1
|
Zhu Y, Chen B, Zu Y. Identifying OGN as a Biomarker Covering Multiple Pathogenic Pathways for Diagnosing Heart Failure: From Machine Learning to Mechanism Interpretation. Biomolecules 2024; 14:179. [PMID: 38397416 PMCID: PMC10886937 DOI: 10.3390/biom14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The pathophysiologic heterogeneity of heart failure (HF) necessitates a more detailed identification of diagnostic biomarkers that can reflect its diverse pathogenic pathways. METHODS We conducted weighted gene and multiscale embedded gene co-expression network analysis on differentially expressed genes obtained from HF and non-HF specimens. We employed a machine learning integration framework and protein-protein interaction network to identify diagnostic biomarkers. Additionally, we integrated gene set variation analysis, gene set enrichment analysis (GSEA), and transcription factor (TF)-target analysis to unravel the biomarker-dominant pathways. Leveraging single-sample GSEA and molecular docking, we predicted immune cells and therapeutic drugs related to biomarkers. Quantitative polymerase chain reaction validated the expressions of biomarkers in the plasma of HF patients. A two-sample Mendelian randomization analysis was implemented to investigate the causal impact of biomarkers on HF. RESULTS We first identified COL14A1, OGN, MFAP4, and SFRP4 as candidate biomarkers with robust diagnostic performance. We revealed that regulating biomarkers in HF pathogenesis involves TFs (BNC2, MEOX2) and pathways (cell adhesion molecules, chemokine signaling pathway, cytokine-cytokine receptor interaction, oxidative phosphorylation). Moreover, we observed the elevated infiltration of effector memory CD4+ T cells in HF, which was highly related to biomarkers and could impact immune pathways. Captopril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and genistein were predicted as therapeutic drugs alleviating HF via interactions with biomarkers. In vitro study confirmed the up-regulation of OGN as a plasma biomarker of HF. Mendelian randomization analysis suggested that genetic predisposition toward higher plasma OGN promoted the risk of HF. CONCLUSIONS We propose OGN as a diagnostic biomarker for HF, which may advance our understanding of the diagnosis and pathogenesis of HF.
Collapse
Affiliation(s)
- Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Chen
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Lin-gang), Shanghai 201306, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| |
Collapse
|
2
|
Delgado-Arija M, Genovés P, Pérez-Carrillo L, González-Torrent I, Giménez-Escamilla I, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Plasma fibroblast activation protein is decreased in acute heart failure despite cardiac tissue upregulation. J Transl Med 2024; 22:124. [PMID: 38297310 PMCID: PMC10832198 DOI: 10.1186/s12967-024-04900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients. METHODS Transcriptomic changes were assessed via mRNA/ncRNA-seq in left ventricle tissue from HF patients (n = 57) and controls (n = 10). Western blotting and immunohistochemistry were used to explore FAP protein levels and localization in cardiac tissue. ELISA was performed to examine plasma FAP levels in acute HF (n = 48), chronic HF (n = 15) and control samples (n = 7). RESULTS FAP overexpression in cardiac tissue is related to the expression of molecules directly involved in cardiac fibrosis, such as POSTN, THBS4, MFAP5, COL1A2 and COL3A1 (P < 0.001), and is directly and inversely related to pro- and antifibrotic microRNAs, respectively. The observed FAP overexpression is not reflected in plasma. Circulating FAP levels were lower in acute HF patients than in controls (P < 0.05), while chronic HF patients did not show significant changes. The clinical variables analyzed, such as functional class or etiology, do not affect plasma FAP concentrations. CONCLUSIONS We determined that in HF cardiac tissue, FAP is related to the main cardiac fibrosis signaling pathways as well as to pro- and antifibrotic microRNAs. Additionally, an acute phase of HF decreases plasma FAP levels despite the upregulation observed in cardiac tissue and regardless of other clinical conditions.
