1
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
2
|
Alissa M, Aldurayhim M, Abdulaziz O, Alsalmi O, Awad A, Algopishi UB, Alharbi S, Safhi AY, Khan KH, Uffar C. From molecules to heart regeneration: Understanding the complex and profound role of non-coding RNAs in stimulating cardiomyocyte proliferation for cardiac repair. Curr Probl Cardiol 2024; 49:102857. [PMID: 39306148 DOI: 10.1016/j.cpcardiol.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Recent studies of noncoding genomes have shown important implications for regulating gene expression and genetic programs during development and their association with health, including cardiovascular disease. There are nearly 2,500 microRNAs (miRNAs), 12,000 long-chain non-coding RNAs (lncRNA), and nearly 4,000 circular RNAs (circles). Even though they do not code for proteins, they make up nearly 99% of the human genome. Non-coding RNA families (ncRNAs) have recently been discovered and established as novel and necessary controllers of cardiovascular risk factors and cellular processes and, therefore, have the potential to improve the diagnosis and prediction of cardiovascular disease. The increase in the prevalence of cardiovascular disease can be explained by the shortcomings of existing therapies, which focus only on the non-coding RNAs that protein codes for. On the other hand, recent studies point to the possibility of using ncRNAs in the early detection and intervention of CVD. These findings suggest that developing diagnostic tools and therapies based on miRNAs, lncRNAs, and circRNAs will potentially enhance the clinical management of patients with cardiovascular disease. Cardiovascular diseases include CH, HF, RHD, ACS, MI, AS, MF, ARR, and PAH, of which CH is the most common cardiovascular disease, followed by HF and RHD. This paper aims to elucidate the biological and clinical significance of miRNAs, increase, and circles, as well as their expression profiles and the possibility of regulating non-coding transcripts in cardiovascular diseases to improve the application of ncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed Aldurayhim
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Alsamghan Awad
- King Khalid University, College of Medicine, Family Medicine department, Saudi Arabia
| | | | - Sarah Alharbi
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khadijah Hassan Khan
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Christin Uffar
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
4
|
Luo H, Chong H, Wang Y, Gao Y, Xie W, Wang D. Screening lncRNAs essential for cardiomyocyte proliferation by integrative profiling of lncRNAs and mRNAs associated with heart development. Exp Cell Res 2024; 442:114277. [PMID: 39383929 DOI: 10.1016/j.yexcr.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The proliferation potential of mammalian cardiomyocytes declines markedly shortly after birth. Both long non-coding RNAs (lncRNAs) and mRNAs demonstrate altered expression patterns during cardiac development. However, the role of lncRNAs in the cell cycle arrest of cardiomyocytes remains inadequately understood. METHOD The expression pattern of lncRNAs and mRNAs was analyzed in mouse hearts exhibiting varying regenerative potentials on postnatal days (P) 1, 7, and 28. Weighted correlation network analysis (WGCNA) was employed to elucidate the co-expression relationship between lncRNAs and mRNAs. Protein-protein interaction (PPI) network was built using the STRING database, and hub lncRNAs were identified by CytoHubba. Molecular Complex Detection (MCODE) was used to screen core modules of the PPI network in Cytoscape. Upstream lncRNAs and miRNAs which may regulate mRNAs were predicted using miRTarBase and AnnoLnc2, respectively. Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery. RESULTS Compared with the P1 heart, 618 mRNAs and 414 lncRNAs displayed. transcriptional changes in the P7 heart, while 2358 mRNAs and 1290 lncRNAs showed from P7 to P28. Gene Ontology (GO) analysis revealed that module 1 in the both comparisons was enriched in the mitotic cell cycle process. 2810408I11Rik and 2010110K18Rik were identified as hub lncRNAs and their effects on the proliferation of cardiomyocytes were verified in vitro. Additionally, four lncRNA-miRNA-mRNA regulatory axes were predicted to explain the mechanism by which 2810408I11Rik and 2010110K18Rik regulate cardiomyocyte proliferation. Notably, the overexpression of 2810408I11Rik enhances cardiomyocyte proliferation and heart regeneration in the adult heart following MI. CONCLUSION This study systematically analyzed the landscape of lncRNAs and mRNAs at P1, P7, and P28. These findings may enhance our understanding of the framework for heart development and could have significant implications for heart regeneration.
Collapse
Affiliation(s)
- Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hoshun Chong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yapeng Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, China
| | - Yaxuan Gao
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Du H, Zhao Y, Wen J, Dai B, Hu G, Zhou Y, Yin Z, Ding N, Li H, Fan J, Nie X, Wang F, Liu Q, Wen Z, Xu G, Wang DW, Chen C. LncRNA DCRT Protects Against Dilated Cardiomyopathy by Preventing NDUFS2 Alternative Splicing by Binding to PTBP1. Circulation 2024; 150:1030-1049. [PMID: 38841852 DOI: 10.1161/circulationaha.123.067861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Polypyrimidine Tract-Binding Protein/genetics
- Polypyrimidine Tract-Binding Protein/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
- Alternative Splicing
- Humans
- Mice, Knockout
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Electron Transport Complex I/metabolism
- Electron Transport Complex I/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mice, Transgenic
Collapse
Affiliation(s)
- Hengzhi Du
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Yanru Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Jianpei Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Beibei Dai
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Guo Hu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Yufei Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Zhongwei Yin
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Nan Ding
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Huaping Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Jiahui Fan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Xiang Nie
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Feng Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Qian Liu
- Tongji Hospital, and Department of Forensic Medicine (Q.L.), Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Gang Xu
- Divisions of Cardiology and Nephrology (G.X.), Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Chen Chen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| |
Collapse
|
6
|
Jiang R, He X, Chen W, Cai H, Su Z, Xie Z, Zhang B, Yang J, Wang Y, Huang L, Cao G, Zhong X, Xie H, Zhu H, Cao J, Lu W. lncRNA H19 facilitates vascular neointima formation by targeting miR-125a-3p/FLT1 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1437-1445. [PMID: 39238439 PMCID: PMC11532204 DOI: 10.3724/abbs.2024087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 09/07/2024] Open
Abstract
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neointima/pathology
- Neointima/metabolism
- Neointima/genetics
- Humans
- Cell Proliferation/genetics
- Cell Movement/genetics
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Male
- Cells, Cultured
Collapse
Affiliation(s)
- Rengui Jiang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xuyu He
- Guangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Weidong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhou510120China
| | - Huoying Cai
- Department of Vascular SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Zhaohai Su
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Zheng Xie
- Department of General PracticeGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Bilong Zhang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jiangyong Yang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Yueting Wang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Ling Huang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Gang Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xiutong Zhong
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hui Xie
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hengqing Zhu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jun Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Weiling Lu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| |
Collapse
|
7
|
