconditioning. Administration of cardiosphere-derived cells after reperfusion limits infarct size measured acutely, while providing long-term structural and functional benefits. The recognition that cell therapy may be cardioprotective, and not just regenerative, merits further exploration before we abandon the pursuit entirely.
Collapse
Affiliation(s)
- David J Lefer
- From Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans (D.J.L.); and Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.).
| | - Eduardo Marbán
- From Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans (D.J.L.); and Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.)
| |
Collapse
|
29
|
Sanz-Ruiz R, Casado Plasencia A, Borlado LR, Fernández-Santos ME, Al-Daccak R, Claus P, Palacios I, Sádaba R, Charron D, Bogaert J, Mulet M, Yotti R, Gilaberte I, Bernad A, Bermejo J, Janssens S, Fernández-Avilés F. Rationale and Design of a Clinical Trial to Evaluate the Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction. Circ Res 2017; 121:71-80. [DOI: 10.1161/circresaha.117.310651] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Rationale:
Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results.
Objective:
In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior.
Methods and Results:
With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure.
Conclusions:
This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging–based efficacy end points.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT02439398.
Collapse
Affiliation(s)
- Ricardo Sanz-Ruiz
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Ana Casado Plasencia
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Luis R. Borlado
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - María Eugenia Fernández-Santos
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Reem Al-Daccak
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Piet Claus
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Itziar Palacios
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Rafael Sádaba
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Dominique Charron
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Jan Bogaert
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Miguel Mulet
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Raquel Yotti
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Immaculada Gilaberte
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Antonio Bernad
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Javier Bermejo
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Stefan Janssens
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| | - Franciso Fernández-Avilés
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañon, Facultad de Medicina, Universidad Complutense, Centro de Investigación Biomédica en Red–Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J. Bermejo, F.F.-A.); Coretherapix S.L.U./Tigenix Group, Madrid, Spain (L.R.B., I.P., M.M., I.G.); HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (R.A.-D., D.C.)
| |
Collapse
|
30
|
Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res 2017; 127:92-100. [PMID: 28554583 DOI: 10.1016/j.phrs.2017.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
Stem cell therapy is one of the most promising therapeutic innovations to help restore cardiac structure and function after ischemic insults to the heart. However, phase I and II clinical trials with autologous "first-generation stem cells" have yielded inconsistent results in ischemic cardiomyopathy patients and have not produced the definitive evidence for their broad clinical application. Recently, new cell types such as cardiac stem cells (CSC) and new allogeneic sources have attracted the attention of researchers given their inherent biological, clinical and logistic advantages. Preclinical evidence and emerging clinical data show that exogenous CSC produce a range of protein-based factors that have a powerful cardioprotective effect in the ischemic myocardium, immunoregulatory properties that promote angiogenesis and reduce scar formation, and are able to activate endogenous CSC which multiply and differentiate into cardiomyocytes and microvasculature. Furthermore, allogeneic CSC can be produced in large quantities beforehand and can be administered "off-the-shelf" early during the acute phase of myocardial ischemia. The distinctive immunological behavior of allogeneic CSC and their interaction with the host immune system is supposed to produce immunomodulatory beneficial effects in the short-term, preventing long-term side-effects after their rejection. Preclinical studies have shown highly promising results with allogeneic CSC, and clinical trials are already ongoing. Finally, unraveling questions about the biology and physiology of CSC, the characterization of their secretome, the conduction of larger clinical trials with autologous CSC, the definitive evidence on the safety and efficacy of allogeneic CSC in humans and the possibility of repeated administrations or combinations with other cell types and soluble factors will pave the road for further developments with CSC, that will undoubtedly determine the future of cardiovascular regenerative medicine in human beings.
