1
|
Zheng J, Bai Y, Xia L, Sun X, Pan J, Wang S, Qi C. Orally administered yeast-derived β-glucan alleviates mast cell-dependent airway hyperresponsiveness and inflammation in a murine model of asthma. Immun Inflamm Dis 2024; 12:e1333. [PMID: 38934407 PMCID: PMC11209540 DOI: 10.1002/iid3.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Particulate β-glucans (WGP) are natural compounds with regulatory roles in various biological processes, including tumorigenesis and inflammatory diseases such as allergic asthma. However, their impact on mast cells (MCs), contributors to airway hyperresponsiveness (AHR) and inflammation in asthma mice, remains unknown. METHODS C57BL/6 mice underwent repeated OVA sensitization without alum, followed by Ovalbumin (OVA) challenge. Mice received daily oral administration of WGP (OAW) at doses of 50 or 150 mg/kg before sensitization and challenge. We assessed airway function, lung histopathology, and pulmonary inflammatory cell composition in the airways, as well as proinflammatory cytokines and chemokines in the bronchoalveolar lavage fluid (BALF). RESULTS The 150 mg/kg OAW treatment mitigated OVA-induced AHR and airway inflammation, evidenced by reduced airway reactivity to aerosolized methacholine (Mch), diminished inflammatory cell infiltration, and goblet cell hyperplasia in lung tissues. Additionally, OAW hindered the recruitment of inflammatory cells, including MCs and eosinophils, in lung tissues and BALF. OAW treatment attenuated proinflammatory tumor necrosis factor (TNF)-α and IL-6 levels in BALF. Notably, OAW significantly downregulated the expression of chemokines CCL3, CCL5, CCL20, CCL22, CXCL9, and CXCL10 in BALF. CONCLUSION These results highlight OAW's robust anti-inflammatory properties, suggesting potential benefits in treating MC-dependent AHR and allergic inflammation by influencing inflammatory cell infiltration and regulating proinflammatory cytokines and chemokines in the airways.
Collapse
Affiliation(s)
- Jianzhou Zheng
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Yu Bai
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Lei Xia
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Xiao Sun
- Largescale Equipment PlatformThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical CenterChangzhouChina
| | - Jie Pan
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Shizhong Wang
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| | - Chunjian Qi
- Laboratory of OncologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Basic Research CenterChangzhouChina
| |
Collapse
|
2
|
Oettgen HC. Mast cells in food allergy: Inducing immediate reactions and shaping long-term immunity. J Allergy Clin Immunol 2023; 151:21-25. [PMID: 36328809 DOI: 10.1016/j.jaci.2022.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Mast cells are distributed throughout the gastrointestinal tract and function as the main effector cells of IgE-mediated allergic reactions to foods. Allergen-induced cross-linking of IgE antibodies bound to high-affinity IgE receptors, FcεRI, on the surface of mast cells triggers their activation, resulting in the release of mediators of immediate hypersensitivity. These mediators rapidly induce both local gastrointestinal and systemic physiological responses including anaphylaxis. Emerging evidence has revealed that, in addition to inciting immediate reactions, mast cells are key regulators of adaptive immunity to foods. In the gastrointestinal mucosa they provide the priming cytokines that initiate and, over time, consolidate adaptive TH2 responses to ingested allergens as well as TNF and chemokines that orchestrate the recruitment of tissue-infiltrating leukocytes that drive type 2 tissue inflammation. Patients with atopic dermatitis have increased intestinal mast cell numbers and are at a greater risk for food allergy. Recent studies have uncovered a skin-gut axis in which epicutaneous allergen exposure drives intestinal mast cell expansion. The activating effects of IgE antibodies in mast cells are countered by food-specific IgG antibodies that signal via the inhibitory IgG receptor, FcγR2b, suppressing both immediate allergic reactions to foods and the type 2 immune adjuvant activity of mast cells.
