1
|
Chen X, Delić D, Cao Y, Zhang Z, Wu H, Hasan AA, Gaballa MMS, Yin L, Krämer BK, Klein T, Shi X, He B, Shen L, Hocher B. Renal and cardiac effects of the PDE9 inhibitor BAY 73-6691 in 5/6 nephrectomized rats. Pflugers Arch 2024; 476:755-767. [PMID: 38305876 DOI: 10.1007/s00424-024-02915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
It has been suggested that the novel selective phosphodiesterase 9 (PDE9) inhibitor may improve cardiac and renal function by blocking 3',5'-cyclic guanosine monophosphate (cGMP) degradation. 5/6 nephrectomized (5/6Nx) rats were used to investigate the effects of the PDE9 inhibitor (BAY 73-6691) on the heart and kidney. Two doses of BAY 73-6691 (1 mg/kg/day and 5 mg/kg/day) were given for 95 days. The 5/6Nx rats developed albuminuria, a decrease in serum creatinine clearance (Ccr), and elevated serum troponin T levels. Echocardiographic data showed that 5/6 nephrectomy resulted in increased fractional shortening (FS), stroke volume (SV), and left ventricular ejection fraction (EF). However, 95 days of PDE9 inhibitor treatment did not improve any cardiac and renal functional parameter. Histopathologically, 5/6 nephrectomy resulted in severe kidney and heart damage, such as renal interstitial fibrosis, glomerulosclerosis, and enlarged cardiomyocytes. Telmisartan attenuated renal interstitial fibrosis and glomerulosclerosis as well as improved cardiomyocyte size. However, except for cardiomyocyte size and renal perivascular fibrosis, BAY 73-6691 had no effect on other cardiac and renal histologic parameters. Pathway enrichment analysis using RNA sequencing data of kidney and heart tissue identified chronic kidney disease pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, complement and coagulation cascades, and nuclear factor kappa B (NF-κB) signaling pathway. PDE9i did not affect any of these disease-related pathways. Two dosages of the PDE9 inhibitor BAY 73-6691 known to be effective in other rat models have only limited cardio-renal protective effects in 5/6 nephrectomized rats.
Collapse
Affiliation(s)
- Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Denis Delić
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr.65, 88397, Biberach, Germany
| | - Yaochen Cao
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Zeyu Zhang
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongwei Wu
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | - Lianghong Yin
- The First Clinical Medical College of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
- IMD Institut Für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany.
| |
Collapse
|
2
|
Daou D, Gillette TG, Hill JA. Inflammatory Mechanisms in Heart Failure with Preserved Ejection Fraction. Physiology (Bethesda) 2023; 38:0. [PMID: 37013947 PMCID: PMC10396273 DOI: 10.1152/physiol.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.
Collapse
Affiliation(s)
- Daniel Daou
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
3
|
Ajay A, Rasoul D, Abdullah A, Lee Wei En B, Mashida K, Al-Munaer M, Ajay H, Duvva D, Mathew J, Adenaya A, Lip GYH, Sankaranarayanan R. Augmentation of natriuretic peptide (NP) receptor A and B (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) signalling as a therapeutic strategy in heart failure. Expert Opin Investig Drugs 2023; 32:1157-1170. [PMID: 38032188 DOI: 10.1080/13543784.2023.2290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Heart failure is a complex, debilitating condition and despite advances in treatment, it remains a significant cause of morbidity and mortality worldwide. Therefore, the need for alternative treatment strategies is essential. In this review, we explore the therapeutic strategies of augmenting natriuretic peptide receptors (NPR-A and NPR-B) and cyclic guanosine monophosphate (cGMP) in heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on novel heart failure treatment strategies. Papers collected in this review have been filtered and screened following PubMed searches. This includes epigenetics, modulating enzyme activity in natriuretic peptide (NP) synthesis, gene therapy, modulation of downstream signaling by augmenting soluble guanylate cyclase (sGC) and phosphodiesterase (PDE) inhibition, nitrates, c-GMP-dependent protein kinase, synthetic and designer NP and RNA therapy. EXPERT OPINION The novel treatment strategies mentioned above have shown great potential, however, large randomized controlled trials are still lacking. The biggest challenge is translating the results seen in preclinical trials into clinical trials. We recommend a multi-disciplinary team approach with cardiologists, geneticist, pharmacologists, bioengineers, researchers, regulators, and patients to improve heart failure outcomes. Future management can involve telemedicine, remote monitoring, and artificial intelligence to optimize patient care.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Debar Rasoul