Collapse
|
31
|
Collantes M, Pelacho B, García-Velloso MJ, Gavira JJ, Abizanda G, Palacios I, Rodriguez-Borlado L, Álvarez V, Prieto E, Ecay M, Larequi E, Peñuelas I, Prósper F. Non-invasive in vivo imaging of cardiac stem/progenitor cell biodistribution and retention after intracoronary and intramyocardial delivery in a swine model of chronic ischemia reperfusion injury. J Transl Med 2017; 15:56. [PMID: 28288654 PMCID: PMC5347835 DOI: 10.1186/s12967-017-1157-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/04/2017] [Indexed: 01/18/2023] Open
Abstract
Background The safety and efficacy of cardiac stem/progenitor cells (CSC) have been demonstrated in previous preclinical and clinical assays for heart failure. However, their optimal delivery route to the ischemic heart has not yet been assessed. This study was designed to determine by a non-invasive imaging technique (PET/CT) the biodistribution and acute retention of allogeneic pig CSC implanted by two different delivery routes, intracoronary (IC) and intramyocardial (IM), in a swine preclinical model of chronic ischemia–reperfusion. Methods Ischemia–reperfusion was induced in six Goettingen hybrid minipigs by 90 min coronary artery occlusion followed by reperfusion. Thirty days later, animals were allocated to receive IC (n = 3) or NOGA®-guided IM injection (n = 3) of 50 million of 18F-FDG/GFP-labeled allogeneic pig CSC. Acute retention was quantified by PET/CT 4 h after injection and cell engraftment assessed by immunohistochemical quantification of GFP+ cells three days post-injection. Results Biodistribution of 18F-FDG-labeled CSC was clearly visualized by PET/CT imaging and quantified. No statistical differences in acute cell retention (percentage of injected dose, %ID) were found in the heart when cells were administered by NOGA®-guided IM (13.4 ± 3.4%ID) or IC injections (17.4 ± 4.1%ID). Interestingly, engrafted CSC were histologically detected only after IM injection. Conclusion PET/CT imaging of 18F-FDG-labeled CSC allows quantifying biodistribution and acute retention of implanted cells in a clinically relevant pig model of chronic myocardial infarction. Similar levels of acute retention are achieved when cells are IM or IC administered. However, acute cell retention does not correlate with cell engraftment, which is improved by IM injection. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Collantes
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Beatriz Pelacho
- Center for Applied Medical Research (CIMA) Cell Therapy Area, IdiSNA, Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - María José García-Velloso
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Juán José Gavira
- Department of Cardiology and Cardiovascular Surgery, IdiSNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Gloria Abizanda
- Center for Applied Medical Research (CIMA) Cell Therapy Area, IdiSNA, Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Itziar Palacios
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, Tres Cantos, 28760, Madrid, Spain
| | - Luis Rodriguez-Borlado
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, Tres Cantos, 28760, Madrid, Spain
| | - Virginia Álvarez
- Coretherapix, Santiago Grisolía, n° 2 Parque Científico de Madrid, Tres Cantos, 28760, Madrid, Spain
| | - Elena Prieto
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Margarita Ecay
- Small Animal Imaging Research Unit, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Eduardo Larequi
- Center for Applied Medical Research (CIMA) Cell Therapy Area, IdiSNA, Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain
| | - Iván Peñuelas
- Department of Nuclear Medicine, IdisNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain.
| | - Felipe Prósper
- Hematology and Cell Therapy, IdiSNA, Clínica Universidad de Navarra, Avda. Pío XII, 31080, Pamplona, Spain.
| |
Collapse
|
32
|
Minimizing the risk of allo-sensitization to optimize the benefit of allogeneic cardiac-derived stem/progenitor cells. Sci Rep 2017; 7:41125. [PMID: 28117403 PMCID: PMC5259698 DOI: 10.1038/srep41125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are currently under clinical investigation for cardiac repair. While cellular immune response against allogeneic hCPC could be part of their beneficial-paracrine effects, their humoral immune response remains largely unexplored. Donor-specific HLA antibodies (DSA-HLA-I/DSA-HLA-II), primary elements of antibody-mediated allograft injury, might present an unidentified risk to allogeneic hCPC therapy. Here we established that the binding strength of anti-HLA monoclonal antibodies delineates hCPC proneness to antibody-mediated injury. In vitro modeling of clinical setting demonstrated that specific DSA-HLA-I of high/intermediate binding strength are harmful for hCPC whereas DSA-HLA-II are benign. Furthermore, the Luminex-based solid-phase assays are suitable to predict the DSA-HLA risk to therapeutic hCPC. Our data indicate that screening patient sera for the presence of HLA antibodies is important to provide an immune-educated choice of allogeneic therapeutic cells, minimize the risk of precipitous elimination and promote the allogeneic reparative effects.
Collapse
|
33
|
Abstract
The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.