Yijian L, Weihan S, Lin Y, Heng Z, Yu W, Lin S, Shuo M, Mengyang L, Jianxun W. CircNCX1 modulates cardiomyocyte proliferation through promoting ubiquitination of BRG1. Cell Signal 2024; 120:111193. [PMID: 38679350 DOI: 10.1016/j.cellsig.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In mammal, the myocardium loss cannot be recovered spontaneously due to the negligible proliferation ability of mature mammalian cardiomyocyte. However, accumulated evidence has shown that terminally differentiated mammalian cardiomyocyte also has proliferation potency, which can be mediated by several mechanisms. Here, we reported that circNCX1, the most abundant circular RNA in mammalian hearts, can affect the proliferation of murine cardiomyocytes. The level of circNCX1 is significantly elevated during heart development. Forced expression of circNCX1 inhibits cardiomyocyte proliferation, while silencing of endogenous circNCX1 in cardiomyocyte shows reversed effect in vitro. Mechanistically, circNCX1 functions via negatively regulating transcription activator BRG1. It bridges BRG1 and FBXW7 to enhance the ubiquitination and degradation of BRG1, decreasing the expression of BMP10 to lead cell cycle arrest. In summary, our study first revealed that circNCX1 is a modulator of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Lu Yijian
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Sun Weihan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Ye Lin
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhang Heng
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wang Yu
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Song Lin
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Miao Shuo
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Li Mengyang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Wang Jianxun
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
9
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
10
|
Ma W, Tian Y, Shi L, Liang J, Ouyang Q, Li J, Chen H, Sun H, Ji H, Liu X, Huang W, Gao X, Jin X, Wang X, Liu Y, Yu Y, Guo X, Tian Y, Yang F, Li F, Wang N, Cai B. N-Acetyltransferase 10 represses Uqcr11 and Uqcrb independently of ac4C modification to promote heart regeneration. Nat Commun 2024; 15:2137. [PMID: 38459019 PMCID: PMC10923914 DOI: 10.1038/s41467-024-46458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Translational control is crucial for protein production in various biological contexts. Here, we use Ribo-seq and RNA-seq to show that genes related to oxidative phosphorylation are translationally downregulated during heart regeneration. We find that Nat10 regulates the expression of Uqcr11 and Uqcrb mRNAs in mouse and human cardiomyocytes. In mice, overexpression of Nat10 in cardiomyocytes promotes cardiac regeneration and improves cardiac function after injury. Conversely, treating neonatal mice with Remodelin-a Nat10 pharmacological inhibitor-or genetically removing Nat10 from their cardiomyocytes both inhibit heart regeneration. Mechanistically, Nat10 suppresses the expression of Uqcr11 and Uqcrb independently of its ac4C enzyme activity. This suppression weakens mitochondrial respiration and enhances the glycolytic capacity of the cardiomyocytes, leading to metabolic reprogramming. We also observe that the expression of Nat10 is downregulated in the cardiomyocytes of P7 male pig hearts compared to P1 controls. The levels of Nat10 are also lower in female human failing hearts than non-failing hearts. We further identify the specific binding regions of Nat10, and validate the pro-proliferative effects of Nat10 in cardiomyocytes derived from human embryonic stem cells. Our findings indicate that Nat10 is an epigenetic regulator during heart regeneration and could potentially become a clinical target.
Collapse
Affiliation(s)
- Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
- Institute of Clinical Pharmacy, NHC Key Laboratory of Cell Transplantation, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China
| | - Yanan Tian
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Leping Shi
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jing Liang
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimeng Ouyang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jianglong Li
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongyang Chen
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hongyue Sun
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Haoyu Ji
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Laboratory Medicine at The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wei Huang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xinlu Gao
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoyan Jin
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yining Liu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Yu
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaofei Guo
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ye Tian
- Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ning Wang
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, Harbin Medical University, Harbin, China.
- Department of Pharmacology at College of Pharmacy (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
- Institute of Clinical Pharmacy, NHC Key Laboratory of Cell Transplantation, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
Wang T, Chen X, Wang K, Ju J, Yu X, Yu W, Liu C, Wang Y. Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes Dis 2024; 11:747-759. [PMID: 37692487 PMCID: PMC10491875 DOI: 10.1016/j.gendis.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 09/12/2023] Open
Abstract
In the mammalian heart, cardiomyocytes are forced to withdraw from the cell cycle shortly after birth, limiting the ability of the heart to regenerate and repair. The development of multimodal regulation of cardiac proliferation has verified that pre-existing cardiomyocyte proliferation is an essential driver of cardiac renewal. With the continuous development of genetic lineage tracking technology, it has been revealed that cell cycle activity produces polyploid cardiomyocytes during the embryonic, juvenile, and adult stages of cardiogenesis, but newly formed mononucleated diploid cardiomyocytes also elevated sporadically during myocardial infarction. It implied that adult cardiomyocytes have a weak regenerative capacity under the condition of ischemia injury, which offers hope for the clinical treatment of myocardial infarction. However, the regeneration frequency and source of cardiomyocytes are still low, and the mechanism of regulating cardiomyocyte proliferation remains further explained. It is noteworthy to explore what force triggers endogenous cardiomyocyte proliferation and heart regeneration. Here, we focused on summarizing the recent research progress of emerging endogenous key modulators and crosstalk with other signaling pathways and furnished valuable insights into the internal mechanism of heart regeneration. In addition, myocardial transcription factors, non-coding RNAs, cyclins, and cell cycle-dependent kinases are involved in the multimodal regulation of pre-existing cardiomyocyte proliferation. Ultimately, awakening the myocardial proliferation endogenous modulator and regeneration pathways may be the final battlefield for the regenerative therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| |
Collapse
|
12
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Dalil D, Bahanesteh A, Rezaei M, Afzali A, Vanaki A, Varamini A. The Role of Long Noncoding RNAs in Cardiomyocyte Proliferation and Heart Regeneration After Myocardial Infarction: A Systematic Review. Cell Transplant 2024; 33:9636897241266725. [PMID: 39126321 PMCID: PMC11316961 DOI: 10.1177/09636897241266725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/12/2024] Open
Abstract
Many studies support the idea that long noncoding RNAs (lncRNAs) are significantly involved in the process of cardiomyocyte (CM) regeneration following a myocardial infarction (MI). This study aimed to systematically review the emerging role of lncRNAs in cardiac regeneration by promoting CM proliferation after MI. Furthermore, the review summarized potential targets and the underlying mechanisms of lncRNAs to induce heart regeneration, suggesting utilizing lncRNAs as innovative therapeutic targets for mitigating MI injuries. We searched the PubMed, Scopus, and Web of Science databases for studies on lncRNAs that play a role in heart regeneration after MI. We used search terms that included MI, lncRNAs, CM, and proliferation. Relevant English articles published until June 11, 2023, were systematically reviewed based on inclusion and exclusion criteria. A total of 361 publications were initially identified, and after applying the inclusion and exclusion criteria, nine articles were included in this systematic review. These studies investigated the role of critical lncRNAs in cardiac regeneration after MI, including five upregulated and four downregulated lncRNAs. Acting as a competitive endogenous RNA is one of the main roles of lncRNAs in regulating genes involved in CM proliferation through binding to target microRNAs. The main molecular processes that greatly increase CM proliferation are those that turn on the Hippo/YAP1, PI3K/Akt, JAK2-STAT3, and E2F1-ECRAR-ERK1/2 signaling pathways. This systematic review highlights the significant role of lncRNAs in heart regeneration after MI and their impact on CM proliferation. The findings suggest that lncRNAs could serve as potential targets for therapeutic interventions aiming to enhance cardiac function.