Collapse
Affiliation(s)
- Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology, Faculty of Medicine, Universitat de València, Avd. de Blasco Ibañez, 15, 46010, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Tian Y, Wang Z, Liang F, Wang Y. Identifying Immune Cell Infiltration and Hub Genes During the Myocardial Remodeling Process After Myocardial Infarction. J Inflamm Res 2023; 16:2893-2906. [PMID: 37456781 PMCID: PMC10349602 DOI: 10.2147/jir.s416914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Myocardial remodeling after myocardial infarction (MI) is a complex repair process following myocardial injury, characterized by the infiltration of multiple types of immune cells. However, the underlying molecular mechanism of myocardial remodeling after MI remains obscure. This study aimed to identify the hub differential expression genes (DEGs) of myocardial remodeling after MI and determine the distribution of immune cells infiltrating the pathology. Methods We downloaded GSE132143, GSE151834, and GSE176092 data from the GEO database. The GSE132143 dataset was used to identify DEGs, perform functional annotation, and screen hub genes based on protein-protein interaction (PPI) analysis. The GSE151834 dataset was used to validate the expression of hub genes. CIBERSORTx analysis was performed to explore the immune microenvironment in myocardial remodeling after MI. After conducting a literature review, we selected P3H3 to confirm the expression by utilizing immunohistochemistry and qRT-PCR. Finally, the snRNA-seq data in dataset GSE176092 was used for clarifying the expression of these hub genes in various cell clusters. Results We found 975 DEGs in myocardial remodeling after MI. Four hub genes (P3H3, COL15A1, COL16A1, COL27A1) were identified and were verified in the GSE151834 dataset. According to immune infiltration analysis, CD4+ naive T cells, regulatory T cells, monocytes, M2 macrophages, and neutrophils were involved in the pathological process of myocardial remodeling after MI. Additionally, in vitro experiments verified that P3h3 expression was significantly elevated in myocardial remodeling after MI. The snRNA-seq data analyzed that P3h3, Col15a1, Col16a1, and Col27a1 were highly expressed in fibroblasts of post-MI. Conclusion This study identified four hub genes P3H3, COL15A1, COL16A1, and COL27A1, particularly P3H3, as potential targets for targeted therapy in MI patients.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Zilin Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Feng Liang
- Heart Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Yi Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
4
|
Pérez-Carrillo L, Giménez-Escamilla I, García-Manzanares M, Triviño JC, Feijóo-Bandín S, Aragón-Herrera A, Lago F, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Altered MicroRNA Maturation in Ischemic Hearts: Implication of Hypoxia on XPO5 and DICER1 Dysregulation and RedoximiR State. Antioxidants (Basel) 2023; 12:1337. [PMID: 37507877 PMCID: PMC10376795 DOI: 10.3390/antiox12071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs). Transcriptomic changes were investigated via ncRNA-seq (ICM, n = 22; controls, n = 8) and mRNA-seq (ICM, n = 13; control, n = 10). The effect of hypoxia on the biogenesis of microRNAs was evaluated in the AC16 cell line. ICM patients showed a reduction in microRNA maturation compared to control (4.30 ± 0.94 au vs. 5.34 ± 1.07 au, p ˂ 0.05), accompanied by a deregulation of the microRNA biogenesis pathway: a decrease in pre-microRNA export (XPO5, FC = -1.38, p ˂ 0.05) and cytoplasmic processing (DICER, FC = -1.32, p ˂ 0.01). Both processes were regulated by hypoxia in AC16 cells (XPO5, FC = -1.65; DICER1, FC = -1.55; p ˂ 0.01; Exportin-5, FC = -1.81; Dicer, FC = -1.15; p ˂ 0.05). Patients displayed deregulation of several redoximiRs, highlighting miR-122-5p (FC = -2.41, p ˂ 0.001), which maintained a good correlation with the ejection fraction (r = 0.681, p ˂ 0.01). We evidenced a decrease in microRNA maturation mainly linked to a decrease in XPO5-mediated pre-microRNA export and DICER1-mediated processing, together with a general effect of hypoxia through deregulation of biogenesis pathway and the redoximiRs.