Collapse
Affiliation(s)
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London, UK Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
34
|
Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, Marbán L, Ghaleh B, Marbán E. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 2017; 38:201-211. [PMID: 28158410 PMCID: PMC5837390 DOI: 10.1093/eurheartj/ehw240] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Aims Naturally secreted nanovesicles known as exosomes are required for the regenerative effects of cardiosphere-derived cells (CDCs), and exosomes mimic the benefits of CDCs in rodents. Nevertheless, exosomes have not been studied in a translationally realistic large-animal model. We sought to optimize delivery and assess the efficacy of CDC-secreted exosomes in pig models of acute (AMI) and convalescent myocardial infarction (CMI). Methods and Results In AMI, pigs received human CDC exosomes (or vehicle) by intracoronary (IC) or open-chest intramyocardial (IM) delivery 30 min after reperfusion. No-reflow area and infarct size (IS) were assessed histologically at 48 h. Intracoronary exosomes were ineffective, but IM exosomes decreased IS from 80 ± 5% to 61 ± 12% (P= 0.001) and preserved left ventricular ejection fraction (LVEF). In a randomized placebo-controlled study of CMI, pigs 4 weeks post-myocardial infarction (MI) underwent percutaneous IM delivery of vehicle (n = 6) or CDC exosomes (n = 6). Magnetic resonance imaging (MRI) performed before and 1 month after treatment revealed that exosomes (but not vehicle) preserved LV volumes and LVEF (−0.1 ± 2.2% vs. −5.4 ± 3.6%, P= 0.01) while decreasing scar size. Histologically, exosomes decreased LV collagen content and cardiomyocyte hypertrophy while increasing vessel density. Conclusion Cardiosphere-derived cell exosomes delivered IM decrease scarring, halt adverse remodelling and improve LVEF in porcine AMI and CMI. While conceptually attractive as cell-free therapeutic agents for myocardial infarction, exosomes have the disadvantage that IM delivery is necessary.
Collapse
Affiliation(s)
- Romain Gallet
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- Inserm, U955, Equipe 03, F-94000 Créteil, France
| | - James Dawkins
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jackelyn Valle
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Eli Simsolo
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Geoffrey de Couto
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ryan Middleton
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Eleni Tseliou
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Daniel Luthringer
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Michelle Kreke
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- Capricor Inc., Los Angeles, CA, USA
| | | | - Linda Marbán
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- Capricor Inc., Los Angeles, CA, USA
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03, F-94000 Créteil, France
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
35
|
Tseliou E, Fouad J, Reich H, Slipczuk L, de Couto G, Aminzadeh M, Middleton R, Valle J, Weixin L, Marbán E. Fibroblasts Rendered Antifibrotic, Antiapoptotic, and Angiogenic by Priming With Cardiosphere-Derived Extracellular Membrane Vesicles. J Am Coll Cardiol 2016; 66:599-611. [PMID: 26248985 DOI: 10.1016/j.jacc.2015.05.068] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiosphere-derived cells mediate therapeutic regeneration in patients after myocardial infarction and are undergoing further clinical testing for cardiomyopathy. The beneficial effects of cardiosphere-derived cells are mediated by the secretion of exosomes and possibly other extracellular membrane vesicles (EMVs). OBJECTIVES This study sought to investigate the effect of cardiosphere-derived EMVs (CSp-EMVs) on fibroblasts in vitro and tested whether priming with CSp-EMVs could confer salutary properties on fibroblasts in vivo. METHODS CSp-EMVs were isolated from serum-free media conditioned for 3 days by cardiospheres. Dermal fibroblasts were primed with CSp-EMVs for 24 h followed by exosomal micro-ribonucleic acid profiling. In vivo, we injected CSp-EMV-primed or -unprimed dermal fibroblasts (or CSp-EMVs) in a chronic rat model of myocardial infarction and defined the functional and structural consequences. RESULTS CSp-EMVs amplified their own biological signals: exposure of "inert" fibroblasts to CSp-EMVs rendered the fibroblasts therapeutic. Intramyocardially injected CSp-EMV-primed (but not unprimed) fibroblasts increased global pump function and vessel density while reducing scar mass. CSp-EMV priming caused fibroblasts to secrete much higher levels of stromal-cell-derived factor 1 and vascular endothelial growth factor and dramatically changed the micro-ribonucleic acid profile of fibroblast-secreted EMVs in vitro. The priming was followed by significant angiogenic and cardioprotective effects. CONCLUSIONS CSp-EMVs alter fibroblast phenotype and secretome in a salutary positive-feedback loop. The phenotypic conversion of inert cells to therapeutically active cells reveals a novel mechanism for amplification of exosome bioactivity.