Collapse
Affiliation(s)
- Davood Dalil
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Mahdi Rezaei
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - AmirMohammad Afzali
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - AmirParsa Vanaki
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - AmirHossein Varamini
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
14
|
Yang X, Li L, Zeng C, Wang WE. The characteristics of proliferative cardiomyocytes in mammals. J Mol Cell Cardiol 2023; 185:50-64. [PMID: 37918322 DOI: 10.1016/j.yjmcc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Better understanding of the mechanisms regulating the proliferation of pre-existing cardiomyocyte (CM) should lead to better options for regenerating injured myocardium. The absence of a perfect research model to definitively identify newly formed mammalian CMs is lacking. However, methodologies are being developed to identify and enrich proliferative CMs. These methods take advantages of the different proliferative states of CMs during postnatal development, before and after injury in the neonatal heart. New approaches use CMs labeled in lineage tracing animals or single cell technique-based CM clusters. This review aims to provide a timely update on the characteristics of the proliferative CMs, including their structural, functional, genetic, epigenetic and metabolic characteristics versus non-proliferative CMs. A better understanding of the characteristics of proliferative CMs should lead to the mechanisms for inducing endogenous CMs to self-renew, which is a promising therapeutic strategy to treat cardiac diseases that cause CM death in humans.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
15
|
Kim N, Chung WY, Cho JY. The role and medical prospects of long non-coding RNAs in cardiovascular disease. Heart Fail Rev 2023; 28:1437-1453. [PMID: 37796408 PMCID: PMC10575999 DOI: 10.1007/s10741-023-10342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Cardiovascular disease (CVD) has reached epidemic proportions and is a leading cause of death worldwide. One of the long-standing goals of scientists is to repair heart tissue damaged by various forms of CVD such as cardiac hypertrophy, dilated cardiomyopathy, myocardial infarction, heart fibrosis, and genetic and developmental heart defects such as heart valve deformities. Damaged or defective heart tissue has limited regenerative capacity and results in a loss of functioning myocardium. Advances in transcriptomic profiling technology have revealed that long noncoding RNA (lncRNA) is transcribed from what was once considered "junk DNA." It has since been discovered that lncRNAs play a critical role in the pathogenesis of various CVDs and in myocardial regeneration. This review will explore how lncRNAs impact various forms of CVD as well as those involved in cardiomyocyte regeneration. Further, we discuss the potential of lncRNAs as a therapeutic modality for treating CVD.
Collapse
Affiliation(s)
- Najung Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, 08826, Seoul, Republic of Korea
| | - Woo-Young Chung
- Department of Internal Medicine, Boramae Medical Center , Seoul National University College of Medicine, Seoul National University, Boramaero 5 Gil 20, Dongjak-Gu, Seoul, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Le LTT, Nhu CXT. The Role of Long Non-Coding RNAs in Cardiovascular Diseases. Int J Mol Sci 2023; 24:13805. [PMID: 37762106 PMCID: PMC10531487 DOI: 10.3390/ijms241813805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNA molecules longer than 200 nucleotides that regulate gene expression at the transcriptional, post-transcriptional, and translational levels. Abnormal expression of lncRNAs has been identified in many human diseases. Future improvements in diagnostic, prognostic, and therapeutic techniques will be facilitated by a deeper understanding of disease etiology. Cardiovascular diseases (CVDs) are the main cause of death globally. Cardiac development involves lncRNAs, and their abnormalities are linked to many CVDs. This review examines the relationship and function of lncRNA in a variety of CVDs, including atherosclerosis, myocardial infarction, myocardial hypertrophy, and heart failure. Therein, the potential utilization of lncRNAs in clinical diagnostic, prognostic, and therapeutic applications will also be discussed.
Collapse
Affiliation(s)
- Linh T. T. Le
- Biotechnology Department, Ho Chi Minh City Open University, Ho Chi Minh City 70000, Vietnam;
| | | |
Collapse
|
17
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
18
|
Zhu W, Luo L, Ye G, Ou J. Potential diagnostic value of N1LR and SNHG1 in acute myocardial infarction. BMC Med Genomics 2023; 16:71. [PMID: 37013574 PMCID: PMC10071696 DOI: 10.1186/s12920-023-01501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Acute myocardial infarction (AMI) is a common cardiovascular disease that can lead to myocardial necrosis and a poor prognosis. Clinical practice requires an accurate and quick diagnosis of AMI due to the inherent limitations of current biomarkers. Therefore, research into novel biomarkers is necessary. We aimed to explore the diagnostic potency of the long non-coding RNA (lncRNA) N1LR and SNHG1 in patients diagnosed with AMI. METHOD We measured lncRNA levels in 148 AMI patients and 50 healthy volunteers with quantitative RT-PCR method. Receiver operating characteristic (ROC) analysis was administered to detect the diagnostic power of selected lncRNAs. Correlation analysis was performed to explore the relationship between N1LR as well as SNHG1 and the conventional myocardial biomarkers (LDH, CK, CKMB and cTnI). RESULTS ROC analysis reveals the possibility of N1LR and SNHG1 as biomarkers in AMI diagnosis (AUC of N1LR: 0.873; AUC of SNHG1: 0.890). Correlation analysis revealed that N1LR was negatively correlated with the conventional biomarkers and SNHG1 was positively correlated with the conventional biomarkers. CONCLUSION For the first time, we investigated the potential predictive diagnostic value of N1LR and SNHG1 in AMI diagnosis and substantial outcomes were obtained. Also, they may be capable of reflecting the progress of the disease during clinical practice from the correlation analysis.
Collapse
Affiliation(s)
- Wei Zhu
- Internal Medicine, Cardiovascular Center, Yangjiang People's Hospital, Guangdong, China
| | - Li Luo
- Internal Medicine, Cardiovascular Center, Yangjiang People's Hospital, Guangdong, China
| | - Guangning Ye
- Internal Medicine, Cardiovascular Center, Yangjiang People's Hospital, Guangdong, China
| | - Jiaman Ou
- Internal Medicine, Cardiovascular Center, Yangjiang People's Hospital, Guangdong, China.
| |
Collapse
|
19
|
The Role of ncRNAs in Cardiac Infarction and Regeneration. J Cardiovasc Dev Dis 2023; 10:jcdd10030123. [PMID: 36975887 PMCID: PMC10052289 DOI: 10.3390/jcdd10030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most prevalent cardiovascular disease worldwide, and it is defined as cardiomyocyte cell death due to a lack of oxygen supply. Such a temporary absence of oxygen supply, or ischemia, leads to extensive cardiomyocyte cell death in the affected myocardium. Notably, reactive oxygen species are generated during the reperfusion process, driving a novel wave of cell death. Consequently, the inflammatory process starts, followed by fibrotic scar formation. Limiting inflammation and resolving the fibrotic scar are essential biological processes with respect to providing a favorable environment for cardiac regeneration that is only achieved in a limited number of species. Distinct inductive signals and transcriptional regulatory factors are key components that modulate cardiac injury and regeneration. Over the last decade, the impact of non-coding RNAs has begun to be addressed in many cellular and pathological processes including myocardial infarction and regeneration. Herein, we provide a state-of-the-art review of the current functional role of diverse non-coding RNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in different biological processes involved in cardiac injury as well as in distinct experimental models of cardiac regeneration.