Collapse
Affiliation(s)
- Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
3
|
Philp AR, Miranda F, Gianotti A, Mansilla A, Scudieri P, Musante I, Vega G, Figueroa CD, Galietta LJV, Sarmiento JM, Flores CA. KCa3.1 differentially regulates trachea and bronchi epithelial gene expression in a chronic-asthma mouse model. Physiol Genomics 2022; 54:273-282. [PMID: 35658672 DOI: 10.1152/physiolgenomics.00134.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. Additionally, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Amber R Philp
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | - Fernando Miranda
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | | | - Agustín Mansilla
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | | | | | - Génesis Vega
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile
| | | | - Luis J V Galietta
- TIGEM, Pozzuoli, Italia.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - José M Sarmiento
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
4
|
Alfaro-Arnedo E, López IP, Piñeiro-Hermida S, Ucero ÁC, González-Barcala FJ, Salgado FJ, Pichel JG. IGF1R as a Potential Pharmacological Target in Allergic Asthma. Biomedicines 2021; 9:biomedicines9080912. [PMID: 34440118 PMCID: PMC8389607 DOI: 10.3390/biomedicines9080912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Asthma is a chronic lung disease characterized by reversible airflow obstruction, airway hyperresponsiveness (AHR), mucus overproduction and inflammation. Although Insulin-like growth factor 1 receptor (IGF1R) was found to be involved in asthma, its pharmacological inhibition has not previously been investigated in this pathology. We aimed to determine if therapeutic targeting of IGF1R ameliorates allergic airway inflammation in a murine model of asthma. Methods: C57BL/6J mice were challenged by house dust mite (HDM) extract or PBS for four weeks and therapeutically treated with the IGF1R tyrosine kinase inhibitor (TKI) NVP-ADW742 (NVP) once allergic phenotype was established. Results: Lungs of HDM-challenged mice exhibited a significant increase in phospho-IGF1R levels, incremented AHR, airway remodeling, eosinophilia and allergic inflammation, as well as altered pulmonary surfactant expression, all of being these parameters counteracted by NVP treatment. HDM-challenged lungs also displayed augmented expression of the IGF1R signaling mediator p-ERK1/2, which was greatly reduced upon treatment with NVP. Conclusions: Our results demonstrate that IGF1R could be considered a potential pharmacological target in murine HDM-induced asthma and a candidate biomarker in allergic asthma.
Collapse
Affiliation(s)
- Elvira Alfaro-Arnedo
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
| | - Icíar P. López
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
| | - Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain;
| | - Álvaro C. Ucero
- Thoracic Oncology, Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Francisco J. González-Barcala
- Department of Respiratory Medicine, University Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
- Spanish Biomedical Research Networking Centre-CIBERES, 15706 Santiago de Compostela, Spain
| | - Francisco J. Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - José G. Pichel
- Lung Cancer and Respiratory Diseases Unit, Center for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain; (E.A.-A.); (I.P.L.)
- Spanish Biomedical Research Networking Centre-CIBERES, 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-638-056-014
| |
Collapse
|
5
|
IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4 + T cell responses. Sci Rep 2021; 11:9686. [PMID: 33958642 PMCID: PMC8102524 DOI: 10.1038/s41598-021-88956-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mast cells are potent mediators of allergy and asthma, yet their role in regulating adaptive immunity remains ambiguous. On the surface of mast cells, the crosslinking of IgE bound to FcεRI by a specific antigen recognized by that IgE triggers the release of immune mediators such as histamine and cytokines capable of activating other immune cells; however, little is known about the mast cell contribution to the induction of endogenous, antigen-specific CD4+ T cells. Here we examined the effects of specific mast cell activation in vivo on the initiation of an antigen-specific CD4+ T cell response. While CD4+ T cells were not enhanced by FcεRI stimulation alone, their activation was synergistically enhanced when FcεRI activation was combined with TLR4 stimulation. This enhanced activation was dependent on global TLR4 stimulation but appeared to be less dependent on mast cell expressed TLR4. This study provides important new evidence to support the role of mast cells as mediators of the antigen-specific adaptive immune response.
Collapse
|
6
|
Piñeiro‐Hermida S, Martínez P, Blasco MA. Short and dysfunctional telomeres protect from allergen-induced airway inflammation. Aging Cell 2021; 20:e13352. [PMID: 33942458 PMCID: PMC8135011 DOI: 10.1111/acel.13352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well-established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild-type and telomerase-deficient mice with short telomeres (third-generation (G3 Tert-/- mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild-type mice in which we induced a telomere dysfunction by the administration of 6-thio-2´-deoxyguanosine (6-thio-dG). Following HDM exposure, G3 Tert-/- and 6-thio-dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert-/- and 6-thio-dG treated wild-type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert-/- and 6-thio-dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert-/- and 6-thio-dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen-induced airway inflammation.