Collapse
Affiliation(s)
- Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María García-Manzanares
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Medicine and Animal Surgery, Veterinary School, CEU Cardenal Herrera University, C/Lluís Vives, 1, 46115 Alfara del Patriarca, Spain
| | | | - Sandra Feijóo-Bandín
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Francisca Lago
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
5
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
6
|
Perreault LR, Le TT, Oudin MJ, Black LD. RNA sequencing indicates age-dependent shifts in the cardiac fibroblast transcriptome between fetal, neonatal, and adult developmental ages. Physiol Genomics 2021; 53:414-429. [PMID: 34281425 PMCID: PMC8560366 DOI: 10.1152/physiolgenomics.00074.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibroblasts are responsible for extracellular matrix turnover and repair in the cardiac environment and serve to help facilitate immune responses. However, it is well established that they have a significant phenotypic heterogeneity with respect to location, physiological conditions, and developmental age. The goal of this study was to provide an in-depth transcriptomic profile of cardiac fibroblasts derived from rat hearts at fetal, neonatal, and adult developmental ages to ascertain variations in gene expression that may drive functional differences in these cells at these specific stages of development. We performed RNA sequencing (RNA-seq) of cardiac fibroblasts isolated from fetal, neonatal, and adult rats and compared with the rat genome. Principal component analysis of RNA-seq data suggested that data variance was predominantly due to developmental age. Differential expression and gene set enrichment analysis against Gene Ontology and Kyoto Encyclopedia of Genes and Genomes datasets indicated an array of differences across developmental ages, including significant decreases in cardiac development and cardiac function-associated genes with age and a significant increase in immune- and inflammatory-associated functions, particularly immune cell signaling and cytokine and chemokine production, with respect to increasing developmental age. These results reinforce established evidence of diverse phenotypic heterogeneity of fibroblasts with respect to developmental age. Furthermore, based on our analysis of gene expression, age-specific alterations in cardiac fibroblasts may play a crucial role in observed differences in cardiac inflammation and immune response observed across developmental ages.
Collapse
Affiliation(s)
- Luke R Perreault
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Thanh T Le
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Yang H, Shao N, Holmström A, Zhao X, Chour T, Chen H, Itzhaki I, Wu H, Ameen M, Cunningham NJ, Tu C, Zhao MT, Tarantal AF, Abilez OJ, Wu JC. Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue. Cardiovasc Res 2021; 117:2125-2136. [PMID: 33002105 PMCID: PMC8318103 DOI: 10.1093/cvr/cvaa281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Stem cell therapy has shown promise for treating myocardial infarction via re-muscularization and paracrine signalling in both small and large animals. Non-human primates (NHPs), such as rhesus macaques (Macaca mulatta), are primarily utilized in preclinical trials due to their similarity to humans, both genetically and physiologically. Currently, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are delivered into the infarcted myocardium by either direct cell injection or an engineered tissue patch. Although both approaches have advantages in terms of sample preparation, cell-host interaction, and engraftment, how the iPSC-CMs respond to ischaemic conditions in the infarcted heart under these two different delivery approaches remains unclear. Here, we aim to gain a better understanding of the effects of hypoxia on iPSC-CMs at the transcriptome level. METHODS AND RESULTS NHP iPSC-CMs in both monolayer culture (2D) and engineered heart tissue (EHT) (3D) format were exposed to hypoxic conditions to serve as surrogates of direct cell injection and tissue implantation in vivo, respectively. Outcomes were compared at the transcriptome level. We found the 3D EHT model was more sensitive to ischaemic conditions and similar to the native in vivo myocardium in terms of cell-extracellular matrix/cell-cell interactions, energy metabolism, and paracrine signalling. CONCLUSION By exposing NHP iPSC-CMs to different culture conditions, transcriptome profiling improves our understanding of the mechanism of ischaemic injury.