Collapse
|
20
|
Handly N, Kerkhof PLM. Association between angiographic and biochemical indicators of the severity of coronary stenosis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:530-532. [PMID: 36893037 DOI: 10.1002/jcu.23432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Neal Handly
- Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter L M Kerkhof
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Xu L, Fu T, Wang Y, Ji N. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:520-529. [PMID: 36852944 DOI: 10.1002/jcu.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
22
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Zhang M, Zhang B, Wang X, Song J, Tong M, Dong Z, Xu J, Liu M, Jiang Y, Wang N, Wang Y, Du Z, Liu Y, Zhang R, Xu C. LncRNA CFAR promotes cardiac fibrosis via the miR-449a-5p/LOXL3/mTOR axis. SCIENCE CHINA LIFE SCIENCES 2022; 66:783-799. [PMID: 36334219 DOI: 10.1007/s11427-021-2132-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Cardiac fibrosis is one of the crucial pathological factors in the heart, and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure. However, the exact molecular mechanism of cardiac fibrosis remains unclear. In the present study, we show that a novel lncRNA that we named cardiac fibrosis-associated regulator (CFAR) is a profibrotic factor in the heart. CFAR was upregulated in cardiac fibrosis and its knockdown attenuated the expression of fibrotic marker genes and the proliferation of cardiac fibroblasts, thereby ameliorating cardiac fibrosis. Moreover, CFAR acted as a ceRNA sponge for miR-449a-5p and derepressed the expression of LOXL3, which we experimentally established as a target gene of miR-449a-5p. In contrast to CFAR, miR-449a-5p was found to be significantly downregulated in cardiac fibrosis, and artificial knockdown of miR-449a-5p exacerbated fibrogenesis, whereas overexpression of miR-449a-5p impeded fibrogenesis. Furthermore, we found that LOXL3 mimicked the fibrotic factor TGF-β1 to promote cardiac fibrosis by activating mTOR. Collectively, our study established CFAR as a new profibrotic factor acting through a novel miR-449a-5p/LOXL3/mTOR axis in the heart and therefore might be considered as a potential molecular target for the treatment of cardiac fibrosis and associated heart diseases.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bowen Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaohan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jiahang Song
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ming Tong
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zheng Dong
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaonan Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ning Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yanyan Liu
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Rong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Chaoqian Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
24
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
25
|
Ma W, Wang X, Sun H, Xu B, Song R, Tian Y, Zhao L, Xu Y, Zhao Y, Yang F, Chen H, Gong R, Yu Y, Li X, Li S, Zhang W, Zhang T, Ne J, Cai B. Oxidant stress-sensitive circRNA Mdc1 controls cardiomyocyte chromosome stability and cell cycle re-entry during heart regeneration. Pharmacol Res 2022; 184:106422. [PMID: 36058431 DOI: 10.1016/j.phrs.2022.106422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Targeting cardiomyocyte plasticity has emerged as a new strategy for promoting heart repair after myocardial infarction. However, the precise mechanistic network underlying heart regeneration is not completely understood. As noncoding RNAs, circular RNAs (circRNAs) play essential roles in regulating cardiac physiology and pathology. The present study aimed to investigate the potential roles of circMdc1 in cardiac repair after injury and elucidate its underlying mechanisms. Here, we identified that circMdc1 levels were upregulated in postnatal mouse hearts but downregulated in the regenerative myocardium. The expression of circMdc1 in cardiomyocytes is sensitive to oxidative stress, which was attenuated by N-acetyl-cysteine. Enforced circMdc1 expression inhibited cardiomyocyte proliferation, while circMdc1 silencing led to cardiomyocyte cell cycle re-entry. In vivo, the cardiac-specific adeno-associated virus-mediated knockdown of circMdc1 promoted cardiac regeneration and heart repair accompanied by improved heart function. Conversely, circMdc1 overexpression blunted the regenerative capacity of neonatal hearts after apex resection. Moreover, circMdc1 was able to block the translation of its host gene Mdc1 specifically by binding to PABP, affecting DNA damage and the chromosome stability of cardiomyocytes. Furthermore, overexpression of Mdc1 caused damaged mouse hearts to regenerate and repair after myocardial infarction in vivo. Oxidative stress-sensitive circMdc1 plays an important role in cardiac regeneration and heart repair after injury by regulating DNA damage and chromosome stability in cardiomyocytes by blocking the translation of the host gene Mdc1.
Collapse
Affiliation(s)
- Wenya Ma
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xiuxiu Wang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Hongyue Sun
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Binbin Xu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Ruijie Song
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yanan Tian
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Liang Zhao
- Department of Basic Medicine, Chengde Medical College, Chengde 067000, China
| | - Yan Xu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yiming Zhao
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Hongyang Chen
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Rui Gong
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yang Yu
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xingda Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Shuainan Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Wenwen Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Tingting Zhang
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Jingwen Ne
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Benzhi Cai
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150086, China; Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin 150086, China.
| |
Collapse
|
26
|
Identification of novel prognostic risk signature of breast cancer based on ferroptosis-related genes. Sci Rep 2022; 12:13766. [PMID: 35962042 PMCID: PMC9374692 DOI: 10.1038/s41598-022-18044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis is a type of cell regulated necrosis triggered by intracellular phospholipid peroxidation, which is more immunogenic than apoptosis. Therefore, genes controlling ferroptosis may be promising candidate biomarkers for tumor therapy. In this study, we investigate the function of genes associated with ferroptosis in breast cancer (BC) and systematically evaluate the relationship between ferroptosis-related gene expression and prognosis of BC patients from the Cancer Genome Atlas database. By using the consensus clustering method, 1203 breast cancer samples were clustered into two clearly divided subgroups based on the expression of 237 ferroptosis-related genes. Then differentially expressed analysis and least absolute shrinkage and selection operator were used to identify the prognosis-related genes. Furthermore, the genetic risk signature was constructed using the expression of prognosis-related genes. Our results showed that the genetic risk signature can identify patient subgroups with distinct prognosis in either training cohort or validation, and the genetic risk signature was associated with the tumor immune microenvironment. Finally, the Cox regression analysis indicated that our risk signature was an independent prognostic factor for BC patients and this signature was verified by the polymerase chain reaction and western blot. Within this study, we identified a novel prognostic classifier based on five ferroptosis-related genes which may provide a new reference for the treatment of BRCA patients.
Collapse
|
27
|
Tian C, Yang Y, Li B, Liu M, He X, Zhao L, Song X, Yu T, Chu XM. Doxorubicin-Induced Cardiotoxicity May Be Alleviated by Bone Marrow Mesenchymal Stem Cell-Derived Exosomal lncRNA via Inhibiting Inflammation. J Inflamm Res 2022; 15:4467-4486. [PMID: 35966005 PMCID: PMC9365022 DOI: 10.2147/jir.s358471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the therapeutic mechanism of bone marrow mesenchymal stem cells derived exosomes (BMSC-Exos) for doxorubicin (DOX)-induced cardiotoxicity (DIC) and identify the long noncoding RNAs’ (lncRNAs’) anti-inflammation function derived by BMSC-Exos. Materials and Methods High-throughput sequencing and transcriptome bioinformatics analysis of lncRNA were performed between DOX group and BEC (bone marrow mesenchymal stem cells derived exosomes coculture) group. Elevated lncRNA (ElncRNA) in the cardiomyocytes of BEC group compared with DOX group were confirmed. Based on the location and co-expression relationship between ElncRNA and its target genes, we predicted two target genes of ElncRNA, named cis_targets and trans_targets. The target genes were analyzed by enrichment analyses. Then, we identified the key cellular biological pathways regulating DIC. Experiments were performed to verify the therapeutic effects of exosomes and the origin of lncRNAs in vitro and in vivo. Results Three hundred and one lncRNAs were differentially expressed between DOX and BEC groups (fold change >1.5 and p < 0.05), of which 169 lncRNAs were elevated in the BEC group compared with the DOX group. GO enrichment analysis of target genes of ElncRNAs showed that they were predominantly involved in inflammation-associated processes. KEGG analysis indicated that their regulatory pathways were mainly involved in oxidative stress-induced inflammation and proliferation of cardiomyocyte. The verification experiments in vitro showed that the oxidative stress and cell deaths were decreased in BEC groups. Moreover, from the top 10 ElncRNAs identified in the sequencing results, MSTRG.98097.4 and MSTRG.58791.2 were both decreased in the DOX group and elevated in BEC group. While in verification experiments in vivo, only the expression of MSTRG.58791.2 is consistent with the result in vitro. Conclusion Our results show that ElncRNA, MSTRG.58791.2, is possibly secreted by the BMSC-Exos and able to alleviate DIC by suppressing inflammatory response and inflammation-related cell death.