Collapse
Affiliation(s)
- Eleni Tseliou
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Heidi Reich
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | | | | | | | | | | - Liu Weixin
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | |
Collapse
|
36
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
37
|
Feyen DA, Gaetani R, Doevendans PA, Sluijter JP. Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev 2016; 106:104-115. [PMID: 27133386 DOI: 10.1016/j.addr.2016.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
Stem cell-based therapies form an exciting new class of medicine that attempt to provide the body with the building blocks required for the reconstruction of damaged organs. However, delivering cells to the correct location, while preserving their integrity and functional properties, is a complex undertaking. These challenges have led to the development of a highly dynamic interdisciplinary research field, wherein medical, biological, and chemical sciences have collaborated to develop strategies to overcome the physiological barriers imposed on the cellular therapeutics. In this respect, improving the acute retention and subsequent survival of stem cells is key to effectively increase the effect of the therapy, while proper tissue integration is imperative for stem cells to functionally replace lost cells in damaged organs. In this review, we will use the heart as an example to highlight the current knowledge of therapeutic stem cell utilization, the existing pitfalls and limitations, and the approaches that have been developed to overcome them.
Collapse
|
38
|
Heart-Derived Stem Cells in Miniature Swine with Coronary Microembolization: Novel Ischemic Cardiomyopathy Model to Assess the Efficacy of Cell-Based Therapy. Stem Cells Int 2016; 2016:6940195. [PMID: 27738436 PMCID: PMC5055979 DOI: 10.1155/2016/6940195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/15/2023] Open
Abstract
A major problem in translating stem cell therapeutics is the difficulty of producing stable, long-term severe left ventricular (LV) dysfunction in a large animal model. For that purpose, extensive infarction was created in sinclair miniswine by injecting microspheres (1.5 × 106 microspheres, 45 μm diameter) in LAD. At 2 months after embolization, animals (n = 11) were randomized to receive allogeneic cardiosphere-derived cells derived from atrium (CDCs: 20 × 106, n = 5) or saline (untreated, n = 6). Four weeks after therapy myocardial function, myocyte proliferation (Ki67), mitosis (phosphor-Histone H3; pHH3), apoptosis, infarct size (TTC), myocyte nuclear density, and cell size were evaluated. CDCs injected into infarcted and remodeled remote myocardium (global infusion) increased regional function and global function contrasting no change in untreated animals. CDCs reduced infarct volume and stimulated Ki67 and pHH3 positive myocytes in infarct and remote regions. As a result, myocyte number (nuclear density) increased and myocyte cell diameter decreased in both infarct and remote regions. Coronary microembolization produces stable long-term ischemic cardiomyopathy. Global infusion of CDCs stimulates myocyte regeneration and improves left ventricular ejection fraction. Thus, global infusion of CDCs could become a new therapy to reverse LV dysfunction in patients with asymptomatic heart failure.
Collapse
|
39
|
Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016; 143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elvira Forte
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
40
|
Chakravarty T, Makkar RR, Ascheim DD, Traverse JH, Schatz R, DeMaria A, Francis GS, Povsic TJ, Smith RR, Lima JA, Pogoda JM, Marbán L, Henry TD. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: Rationale and Design. Cell Transplant 2016; 26:205-214. [PMID: 27543900 DOI: 10.3727/096368916x692933] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autologous cardiosphere-derived cells (CDCs) were the first therapeutic modality to demonstrate myocardial regeneration with a decrease in scar size and an increase in viable, functional tissue. Widespread applicability of autologous CDC therapy is limited by the need for patient-specific myocardial biopsy, cell processing, and quality control, resulting in delays to therapy and inherent logistical and economic constraints. Preclinical data had demonstrated equivalent efficiency of allogeneic to autologous CDCs. The ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) trial is a multicenter randomized, double-blind, placebo-controlled phase 1/2 safety and efficacy trial of intracoronary delivery of allogeneic CDCs (CAP-1002) in patients with myocardial infarction (MI) and ischemic left ventricular dysfunction. The phase 1 safety cohort enrolled 14 patients in an open-label, nonrandomized, dose-escalation safety trial. The phase 2 trial is a double-blind, randomized, placebo-controlled trial that will compare intracoronary CDCs to placebo in a 2:1 allocation and will enroll up to 120 patients. The primary endpoint for both phases is safety at 1 month. For phase 2, the primary efficacy endpoint is relative change from baseline in infarct size at 12 months, as assessed by magnetic resonance imaging. The ALLSTAR trial employs a "seamless" WOVE 1 design that enables continuous enrollment from phase 1 to phase 2 and will evaluate the safety of intracoronary administration of allogeneic CDCs and its efficacy in decreasing infarct size in post-MI patients.