Collapse
Affiliation(s)
- Huaxiao Yang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Department of Biomedical Engineering, University of North Texas, 390 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alexandra Holmström
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Xin Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Tony Chour
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodong Chen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alice F Tarantal
- Department of Pediatrics, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- Department Cell Biology and Human Anatomy, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- California National Primate Research Center, UC Davis, One Shields Avenue, Davis, CA 95616-8542, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| |
Collapse
|
8
|
Park MY, Krishna Vasamsetti BM, Kim WS, Kang HJ, Kim DY, Lim B, Cho K, Kim JS, Chee HK, Park JH, Yang HS, Rallabandi HR, Ock SA, Park MR, Lee H, Hwang IS, Kim JM, Oh KB, Yun IJ. Comprehensive Analysis of Cardiac Xeno-Graft Unveils Rejection Mechanisms. Int J Mol Sci 2021; 22:ijms22020751. [PMID: 33451076 PMCID: PMC7828557 DOI: 10.3390/ijms22020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Porcine heart xenotransplantation is a potential treatment for patients with end-stage heart failure. To understand molecular mechanisms of graft rejection after heart transplantation, we transplanted a 31-day-old alpha-1,3-galactosyltransferase knockout (GTKO) porcine heart to a five-year-old cynomolgus monkey. Histological and transcriptome analyses were conducted on xenografted cardiac tissue at rejection (nine days after transplantation). The recipient monkey's blood parameters were analyzed on days -7, -3, 1, 4, and 7. Validation was conducted by quantitative real-time PCR (qPCR) with selected genes. A non-transplanted GTKO porcine heart from an age-matched litter was used as a control. The recipient monkey showed systemic inflammatory responses, and the rejected cardiac graft indicated myocardial infarction and cardiac fibrosis. The transplanted heart exhibited a total of 3748 differentially expressed genes compared to the non-transplanted heart transcriptome, with 2443 upregulated and 1305 downregulated genes. Key biological pathways involved at the terminal stage of graft rejection were cardiomyopathies, extracellular interactions, and ion channel activities. The results of qPCR evaluation were in agreement with the transcriptome data. Transcriptome analysis of porcine cardiac tissue at graft rejection reveals dysregulation of the key molecules and signaling pathways, which play relevant roles on structural and functional integrities of the heart.
Collapse
Affiliation(s)
- Min Young Park
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
| | - Bala Murali Krishna Vasamsetti
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Wan Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Dongan-gu, Anyang 14068, Korea;
| | - Do-Young Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
| | - Byeonghwi Lim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
| | - Kahee Cho
- Primate Organ Transplantation Centre, Genia Inc., Sungnam 13201, Korea;
| | - Jun Seok Kim
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea; (J.S.K.); (H.K.C.)
| | - Hyun Keun Chee
- Department of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea; (J.S.K.); (H.K.C.)
| | - Jung Hwan Park
- Department of Nephrology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Hyun Suk Yang
- Department of Cardiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Harikrishna Reddy Rallabandi
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Sun A. Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Heasun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
| | - Jun-Mo Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea; (M.Y.P.); (D.-Y.K.); (B.L.)
- Correspondence: (J.-M.K.); (K.B.O.); (I.J.Y.); Tel.: +82-2-2030-7583 (I.J.Y.); Fax: +82-2-2030-7749 (I.J.Y.)
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeollabukdo 55365, Korea; (B.M.K.V.); (H.R.R.); (S.A.O.); (M.-R.P.); (H.L.); (I.-S.H.)
- Correspondence: (J.-M.K.); (K.B.O.); (I.J.Y.); Tel.: +82-2-2030-7583 (I.J.Y.); Fax: +82-2-2030-7749 (I.J.Y.)
| | - Ik Jin Yun
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea
- Correspondence: (J.-M.K.); (K.B.O.); (I.J.Y.); Tel.: +82-2-2030-7583 (I.J.Y.); Fax: +82-2-2030-7749 (I.J.Y.)
| |
Collapse
|
9
|
Andrade Gomes HJ, de Padua Vieira Alves V, Nacif MS. The Value of T1 Mapping Techniques in the Assessment of Myocardial Interstitial Fibrosis. Magn Reson Imaging Clin N Am 2019; 27:563-574. [PMID: 31279457 DOI: 10.1016/j.mric.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Cardiac fibrosis, characterized by net accumulation of extracellular matrix in the myocardium, is a common final pathway of heart failure. This myocardial fibrosis (MF) is not necessarily the primary cause of dysfunction; it often results from a reparative process activated in response to cardiomyocyte injury. In light of currently available treatments, late-identified MF could be definitive or irreversible, associated with worsening ventricular systolic function, abnormal cardiac remodeling, and increased ventricular stiffness and arrhythmia. T1 mapping should be used to detect incipient changes leading to myocardial damage in several clinical conditions and also in subclinical disease. This article reviews available techniques for MF detection, focusing on noninvasive quantification of diffuse fibrosis and clinical applications.