Collapse
Affiliation(s)
- Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, People’s Republic of China
| | - Bing Li
- Department of Genetics, Basic Medicine School, Qingdao University, Qingdao, People’s Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Tao Yu, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China, Tel/Fax +86-532-82991791, Email
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, People’s Republic of China
- Xian-Ming Chu, Department of Cardiology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, People’s Republic of China, Tel +86-532-82913257, Email
| |
Collapse
|
28
|
N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov 2022; 8:329. [PMID: 35858921 PMCID: PMC9300643 DOI: 10.1038/s41420-022-01118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were reported to potentially play a regulatory role in the process of myocardial regeneration in the neonatal mouse. N6-methyladenosine (m6A) modification may play a key role in myocardial regeneration in mice and regulates a variety of biological processes through affecting the stability of lncRNAs. However, the map of m6A modification of lncRNAs in mouse cardiac development still remains unknown. We aimed to investigate the differences in the m6A status of lncRNAs during mouse cardiac development and reveal a potential role of m6A modification modulating lncRNAs in cardiac development and myocardial regeneration during cardiac development in mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of the heart tissue in C57BL/6 J mice at postnatal day 1 (P1), P7 and P28 were performed to produce stagewise cardiac lncRNA m6A-methylomes in a parallel timeframe with the established loss of an intrinsic cardiac regeneration capacity and early postnatal development. There were significant differences in the distribution and abundance of m6A modifications in lncRNAs in the P7 vs P1 mice. In addition, the functional role of m6A in regulating lncRNA levels was established for selected transcripts with METTL3 silencing in neonatal cardiomyocytes in vitro. Based on our MeRIP-qPCR experiment data, both lncGm15328 and lncRNA Zfp597, that were not previously associated with cardiac regeneration, were found to be the most differently methylated at P1-P7. These two lncRNAs sponged several miRNAs which further regulated multiple mRNAs, including some of which have previously been linked with cardiac regeneration ability. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that differential m6A modifications were more enriched in functions and cellular signalling pathways related to cardiomyocyte proliferation. Our data suggested that the m6A modification on lncRNAs may play an important role in the regeneration of myocardium and cardiac development. The graphical abstract of the potential mechanism of m6A modulates long non-coding RNA in the developing mouse heart.![]()
Collapse
|
29
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
30
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
31
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
32
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Fu W, Ren H, Shou J, Liao Q, Li L, Shi Y, Jose PA, Zeng C, Wang WE. Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair. Basic Res Cardiol 2022; 117:10. [PMID: 35247074 DOI: 10.1007/s00395-022-00921-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/31/2023]
Abstract
The role of long non-coding RNA (lncRNA) in endogenous cardiac regeneration remains largely elusive. The mammalian cardiomyocyte is capable of regeneration for a brief period after birth. This fact allows the exploration of the roles of critical lncRNAs in the regulation of cardiac regeneration. Through a cardiac regeneration model by apical resection (AR) of the left ventricle in neonatal mice, we identified an lncRNA named natriuretic peptide A antisense RNA 1 (NPPA-AS1), which negatively regulated cardiomyocyte proliferation. In neonates, NPPA-AS1 deletion did not affect heart development, but was sufficient to prolong the postnatal window of regeneration after AR. In adult mice, NPPA-AS1 deletion improved cardiac function and reduced infarct size after myocardial infarction (MI), associated with a significant improvement in cardiomyocyte proliferation. Further analysis showed that NPPA-AS1 interacted with DNA repair-related molecule splicing factor, proline- and glutamine-rich (SFPQ). A heteromer of SFPQ and non-POU domain-containing octamer-binding protein (NONO) was required for double-strand DNA break repair, but NPPA-AS1 was competitively bound with SFPQ due to the overlapped binding sites of SFPQ and NONO. NPPA-AS1 deletion promoted the binding of SFPQ-NONO heteromer, decreased DNA damage, and activated cardiomyocyte cell cycle re-entry. Together, loss of NPPA-AS1 promoted cardiomyocyte proliferation by stabilizing SFPQ-NONO heteromer-induced DNA repair and exerted a therapeutic effect against MI in adult mice. Consequently, NPPA-AS1 may be a novel target for stimulating cardiac regeneration to treat MI.
Collapse
Affiliation(s)
- Wenbin Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Jialing Shou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Pedro A Jose
- Division of Kidney Diseases & Hypertension, Department of Medicine and Department of Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China. .,Department of Cardiology, Chongqing General Hospital, Chongqing, People's Republic of China. .,Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China.
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China. .,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
34
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Xiao H, Zhang M, Wu H, Wu J, Hu X, Pei X, Li D, Zhao L, Hua Q, Meng B, Zhang X, Peng L, Cheng X, Li Z, Yang W, Zhang Q, Zhang Y, Lu Y, Pan Z. CIRKIL Exacerbates Cardiac Ischemia/Reperfusion Injury by Interacting With Ku70. Circ Res 2022; 130:e3-e17. [PMID: 35105170 DOI: 10.1161/circresaha.121.318992] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ku70 participates in several pathological processes through mediating repair of DNA double-strand breaks. Our previous study has identified a highly conserved long noncoding RNA cardiac ischemia reperfusion associated Ku70 interacting lncRNA (CIRKIL) that was upregulated in myocardial infarction. The study aims to investigate whether CIRKIL regulates myocardial ischemia/reperfusion (I/R) through binding to Ku70. METHODS CIRKIL transgenic and knockout mice were subjected to 45-minute ischemia and 24-hour reperfusion to establish myocardial I/R model. RNA pull-down and RNA immunoprecipitation assay were used to detect the interaction between CIRKIL and Ku70. RESULTS The expression of CIRKIL was increased in I/R myocardium and H2O2-treated cardiomyocytes. Overexpression of CIRKIL increased the expression of γH2A.X, a specific marker of DNA double-strand breaks and aggravated cardiomyocyte apoptosis, whereas knockdown of CIRKIL produced the opposite changes. Transgenic overexpression of CIRKIL aggravated cardiac dysfunction, enlarged infarct area, and worsened cardiomyocyte damage in I/R mice. Knockout of CIRKIL alleviated myocardial I/R injury. Mechanistically, CIRKIL directly bound to Ku70 to subsequently decrease nuclear translocation of Ku70 and impair DNA double-strand breaks repair. Concurrent overexpression of Ku70 mitigated CIRKIL overexpression-induced myocardial I/R injury. Furthermore, knockdown of human CIRKIL significantly suppressed cell damage induced by H2O2 in adult human ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS CIRKIL is a detrimental factor in I/R injury acting via regulating nuclear translocation of Ku70 and DNA double-strand breaks repair. Thus, CIRKIL might be considered as a novel molecular target for the treatment of cardiac conditions associated with I/R injury.