Collapse
Affiliation(s)
- Sergio Piñeiro‐Hermida
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| | - Paula Martínez
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Madrid Spain
| |
Collapse
|
7
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
8
|
Liu D, Wagner JG, Mariman R, Harkema JR, Gerlofs-Nijland ME, Pinelli E, Folkerts G, Cassee FR, Vandebriel RJ. Airborne particulate matter from goat farm increases acute allergic airway responses in mice. Inhal Toxicol 2020; 32:265-277. [PMID: 32571132 DOI: 10.1080/08958378.2020.1781986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Inhalation exposure to biological particulate matter (BioPM) from livestock farms may provoke exacerbations in subjects suffering from allergy and asthma. The aim of this study was to use a murine model of allergic asthma to determine the effect of BioPM derived from goat farm on airway allergic responses.Methods: Fine (<2.5 μm) BioPM was collected from an indoor goat stable. Female BALB/c mice were ovalbumin (OVA) sensitized and challenged with OVA or saline as control. The OVA and saline groups were divided in sub-groups and exposed intranasally to different concentrations (0, 0.9, 3, or 9 μg) of goat farm BioPM. Bronchoalveolar lavage fluid (BALF), blood and lung tissues were collected.Results: In saline-challenged mice, goat farm BioPM induced 1) a dose-dependent increase in neutrophils in BALF and 2) production of macrophage inflammatory protein-3a. In OVA-challenged mice, BioPM induced 1) inflammatory cells in BALF, 2) OVA-specific Immunoglobulin (Ig)G1, 3) airway mucus secretion-specific gene expression. RNAseq analysis of lungs indicates that neutrophil chemotaxis and oxidation-reduction processes were the representative genomic pathways in saline and OVA-challenged mice, respectively.Conclusions: A single exposure to goat farm BioPM enhanced airway inflammation in both saline and OVA-challenged allergic mice, with neutrophilic response as Th17 disorder and eosinophilic response as Th2 disorder indicative of the severity of allergic responses. Identification of the mode of action by which farm PM interacts with airway allergic pathways will be useful to design potential therapeutic approaches.
Collapse
Affiliation(s)
- Dingyu Liu
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - James G Wagner
- College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Rob Mariman
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jack R Harkema
- College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | | | - Elena Pinelli
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Gert Folkerts
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
9
|
Fu L, Yang X, Liu X, Yu G, Wang Z. Prenatal O 3 exposure increases the severity of OVA-induced asthma in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109867. [PMID: 31689658 DOI: 10.1016/j.ecoenv.2019.109867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Accumulating epidemiological studies showed that prenatal and early life exposure to ambient air pollution was important contributor to the development of childhood asthma. However, the effects and mechanisms of prenatal exposure to ozone (O3), a type of ambient air pollution, on the progression of asthma in offspring remain unclear. OBJECTIVE This study aimed to determine the effects and mechanism of asthma in offspring after prenatal O3 exposure. METHODS Pregnant BALB/c mice were exposed to O3 or air on gestational days (GDs) 13-18. Their offspring were sensitized and challenged to ovalbumin (OVA) to establish asthma model, and the asthma features were evaluated. The splenic natural killer (NK) cells in the offspring were measured to explore the mechanism on the effects of asthma in the offspring. The responses of the pregnant mice and dams after O3 exposure were evaluated. RESULTS Airway inflammation, mucus secretion, OVA-specific immunoglobulin (Ig) E, T helper (Th) 2-skewed response, the frequency of CD3ε-CD49b+ splenic NK cells, the expression of tumor necrosis factor (TNF)-α, and IL (interleukin)-17 were significantly exacerbated in the OVA-induced asthma offspring after prenatal O3 exposure. In addition, airway inflammation, a lower number of CD3ε-CD49b+ splenic NK cells, and systemic oxidative stress were caused at the end of pregnancy after O3 exposure, which did not recover at the end of lactation for the first two responses. CONCLUSIONS Prenatal O3 exposure increased the severity of OVA-induced asthma in the offspring, which might be directly induced by CD3ε-CD49b+ splenic NK cells in the offspring and indirectly related to the damaged maternal immune system.