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Alend Abdullah
- General Medicine, The Dudley Group NHS Foundation Trust Dudley, Dudley, United Kingdom
| | - Benjamin Lee Wei En
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Knievel Mashida
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| | | | - Hanan Ajay
- General Medicine, Southport and Ormskirk Hospital NHS Trust, Southport, United Kingdom
| | - Dileep Duvva
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Jean Mathew
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adeoye Adenaya
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Cedar House, University of Liverpool, Liverpool, United Kingdom
- Cardiology Department, Liverpool Heart & Chest Hospital NHS Trust, Liverpool, United Kingdom
- Cardiology Department, Liverpool John Moores University, Liverpool, United Kingdom
| | - Rajiv Sankaranarayanan
- Cardiology Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Cedar House, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
4
|
Bozkurt B, Nair AP, Misra A, Scott CZ, Mahar JH, Fedson S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:88-105. [PMID: 36777165 PMCID: PMC9911324 DOI: 10.1016/j.jacbts.2022.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
This article provides a contemporary review and a new perspective on the role of neprilysin inhibition in heart failure (HF) in the context of recent clinical trials and addresses potential mechanisms and unanswered questions in certain HF patient populations. Neprilysin is an endopeptidase that cleaves a variety of peptides such as natriuretic peptides, bradykinin, adrenomedullin, substance P, angiotensin I and II, and endothelin. It has a broad role in cardiovascular, renal, pulmonary, gastrointestinal, endocrine, and neurologic functions. The combined angiotensin receptor and neprilysin inhibitor (ARNi) has been developed with an intent to increase vasodilatory natriuretic peptides and prevent counterregulatory activation of the angiotensin system. ARNi therapy is very effective in reducing the risks of death and hospitalization for HF in patients with HF and New York Heart Association functional class II to III symptoms, but studies failed to show any benefits with ARNi when compared with angiotensin-converting enzyme inhibitors or angiotensin receptor blocker in patients with advanced HF with reduced ejection fraction or in patients following myocardial infarction with left ventricular dysfunction but without HF. These raise the questions about whether the enzymatic breakdown of natriuretic peptides may not be a very effective solution in advanced HF patients when there is downstream blunting of the response to natriuretic peptides or among post-myocardial infarction patients in the absence of HF when there may not be a need for increased natriuretic peptide availability. Furthermore, there is a need for additional studies to determine the long-term effects of ARNi on albuminuria, obesity, glycemic control and lipid profile, blood pressure, and cognitive function in patients with HF.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ANP, atrial natriuretic peptide
- ARB, angiotensin receptor blocker
- ARN, angiotensin receptor–neprilysin
- ARNi
- Aβ, amyloid beta
- BNP, brain natriuretic peptide
- BP, blood pressure
- CSF, cerebrospinal fluid
- EF, ejection fraction
- FDA, U.S. Food and Drug Administration
- GFR, glomerular filtration rate
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MI, myocardial infarction
- NEP inhibitor
- NT-proBNP, N-terminal pro–brain natriuretic peptide
- NYHA, New York Heart Association
- PDE, phosphodiesterase
- RAAS, renin-angiotensin-aldosterone system
- UACR, urinary albumin/creatine ratio
- angiotensin receptor–neprilysin inhibitor
- cGMP, cyclic guanosine monophosphate
- eGFR, estimated glomerular filtration rate
- heart failure
- neprilysin
- neprilysin inhibitor
- sacubitril
- sacubitril/valsartan
Collapse
Affiliation(s)
- Biykem Bozkurt
- Winters Center for Heart Failure Research, Cardiovascular Research Institute, Baylor College of Medicine, DeBakey Veterans Affairs Medical Center, Houston Texas, USA
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston Texas, USA
- Address for correspondence: Dr Biykem Bozkurt, MEDVAMC, 2002 Holcombe Boulevard, Houston, Texas, 77030, USA.
| | - Ajith P. Nair
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Arunima Misra
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston Texas, USA
| | - Claire Z. Scott
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jamal H. Mahar
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Savitri Fedson
- Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston Texas, USA
| |
Collapse
|