Collapse
|
41
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
42
|
Reich H, Tseliou E, de Couto G, Angert D, Valle J, Kubota Y, Luthringer D, Mirocha J, Sun B, Smith RR, Marbán L, Marbán E. Repeated transplantation of allogeneic cardiosphere-derived cells boosts therapeutic benefits without immune sensitization in a rat model of myocardial infarction. J Heart Lung Transplant 2016; 35:1348-1357. [PMID: 27342903 DOI: 10.1016/j.healun.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A single dose of allogeneic cardiosphere-derived cells (CDCs) improves cardiac function and reduces scarring, and increases viable myocardium in the infarcted rat and pig heart without eliciting a detrimental immune response. Clinical trials using single doses of allogeneic human CDCs are underway. It is unknown whether repeat dosing confers additional benefit or if it elicits an immune response. METHODS Wistar-Kyoto rats underwent coronary artery ligation and intramyocardial injection of CDCs, with a second thoracotomy and repeat CDC injection 3 weeks later. Treatment permutations included 2 doses of allogeneic Brown-Norway CDCs (n = 24), syngeneic Wistar-Kyoto CDCs (n = 24), xenogeneic human CDCs (n = 24) or saline (n = 8). Cardiac function was assessed by transthoracic echocardiography, infarct size and inflammatory infiltration by histology, and cellular and humoral immune responses by lymphocyte proliferation and alloantibody assays. RESULTS Repeat dosing of allogeneic and syngeneic CDCs improved ejection fraction by 5.2% (95% CI 2.1 to 8.3) and 6.8% (95% CI 3.8 to 9.8) after the first dose, and by 3.4% (95% CI 0.1% to 6.8%) and 6.4% (95% CI 4.2% to 8.6%) after the second dose. Infarct size was equally reduced with repeat dosing of syngeneic and allogeneic CDCs relative to xenogeneic and control treatments (p < 0.0001). Significant rejection-like infiltrates were present only in the xenogeneic group; likewise, lymphocyte proliferation and antibody assays were positive in the xenogeneic and negative in syngeneic and allogeneic groups. CONCLUSIONS Repeat dosing of allogeneic CDCs in immunocompetent rats is safe and effective, consistent with the known immunomodulatory and anti-inflammatory properties of CDCs. These findings motivate clinical testing of repeatedly dosed CDCs for chronic heart disease.
Collapse
Affiliation(s)
- Heidi Reich
- Cedars-Sinai Heart Institute, Los Angeles, California, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eleni Tseliou
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | | | - David Angert
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jackelyn Valle
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Yuzu Kubota
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel Luthringer
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - James Mirocha
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Baiming Sun
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Rachel R Smith
- Capricor, Therapeutics, Inc., Beverly Hills, California, USA
| | - Linda Marbán
- Cedars-Sinai Heart Institute, Los Angeles, California, USA; Capricor, Therapeutics, Inc., Beverly Hills, California, USA
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Los Angeles, California, USA.