Collapse
Affiliation(s)
- Hongwen Xiao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Mingyu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Hao Wu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Jiaxu Wu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xiaoxi Hu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xinyu Pei
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Danyang Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Lu Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Qi Hua
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Bo Meng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xiaowen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Lili Peng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Xiaoling Cheng
- Department of Medicinal Chemistry, Harbin Medical University, P.R. China. (X.C.)
| | - Zhuoyun Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Wanqi Yang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Qi Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Yang Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| | - Yanjie Lu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.).,College of Pharmacy and Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, P.R. China. (H.W., D.L., Q.H., Y.L.)
| | - Zhenwei Pan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, P.R. China. (H.X., M.Z., H.W., J.W., X.H., X.P., D.L., L.Z., Q.H., B.M., X.Z., L.P., Z.L., W.Y., Q.Z., Y.Z., Y.L., Z.P.)
| |
Collapse
|
36
|
Lei L, Bai Y, Fan Y, Li Y, Jiang H, Wang J. Comprehensive Diagnostics of Diabetic Nephropathy by Transcriptome RNA Sequencing. Diabetes Metab Syndr Obes 2022; 15:3069-3080. [PMID: 36237968 PMCID: PMC9553241 DOI: 10.2147/dmso.s371026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a primary driver of end-stage renal disease. Given the heterogeneity of renal lesions and the complex mechanisms of DN, the present-day diagnostic approach remains highly controversial. We aimed to design a diagnostic model by bioinformatics methods for discriminating DN patients from normal subjects. METHODS In this study, transcriptome sequencing was performed on 6 clinical samples (3 from DN patients and 3 from healthy volunteers) from the Second Affiliated Hospital of Kunming Medical University. Construction of a competing endogenous RNA (ceRNA) network based on differentially expressed (DE)-mRNAs and -long noncoding RNAs (lncRNAs). Subsequently, the CytoHubba plugin was used to identify hub genes from DE-mRNAs in the ceRNA network and to perform functional enrichment analysis on them. The least absolute shrinkage and selection operator (LASSO) regression analysis was responsible for screening the diagnostic biomarkers from hub genes and assessing their diagnostic power using ROC curves. The pathways involved in hub genes were revealed by single-gene Gene Set Enrichment Analysis (GSEA). Moreover, we verified the expression levels of diagnostic biomarkers by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. RESULTS A total of 10 hub genes were screened from the ceRNA network, which appeared to be associated with the viral infection, kidney development, and regulation of immune and inflammatory responses. Subsequently, LASSO regression analysis established a diagnostic model consisting of DDX58, SAMD9L, and TLR6 with a robust diagnostic potency (AUC = 1). Similarly, single-gene GSEA showed a strong association of these diagnostic biomarkers with the viral infection. Furthermore, PCR and Western blot demonstrated showed that DDX58, SAMD9L, and TLR6 were upregulated in DN patients at both transcriptome and protein levels compared to healthy controls. CONCLUSION We confirmed that differentially expressed hub genes may be novel diagnostic biomarkers in DN.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yihua Bai
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Correspondence: Yihua Bai, Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China, Email
| | - Yang Fan
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yaling Li
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Hongying Jiang
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Jiaping Wang
- Department of Radiology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
37
|
Yang C, Zhang Y, Yang B. MIAT, a potent CVD-promoting lncRNA. Cell Mol Life Sci 2021; 79:43. [PMID: 34921634 PMCID: PMC11072732 DOI: 10.1007/s00018-021-04046-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
The initial identification of long non-coding RNA myocardial infarction associated transcript (MIAT) as a genetic risk factor of myocardial infarction has made this lncRNA (designated as lncR-MIAT here) a focus of intensive studies worldwide. Emerging evidence supports that lncR-MIAT is susceptible in its expression to multiple deleterious factors like angiotensin II, isoproterenol, hypoxia, and infection and is anomaly overexpressed in serum, plasma, blood cells and myocardial tissues under a variety of cardiovascular conditions including myocardial infarction, cardiac hypertrophy, diabetic cardiomyopathy, dilated cardiomyopathy, sepsis cardiomyopathy, atrial fibrillation and microvascular dysfunction. Experimental results consistently demonstrated that upregulation of lncR-MIAT plays active roles in the pathological processes of the cardiovascular system and knockdown of this lncRNA effectively ameliorates the adverse conditions. The available data revealed that lncR-MIAT acts through multiple mechanisms such as competitive endogenous RNA, natural antisense RNA and RNA/protein interactions. Moreover, the functional domains of lncR-MIAT accounting for certain specific cellular functions of the full-length transcript have been identified and characterized. These insights will not only tremendously advance our understanding of lncRNA biology and pathophysiology, but also offer good opportunities for more innovative and precise design of agents that have the potential to be developed into new drugs for better therapy of cardiovascular diseases (CVDs) in the future. Herein, we provide an overview of lncR-MIAT, focusing on its roles in cardiovascular diseases, underline the unique cellular/molecular mechanisms for its actions, and speculate the perspectives about the translational studies on the potential diagnostic and therapeutic applications of lncR-MIAT.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, People's Republic of China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, People's Republic of China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
38
|
Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B. Loss of m 6A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 2021; 174:105845. [PMID: 34428587 DOI: 10.1016/j.phrs.2021.105845] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
AIMS N6-Methyladenosine (m6A), one of the important epigenitic modifications, is very commom in messenger RNAs (mRNAs) of eukaryotes, and has been involved in various diseases. However, the role of m6A modification in heart regeneration after injury remains unclear. The study was conducted to investigate whether targeting methyltransferase-like 3 (METTL3) could replenish the loss of cardiomyocytes (CMs) and improve cardiac function after myocardial infarction (MI). METHODS AND RESULTS METTL3 knockout mouse line was generated. A series of functional experiments were carried out and the molecular mechanism was further explored. We identified that METTL3, a methyltransferase of m6A methylation, is upregulated in mouse hearts after birth, which is the opposite of the changes in CMs proliferation. Furthermore, both METTL3 heterozygous knockout mice and administration of METTL3 shRNA adenovirus in mice exhibited CMs cell cycle re-entered, infract size decreased and cardiac function improved after MI. Mechanically, the silencing of METTL3 promoted CMs proliferation by reducing primary miR-143 (pri-miR-143) m6A modificaiton, thereby inhibiting the pri-miR-143 into mature miR-143-3p. Moreover, we found that miR-143-3p has targeting effects on Yap and Ctnnd1 so as to regulate CMs proliferation. CONCLUSION METTL3 deficiency contributes to heart regeneration after MI via METTL3-pri-miR-143-(miR-143)-Yap/Ctnnd1 axis. This study provides new insights into the significance of RNA m6A modification in heart regeneration.