Collapse
Affiliation(s)
| | | | - Marcelo Souto Nacif
- Radiology Department, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil; Unidade de Radiologia Clínica, Hospital viValle (Rede D'or-São Luiz), São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
10
|
Gil-Cayuela C, López A, Martínez-Dolz L, González-Juanatey JR, Lago F, Roselló-Lletí E, Rivera M, Portolés M. The altered expression of autophagy-related genes participates in heart failure: NRBP2 and CALCOCO2 are associated with left ventricular dysfunction parameters in human dilated cardiomyopathy. PLoS One 2019; 14:e0215818. [PMID: 31009519 PMCID: PMC6476534 DOI: 10.1371/journal.pone.0215818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
This study aimed to analyze changes in the expression of autophagy- and phagocytosis-related genes in patients with dilated cardiomyopathy (DCM), especially in relation to left ventricular (LV) dysfunction. Furthermore, transmission electron microscopy of the diseased tissue was carried out to investigate if the gene expression changes are translated into ultrastructural alterations. LV tissue samples from patients with DCM (n = 13) and from controls (CNT; n = 10) were analyzed by RNA-sequencing, whereupon the altered expression (P < 0.05) of 13 autophagy- and 3 phagocytosis-related genes was observed. The expression changes of the autophagy-related genes NRBP2 and CALCOCO2 were associated with cardiac dysfunction and remodeling (P < 0.05). The affected patients had a higher activity of these degradation processes, as evidenced by the greater number of autophagic structures in the DCM tissue (P < 0.001). Differences in the ultrastructural distribution were also found between the DCM and CNT tissues. These results show that in patients with DCM, the altered expression of NRBP2 and CALCOCO2 is related to LV dysfunction and remodeling. Clarification of the molecular mechanisms of cardiac autophagy would help in the future development of therapies to improve LV performance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adult
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Autophagy/genetics
- Autophagy-Related Proteins/genetics
- Autophagy-Related Proteins/metabolism
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Case-Control Studies
- Diuretics/therapeutic use
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Humans
- Male
- Middle Aged
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Myocardium/metabolism
- Myocardium/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Analysis, RNA
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Alejandro López
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, La Fe University Hospital, Valencia, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail: (MPS); (ERL)
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail: (MPS); (ERL)
| |
Collapse
|
11
|
Collective transcriptomic deregulation of hypertrophic and dilated cardiomyopathy – Importance of fibrotic mechanism in heart failure. Comput Biol Chem 2018; 73:85-94. [DOI: 10.1016/j.compbiolchem.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
|
12
|
Thyroid hormone biosynthesis machinery is altered in the ischemic myocardium: An epigenomic study. Int J Cardiol 2017; 243:27-33. [DOI: 10.1016/j.ijcard.2017.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
|
13
|
New Altered Non-Fibrillar Collagens in Human Dilated Cardiomyopathy: Role in the Remodeling Process. PLoS One 2016; 11:e0168130. [PMID: 27936202 PMCID: PMC5148085 DOI: 10.1371/journal.pone.0168130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/24/2016] [Indexed: 01/12/2023] Open
Abstract
Background In dilated cardiomyopathy (DCM), cardiac failure is accompanied by profound alterations of extracellular matrix associated with the progression of cardiac dilation and left ventricular (LV) dysfunction. Recently, we reported alterations of non-fibrillar collagen expression in ischemic cardiomyopathy linked to fibrosis and cardiac remodeling. We suspect that expression changes in genes coding for non-fibrillar collagens may have a potential role in DCM development. Objectives This study sought to analyze changes in the expression profile of non-fibrillar collagen genes in patients with DCM and to examine relationships between cardiac remodeling parameters and the expression levels of these genes. Methods and Results Twenty-three human left ventricle tissue samples were obtained from DCM patients (n = 13) undergoing heart transplantation and control donors (n = 10) for RNA sequencing analysis. We found increased mRNA levels of six non-fibrillar collagen genes, such as COL4A5, COL9A1, COL21A1, and COL23A1 (P < 0.05 for all), not previously described in DCM. Protein levels of COL8A1 and COL16A1 (P < 0.05 for both), were correspondingly increased. We also identified TGF-β1 significantly upregulated and related to both COL8A1 and COL16A1. Interestingly, we found a significant relationship between LV mass index and the gene expression level of COL8A1 (r = 0.653, P < 0.05). Conclusions In our research, we identified new non-fibrillar collagens with altered expression in DCM, being COL8A1 overexpression directly related to LV mass index, suggesting that they may be involved in the progression of cardiac dilation and remodeling.
Collapse
|