| |
Collapse
|
43
|
Sun Y, Chi D, Tan M, Kang K, Zhang M, Jin X, Leng X, Cao R, Liu X, Yu B, Wu J. Cadaveric cardiosphere-derived cells can maintain regenerative capacity and improve the heart function of cardiomyopathy. Cell Cycle 2016; 15:1248-56. [PMID: 27058215 PMCID: PMC4889289 DOI: 10.1080/15384101.2016.1160973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Cardiosphere-derived cells (CDCs) improve cardiac function and attenuate remodeling in ischemic and non-ischemic cardiomyopathy, and are currently obtained through myocardial biopsy. However, there is not any study on whether functional CDCs may be obtained through cadaveric autopsy with similar benefits in non-ischemic cardiomyopathy. METHODS Cardiac tissues from human or mouse cadavers were harvested, plated at 4°C, and removed at varying time points to culture human CDCs (CLH-EDCs) and mouse CDCs (CM-CDCs). The differentiation and paracrine effects of CDCs were also assessed. Furthermore, intramyocardial injection of cadaveric CM-CDCs was performed in an induced dilated cardiomyopathy (DCM) model. RESULTS With the extension of post mortem hours, the number of CLH-EDCs and CM-CDCs harvested from autopsy specimens decreased. The expressions of von Willebrand factor (VWF) and smooth muscle actin (SMA) on CDCs were gradually reduced, however, cardiac troponin I (TNI) expression increased in the 24 h group compared to the 0 h group. CLH-EDCs were also found to have similar paracrine function in the 24 h group compared to 0 h group. 8 weeks after CM-CDCs transplantion to the injured heart, mean left ventricular ejection fraction increased in both 0 h (64.99 ± 3.4%) and 24 h (62.99 ± 2.8%) CM-CDCs-treated groups as compared to the PBS treated group (53.64 ± 5.6 cm), with a decrease in left ventricular internal diastolic diameter (0.29 ± 0.08 cm and 0.32 ± 0.04 cm in 0 h and 24 h groups, vs. 0.41 ± 0.05 cm in PBS group). CONCLUSION CDCs from cadaveric autopsy are highly proliferative and differentiative, and may be used as a source for allograft transplantation, in order to decrease myocardial fibrosis, attenuate left ventricular remodeling, and improve heart function in doxorubicin-induced non-ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Yong Sun
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Chi
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoxin Tan
- Department of Cardiology, The First Hospital of Fangshan District, Beijing, china
| | - Kai Kang
- Department of Cardial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyuan Jin
- Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoping Leng
- Department of Doppler Ultrasonic, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Cao
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglan Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Wu
- Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Microtissues in Cardiovascular Medicine: Regenerative Potential Based on a 3D Microenvironment. Stem Cells Int 2016; 2016:9098523. [PMID: 27073399 PMCID: PMC4814701 DOI: 10.1155/2016/9098523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 02/06/2023] Open
Abstract
More people die annually from cardiovascular diseases than from any other cause. In particular, patients who suffer from myocardial infarction may be affected by ongoing adverse remodeling processes of the heart that may ultimately lead to heart failure. The introduction of stem and progenitor cell-based applications has raised substantial hope for reversing these processes and inducing cardiac regeneration. However, current stem cell therapies using single-cell suspensions have failed to demonstrate long-lasting efficacy due to the overall low retention rate after cell delivery to the myocardium. To overcome this obstacle, the concept of 3D cell culture techniques has been proposed to enhance therapeutic efficacy and cell engraftment based on the simulation of an in vivo-like microenvironment. Of great interest is the use of so-called microtissues or spheroids, which have evolved from their traditional role as in vitro models to their novel role as therapeutic agents. This review will provide an overview of the therapeutic potential of microtissues by addressing primarily cardiovascular regeneration. It will accentuate their advantages compared to other regenerative approaches and summarize the methods for generating clinically applicable microtissues. In addition, this review will illustrate the unique properties of the microenvironment within microtissues that makes them a promising next-generation therapeutic approach.
Collapse
|
45
|
Gallet R, Tseliou E, Dawkins J, Middleton R, Valle J, Angert D, Reich H, Luthringer D, Kreke M, Smith R, Marbán L, Marbán E. Intracoronary delivery of self-assembling heart-derived microtissues (cardiospheres) for prevention of adverse remodeling in a pig model of convalescent myocardial infarction. Circ Cardiovasc Interv 2016; 8:CIRCINTERVENTIONS.115.002391. [PMID: 25953823 DOI: 10.1161/circinterventions.115.002391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Preclinical studies in rodents and pigs indicate that the self-assembling microtissues known as cardiospheres may be more effective than dispersed cardiosphere-derived cells. However, the more desirable intracoronary route has been assumed to be unsafe for cardiosphere delivery: Cardiospheres are large (30-150 μm), raising concerns about likely microembolization. We questioned these negative assumptions by evaluating the safety and efficacy of optimized intracoronary delivery of cardiospheres in a porcine model of convalescent myocardial infarction. METHODS AND RESULTS First, we standardized the size of cardiospheres by modifying culture conditions. Then, dosage was determined by infusing escalating doses of cardiospheres in the left anterior descending artery of naive pigs, looking for acute adverse effects. Finally, in a randomized efficacy study, 14 minipigs received allogeneic cardiospheres (1.3 × 10(6)) or vehicle 1 month after myocardial infarction. Animals underwent magnetic resonance imaging before infusion and 1 month later to assess left ventricular ejection fraction, scar mass, and viable mass. In the dosing study, we did not observe any evidence of microembolization after cardiosphere infusion. In the post-myocardial infarction study, cardiospheres preserved LV function, reduced scar mass and increased viable mass, whereas placebo did not. Moreover, cardiosphere decreased collagen content, and increased vessel densities and myocardial perfusion. Importantly, intracoronary cardiospheres decreased left ventricular end-diastolic pressure and increased cardiac output. CONCLUSIONS Intracoronary delivery of cardiospheres is safe. Intracoronary cardiospheres are also remarkably effective in decreasing scar, halting adverse remodeling, increasing myocardial perfusion, and improving hemodynamic status after myocardial infarction in pigs. Thus, cardiospheres may be viable therapeutic candidates for intracoronary infusion in selected myocardial disorders.