Collapse
Affiliation(s)
- Rui Gong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xiuxiu Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Hanjing Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Shenzhen Liu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Zuke Jiang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yiming Zhao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yang Yu
- Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China
| | - Zhenbo Han
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Ying Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Chaorun Dong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Shuainan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Binbin Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Wenwen Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Ning Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xingda Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Xinlu Gao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Fan Yang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Djibril Bamba
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Wenya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China
| | - Yu Liu
- Department of Clinical Laboratory, The Fourth Hospital, Harbin Medical University, Harbin 150001, China.
| | - Benzhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150086, China; Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
39
|
Li M, zheng H, Han Y, Chen Y, Li B, Chen G, Chen X, Huang S, He X, Wei G, Xu T, Feng X, Liao W, Liao Y, Chen Y, Bin J. LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics 2021; 11:9397-9414. [PMID: 34646377 PMCID: PMC8490501 DOI: 10.7150/thno.57037] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Most current cardiac regeneration approaches result in very limited cell division and little new cardiomyocyte (CM) mass. Positive feedback loops are vital for cell division, but their role in CM regeneration remains unclear. We aimed to determine whether the lncRNA small nucleolar RNA host gene 1 Snhg1 (Snhg1) could form a positive feedback loop with c-Myc to induce cardiac regeneration. Methods: Quantitative PCR and in situ hybridization experiments were performed to determine the Snhg1 expression patterns in fetal and myocardial infarction (MI) hearts. Gain- and Loss-of-function assays were conducted to explore the effect of Snhg1 on cardiomyocyte (CM) proliferation and cardiac repair following MI. We further constructed CM-specific Snhg1 knockout mice to confirm the proliferative effect exerted by Snhg1 using CRISPR/Cas9 technology. RNA sequencing and RNA pulldown were performed to explore how Snhg1 mediated cardiac regeneration. Chromatin immunoprecipitation and luciferase reporter assays were used to demonstrate the positive feedback loop between Snhg1 and c-Myc. Results: Snhg1 expression was increased in human and mouse fetal and myocardial infarction (MI) hearts, particularly in CMs. Overexpression of Snhg1 promoted CM proliferation, angiogenesis, and inhibited CM apoptosis after myocardial infarction, which further improved post-MI cardiac function. Antagonism of Snhg1 in early postnatal mice inhibited CM proliferation and impaired cardiac repair after MI. Mechanistically, Snhg1 directly bound to phosphatase and tensin homolog (PTEN) and induced PTEN degradation, activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway to promote CM proliferation. The c-Myc protein, one of downstream targets of PI3K/AKT signaling, functioned as a transcription factor by binding to the promoter regions of Snhg1. Perturbation of the positive feedback between Snhg1 and c-Myc by mutation of the binding sequence significantly affected Snhg1-induced CM proliferation. Conclusions: Snhg1 effectively elicited CM proliferation and improved cardiac function post-MI by forming a positive feedback loop with c-Myc to sustain PI3K/Akt signaling activation, and thus may be a promising cardiac regeneration strategy in treating heart failure post-MI.
Collapse
|
40
|
Zhang Q, Li D, Dong X, Zhang X, Liu J, Peng L, Meng B, Hua Q, Pei X, Zhao L, Hu X, Zhang Y, Pan Z, Lu Y, Yang B. LncDACH1 promotes mitochondrial oxidative stress of cardiomyocytes by interacting with sirtuin3 and aggravates diabetic cardiomyopathy. SCIENCE CHINA-LIFE SCIENCES 2021; 65:1198-1212. [PMID: 34668131 DOI: 10.1007/s11427-021-1982-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common complication in diabetic patients. The molecular mechanisms of DCM remain to be fully elucidated. The intronic long noncoding RNA of DACH1 (lncDACH1) has been demonstrated to be closely associated with heart failure and cardiac regeneration. In this study, we investigated the role of lncDACH1 in DCM and the underlying molecular mechanisms. The expression of lncDACH1 was increased in DCM hearts and in high glucose-treated cardiomyocytes. Knockout of lncDACH1 reduced mitochondrial oxidative stress, cell apoptosis, cardiac fibrosis and hypertrophy, and improved cardiac function in DCM mice. Overexpression of lncDACH1 exacerbated mitochondria-derived reactive oxygen species (ROS) level and apoptosis, decreased activity of manganese superoxide dismutase (Mn-SOD); while silencing of lncDACH1 attenuated ROS production, mitochondrial dysfunction, cell apoptosis, and increased the activity of Mn-SOD in cardiomyocytes treated with high glucose. LncDACH1 directly bound to sirtuin3 (SIRT3) and facilitated its degradation by ubiquitination, therefore promoting mitochondrial oxidative injury and cell apoptosis in mouse hearts. In addition, SIRT3 silencing abrogated the protective effects of lncDACH1 deficiency in cardiomyocytes. In summary, lncDACH1 aggravates DCM by promoting mitochondrial oxidative stress and cell apoptosis via increasing ubiquitination-mediated SIRT3 degradation in mouse hearts. Inhibition of lncDACH1 represents a novel therapeutic strategy for the intervention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Danyang Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xue Dong
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaowen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwu Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lili Peng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bo Meng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qi Hua
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Pei
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lu Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoxi Hu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhenwei Pan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Yanjie Lu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| |
Collapse
|
41
|
Xie L, Zhang Q, Mao J, Zhang J, Li L. The Roles of lncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives. Front Cell Dev Biol 2021; 9:680713. [PMID: 34604208 PMCID: PMC8481623 DOI: 10.3389/fcell.2021.680713] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have been demonstrated to be associated with many physiological and pathological processes in cardiac. Recent studies have shown that lncRNAs are expressed dynamically in cardiovascular diseases and participate in regulation through a variety of molecular mechanisms, which have become a critical part of the epigenetic and transcriptional regulatory pathways in heart development, as well as the initiation and progress of myocardial infarction. In this review, we summarized some current research about the roles of lncRNAs in heart development and myocardial infarction, with the emphasis on molecular mechanisms of pathological responses, and highlighted their functions in the secondary changes of myocardial infarction. We also discussed the possibility of lncRNAs as novel diagnostic biomarkers and potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Teaching Affairs, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Han L, Yang L. Multidimensional Mechanistic Spectrum of Long Non-coding RNAs in Heart Development and Disease. Front Cardiovasc Med 2021; 8:728746. [PMID: 34604357 PMCID: PMC8483262 DOI: 10.3389/fcvm.2021.728746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
With the large-scale genome-wide sequencing, long non-coding RNAs (lncRNAs) have been found to compose of a large portion of the human transcriptome. Recent studies demonstrated the multidimensional functions of lncRNAs in heart development and disease. The subcellular localization of lncRNA is considered as a key factor that determines lncRNA function. Cytosolic lncRNAs mainly regulate mRNA stability, mRNA translation, miRNA processing and function, whereas nuclear lncRNAs epigenetically regulate chromatin remodeling, structure, and gene transcription. In this review, we summarize the molecular mechanisms of cytosolic and nuclear lncRNAs in heart development and disease separately, and emphasize the recent progress to dictate the crosstalk of cytosolic and nuclear lncRNAs in orchestrating the same biological process. Given the low evolutionary conservation of most lncRNAs, deeper understanding of human lncRNA will uncover a new layer of human regulatory mechanism underlying heart development and disease, and benefit the future clinical treatment for human heart disease.
Collapse
Affiliation(s)
- Lei Han
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
43
|
Wang Y, Chen J, Cowan DB, Wang DZ. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Semin Cell Dev Biol 2021; 118:150-162. [PMID: 34284952 PMCID: PMC8434979 DOI: 10.1016/j.semcdb.2021.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
In the past two decades, thousands of non-coding RNAs (ncRNAs) have been discovered, annotated, and characterized in nearly every tissue under both physiological and pathological conditions. Here, we will focus on the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in ischemic heart disease (IHD), which remains the leading cause of morbidity and mortality in humans-resulting in 8.9 million deaths annually. Cardiomyocyte (CM) proliferation, differentiation, and survival in addition to neovascularization of injured tissues and the prevention of fibrosis are commonly regarded as critically important for the recovery of the heart following myocardial infarction (MI). An abundance of evidence has been accumulated to show ncRNAs participate in cardiac recovery after MI. Because miRNAs are important regulators of cardiac regeneration, the therapeutic potential of at least five of these molecules has been assessed in large animal models of human IHD. In particular, miRNA-based interventions based on miR-132 and miR-92a inhibition in related diseases have displayed favorable outcomes that have provided the impetus for miRNA-based clinical trials for IHD. At the same time, the functional roles of lncRNAs and circRNAs in cardiac regeneration are also being explored. In the present review, we will summarize the latest ncRNA studies aimed at reversing damage to the ischemic heart and discuss the therapeutic potential of targeting miRNAs, lncRNAs, and circRNAs to stimulate cardiac regeneration.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, 268 Kaixuan Road, Hangzhou, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021; 10:cells10102512. [PMID: 34685492 PMCID: PMC8533951 DOI: 10.3390/cells10102512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- COVID-19
- Homeostasis
- Humans
- Mice
- MicroRNAs/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- Myocardium/metabolism
- Origin of Life
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Untranslated/genetics
- RNA, Viral/metabolism
- Regeneration
- SARS-CoV-2/genetics
Collapse
Affiliation(s)
- Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Fabio Desideri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Center for Life Nano & Neuro-Science of Instituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Correspondence:
| |
Collapse
|
45
|
Li Y, Zou J, Li B, Du J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J Cell Mol Med 2021; 25:9543-9556. [PMID: 34547170 PMCID: PMC8505851 DOI: 10.1111/jcmm.16894] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, China
| | - Jilong Zou
- Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
46
|
Deres F, Schwartz S, Kappes-Horn K, Kornblum C, Reimann J. Early Changes in Skeletal Muscle of Young C22 Mice, A Model of Charcot-Marie-Tooth 1A. J Neuromuscul Dis 2021; 8:S283-S299. [PMID: 34459411 PMCID: PMC8673495 DOI: 10.3233/jnd-210681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The C22 mouse is a Charcot-Marie-Tooth 1A transgenic model with minimal axonal loss. Objective: To analyse early skeletal muscle changes resulting from this dysmyelinating neuropathy. Methods: Histology of tibialis anterior muscles of C22 mice and wild type litter mate controls for morphometric analysis and (immuno-)histochemistry for known denervation markers and candidate proteins identified by representational difference analysis (RDA) based on mRNA from the same muscles; quantitative PCR and Western blotting for confirmation of RDA findings. Results: At age 10 days, morphometry was not different between groups, while at 21 days, C22 showed significantly more small diameter fibres, indicating the onset of atrophy at an age when weakness becomes detectable. Neither (immuno-)histochemistry nor RDA detected extrajunctional expression of acetylcholine receptors by age 10 and 21 days, respectively. RDA identified some mRNA up-regulated in C22 muscles, among them at 10 days, prior to detectable weakness or atrophy, integral membrane protein 2a (Itm2a), eukaryotic initiation factor 2, subunit 2 (Eif2s2) and cytoplasmic phosphatidylinositol transfer protein 1 (Pitpnc1). However, qPCR failed to measure significant differences. In contrast, Itm2a and Eif2s2 mRNA were significantly down-regulated comparing 21 versus 10 days of age in both groups, C22 and controls. Western blotting confirmed significant down-regulation of ITM2A protein in C22 only. Conclusion: Denervation-like changes in this model develop slowly with onset of atrophy and weakness at about three weeks of age, before detection of extrajunctional acetylcholine receptors. Altered Itm2a expression seems to begin early as an increase, but becomes distinct as a decrease later.
Collapse
Affiliation(s)
- Friederike Deres
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| | - Stephanie Schwartz
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| | - Karin Kappes-Horn
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany.,Centre for Rare Diseases, University Hospital Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
| |
Collapse
|
47
|
Schweiger V, Hasimbegovic E, Kastner N, Spannbauer A, Traxler D, Gyöngyösi M, Mester-Tonczar J. Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179160. [PMID: 34502068 PMCID: PMC8431637 DOI: 10.3390/ijms22179160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although advances in rapid revascularization strategies following acute myocardial infarction (AMI) have led to improved short and long-term outcomes, the associated loss of cardiomyocytes and the subsequent remodeling result in an impaired ventricular function that can lead to heart failure or death. The poor regenerative capacity of the myocardium and the current lack of effective regenerative therapies have driven stem cell research in search of a possible solution. One approach involves the delivery of stem cells to the site of injury in order to stimulate repair response. Although animal studies initially delivered promising results, the application of similar techniques in humans has been hampered by poor target site retention and oncogenic considerations. In response, several alternative strategies, including the use of non-coding RNAs (ncRNAs), have been introduced with the aim of activating and regulating stem cells or inducing stem cell status in resident cells. Circular RNAs (circRNAs) and microRNAs (miRNAs) are ncRNAs with pivotal functions in cell proliferation and differentiation, whose role in stem cell regulation and potential significance for the field of cardiac regeneration is the primary focus of this review. We also address the general advantages of ncRNAs as promising drivers of cardiac regeneration and potent stem cell regulators.
Collapse
|
48
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
49
|
Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2021; 22:191-206. [PMID: 34417760 DOI: 10.1007/s12012-021-09681-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200-1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.
Collapse
|
50
|
Liu N, Kataoka M, Wang Y, Pu L, Dong X, Fu X, Zhang F, Gao F, Liang T, Pei J, Xiao C, Qiu Q, Hong T, Chen Q, Zhao J, Zhu L, He J, Hu X, Nie Y, Zhu W, Yu H, Cowan DB, Hu X, Wang J, Wang DZ, Chen J. LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic Res Cardiol 2021; 116:48. [PMID: 34379189 PMCID: PMC8357683 DOI: 10.1007/s00395-021-00887-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling of the ischemic heart. Because little is known about the involvement of long non-coding RNAs (lncRNAs) in regulating cardiac metabolism, we used unbiased transcriptome profiling in a mouse model of myocardial infarction (MI). We identified a novel cardiomyocyte-enriched lncRNA, called LncHrt, which regulates metabolism and the pathophysiological processes that lead to heart failure. AAV-based LncHrt overexpression protects the heart from MI as demonstrated by improved contractile function, preserved metabolic homeostasis, and attenuated maladaptive remodeling responses. RNA-pull down followed by mass spectrometry and RNA immunoprecipitation (RIP) identified SIRT2 as a LncHrt-interacting protein involved in cardiac metabolic regulation. Mechanistically, we established that LncHrt interacts with SIRT2 to preserve SIRT2 deacetylase activity by interfering with the CDK5 and SIRT2 interaction. This increases downstream LKB1-AMPK kinase signaling, which ameliorates functional and metabolic deficits. Importantly, we found the expression of the human homolog of mouse LncHrt was decreased in patients with dilated cardiomyopathy. Together, these studies identify LncHrt as a cardiac metabolic regulator that plays an essential role in preserving heart function by regulating downstream metabolic signaling pathways. Consequently, LncHrt is a potentially novel RNA-based therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Changchen Xiao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qiongzi Qiu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qiming Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Zhao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lianlian Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Junhua He
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wei Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong Yu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xinyang Hu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|