Collapse
Affiliation(s)
- Romain Gallet
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Eleni Tseliou
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - James Dawkins
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Ryan Middleton
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Jackelyn Valle
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - David Angert
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Heidi Reich
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Daniel Luthringer
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Michelle Kreke
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Rachel Smith
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Linda Marbán
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Eduardo Marbán
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.).
| |
Collapse
|
46
|
Kanazawa H, Tseliou E, Dawkins JF, De Couto G, Gallet R, Malliaras K, Yee K, Kreke M, Valle I, Smith RR, Middleton RC, Ho CS, Dharmakumar R, Li D, Makkar RR, Fukuda K, Marbán L, Marbán E. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc 2016; 5:JAHA.115.002796. [PMID: 26857066 PMCID: PMC4802479 DOI: 10.1161/jaha.115.002796] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Infusion of allogeneic cardiosphere-derived cells (allo-CDCs) postreperfusion elicits cardioprotective cellular postconditioning in pigs with acute myocardial infarction. However, the long-term effects of allo-CDCs have not been assessed. We performed a placebo-controlled pivotal study for long-term evaluation, as well as shorter-term mechanistic studies. METHODS AND RESULTS Minipigs underwent 1.5-hour mid-left anterior descending balloon occlusion followed by reperfusion and were randomized to receive intracoronary allo-CDCs or vehicle 30 minutes postreperfusion. Left ventriculography (LVG) demonstrated preserved ejection fraction (EF) and attenuation of LV remodeling in CDC-treated pigs. Pigs underwent cardiac magnetic resonance imaging (MRI) and LVG 1 hour and 8 weeks after therapy to evaluate efficacy. MRI showed improvement of EF and attenuation of LV remodeling immediately after allo-CDC infusion. In addition, allo-CDCs improved regional function and decreased hypertrophy 2 months post-treatment. Histological analysis revealed increased myocardial salvage index, enhanced vascularity, sustained reductions in infarct size/area at risk and scar transmurality, and attenuation of collagen deposition in the infarct zone of allo-CDC-treated pigs at 2 months. Allo-CDCs did not evoke lymphohistiocytic infiltration or systemic humoral memory response. Short-term experiments designed to probe mechanism revealed antiapoptotic effects of allo-CDCs on cardiomyocytes and increases in cytoprotective macrophages, but no increase in overall inflammatory cell infiltration 2 hours after cell therapy. CONCLUSIONS Allo-CDC infusion postreperfusion is safe, improves cardiac function, and attenuates scar size and remodeling. The favorable effects persist for at least 2 months after therapy. Thus, cellular postconditioning confers not only acute cardioprotection, but also lasting structural and functional benefits.
Collapse
Affiliation(s)
- Hideaki Kanazawa
- Cedars-Sinai Heart Institute, Los Angeles, CA Department of Cardiology, Keio University School of Medicine, Shinjuku Tokyo, Japan
| | | | | | | | | | | | | | | | | | - Rachel R Smith
- Cedars-Sinai Heart Institute, Los Angeles, CA Capricor Inc., Los Angeles, CA
| | | | | | | | - Debiao Li
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, CA
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku Tokyo, Japan
| | - Linda Marbán
- Cedars-Sinai Heart Institute, Los Angeles, CA Capricor Inc., Los Angeles, CA
| | | |
Collapse
|
47
|
Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology. PLoS One 2016; 11:e0144523. [PMID: 26784932 PMCID: PMC4718597 DOI: 10.1371/journal.pone.0144523] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022] Open
Abstract
Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes. Vehicle-infused animals served as controls. Single-vessel stop-flow and continuous-flow intracoronary infusion revealed equivalent effects on scar size and function. Sequential infusion into each of the three major coronary vessels under stop-flow or continuous-flow conditions revealed equal efficacy, but less elevation of necrotic biomarkers with continuous-flow delivery. In addition, multi-vessel delivery resulted in enhanced global and regional tissue function compared to a triple-vessel placebo-treated group. The functional benefits after global cell infusion were accompanied histologically by minimal inflammatory cellular infiltration, attenuated regional fibrosis and enhanced vessel density in the heart. Sequential multi-vessel non-occlusive delivery of CDCs is safe and provides enhanced preservation of left ventricular function and structure. The current findings provide preclinical validation of the delivery method currently undergoing clinical testing in the Dilated cardiomYopathy iNtervention With Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial of CDCs in heart failure patients.
Collapse
|
48
|
Kapelios CJ, Nanas JN, Malliaras K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol 2016; 12:87-100. [DOI: 10.2217/fca.15.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early-phase clinical testing of autologous cardiosphere-derived cells (CDCs) has yielded intriguing results, consistent with therapeutic myocardial regeneration. However, autologous therapy is associated with significant technical, timing, economic and logistic constraints, prompting researchers to explore the potential of allogeneic CDC therapy. CDCs exhibit a favorable immunologic antigenic profile and are hypoimmunogenic in vitro. Preclinical studies in immunologically mismatched animals demonstrate that allogeneic CDC transplantation without immunosuppression is safe and produces sustained functional and structural benefits through stimulation of endogenous regenerative pathways. Currently, allogeneic human CDCs are being tested clinically in the ALLSTAR and DYNAMIC trials. Potential establishment of clinical safety and efficacy of allogeneic CDCs combined with generation of highly standardized, ‘off-the-shelf’ allogeneic cellular products would facilitate broad clinical adoption of cell therapy.
Collapse
Affiliation(s)
- Chris J Kapelios
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| | - John N Nanas
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| | - Konstantinos Malliaras
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| |
Collapse
|
49
|
Abstract
"During the past decade, studies in animals and humans have suggested that cell therapy has positive effects for the treatment of heart failure. This clinical effect may be mediated by angiogenesis and reduction in fibrosis rather than by regeneration of myocytes. Increased microvasculature and decreased scar also likely lead to improved cardiac function in the failing heart. The effects of cell therapy are not limited to one type of cell or delivery technique. Well-designed, large-scale, randomized clinical trials with objective end points will help to fully realize the therapeutic potential of cell-based therapy for treating heart failure."
Collapse
Affiliation(s)
- Amit N Patel
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA.
| | - Francisco Silva
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA
| | - Amalia A Winters
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA
| |
Collapse
|
50
|
Xie Y, Ibrahim A, Cheng K, Wu Z, Liang W, Malliaras K, Sun B, Liu W, Shen D, Cheol Cho H, Li T, Lu L, Lu G, Marbán E. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells 2015; 32:2397-406. [PMID: 24802280 DOI: 10.1002/stem.1736] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
Abstract
Cardiosphere-derived cells (CDCs) effect therapeutic regeneration after myocardial infarction (MI) both in animal models and in humans. Here, we test the hypothesis that cell-cell contact plays a role in mediating the observed therapeutic benefits of CDCs, above and beyond conventional paracrine effects. Human CDCs or vehicle were injected into immunodeficient (SCID) mouse hearts during acute MI. CDC transplantation augmented the proportion of cycling (Ki67(+) ) cardiomyocytes and improved ventricular function. CDC-conditioned media only modestly augmented the percentage of Ki67(+) cardiomyocytes (>control but <CDCs), but did not improve pump function. When neonatal rat ventricular myocytes (NRVMs) were cocultured with human CDCs in vitro, the percentage of cycling NRVMs (Ki67(+) or BrdU(+) nuclei) increased relative to solitary NRVM culture. To further dissect the relative contributions of soluble factors versus contact-dependent mechanisms, we compared CDCs grown with NRVMs in a transwell contact-free system versus admixed coculture. The percentage of cycling NRVMs was higher in admixed coculture than in the contact-free system. Pretreatment with inhibitors of MEK and PI3K, or with β1 integrin neutralizing antibody, blocked the ability of CDCs to promote myocyte cycling. While conditioned media are not inert, direct apposition of CDCs to cardiomyocytes produces greater enhancement of cardiomyocyte proliferation in vitro and in vivo, and improves function post-MI. Intact cardiomyocyte β1 integrin signaling is necessary for the contact-dependent cardioproliferative effects of CDCs.
Collapse
Affiliation(s)
- Yucai Xie
- Cedars-Sinai Heart Institute, Los Angeles, California, USA; Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|