Collapse
Affiliation(s)
- Lingling Fu
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China
| | - Xiwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China
| | - Xinai Liu
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Shandong University, Jinan, 250000, Shandong, China.
| |
Collapse
|
10
|
Hadjigol S, Netto KG, Maltby S, Tay HL, Nguyen TH, Hansbro NG, Eyers F, Hansbro PM, Yang M, Foster PS. Lipopolysaccharide induces steroid-resistant exacerbations in a mouse model of allergic airway disease collectively through IL-13 and pulmonary macrophage activation. Clin Exp Allergy 2019; 50:82-94. [PMID: 31579973 DOI: 10.1111/cea.13505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute exacerbations of asthma represent a major burden of disease and are often caused by respiratory infections. Viral infections are recognized as significant triggers of exacerbations; however, less is understood about the how microbial bioproducts such as the endotoxin (lipopolysaccharide (LPS)) trigger episodes. Indeed, increased levels of LPS have been linked to asthma onset, severity and steroid resistance. OBJECTIVE The goal of this study was to identify mechanisms underlying bacterial-induced exacerbations by employing LPS as a surrogate for infection. METHODS We developed a mouse model of LPS-induced exacerbation on the background of pre-existing type-2 allergic airway disease (AAD). RESULTS LPS-induced exacerbation was characterized by steroid-resistant airway hyperresponsiveness (AHR) and an exaggerated inflammatory response distinguished by increased numbers of infiltrating neutrophils/macrophages and elevated production of lung inflammatory cytokines, including TNFα, IFNγ, IL-27 and MCP-1. Expression of the type-2 associated inflammatory factors such as IL-5 and IL-13 were elevated in AAD but not altered by LPS exposure. Furthermore, AHR and airway inflammation were no longer suppressed by corticosteroid (dexamethasone) treatment after LPS exposure. Depletion of pulmonary macrophages by administration of 2-chloroadenosine into the lungs suppressed AHR and reduced IL-13, TNFα and IFNγ expression. Blocking IL-13 function, through either IL-13-deficiency or administration of specific blocking antibodies, also suppressed AHR and airway inflammation. CONCLUSIONS & CLINICAL RELEVANCE We present evidence that IL-13 and innate immune pathways (in particular pulmonary macrophages) contribute to LPS-induced exacerbation of pre-existing AAD and provide insight into the complex molecular processes potentially underlying microbial-induced exacerbations.
Collapse
Affiliation(s)
- Sara Hadjigol
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Keilah G Netto
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Thi H Nguyen
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Fiona Eyers
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
11
|
IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Sci Rep 2018; 8:18052. [PMID: 30575775 PMCID: PMC6303299 DOI: 10.1038/s41598-018-36440-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Certain proteases derived from house dust mites and plants are considered to trigger initiation of allergic airway inflammation by disrupting tight junctions between epithelial cells. It is known that inhalation of proteases such as house dust mite-derived Der p1 and/or papaya-derived papain caused airway eosinophilia in naïve mice and even in Rag-deficient mice that lack acquired immune cells such as T, B and NKT cells. In contrast, little is known regarding the possible involvement of proteases derived from Aspergillus species (fungal-associated proteases; FAP), which are ubiquitous saprophytic fungi in the environment, in the development of allergic airway eosinophilia. Here, we found that inhalation of FAP by naïve mice led to airway eosinophilia that was dependent on protease-activated receptor-2 (PAR2), but not TLR2 and TLR4. Those findings suggest that the protease activity of FAP, but not endotoxins in FAP, are important in the setting. In addition, development of that eosinophilia was mediated by innate immune cells (ILCs) such as innate lymphoid cells, but not by acquired immune cells such as T, B and NKT cells. Whereas IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are involved in induction of FAP-induced ILC-mediated airway eosinophilia, IL-33-rather than IL-25 and/or TSLP-was critical for the eosinophilia in our model. Our findings improve our understanding of the molecular mechanisms involved in induction of airway inflammation by FAP.
Collapse
|
12
|
Li HY, Meng JX, Liu Z, Liu XW, Huang YG, Zhao J. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway. Inflammation 2018. [PMID: 29532264 DOI: 10.1007/s10753-018-0746-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.
Collapse
Affiliation(s)
- Hong-Yi Li
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Jing-Xia Meng
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Zhen Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Xiao-Wen Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33# Shijingshan District, Beijing, 100144, China
| | - Yu-Guang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China
| | - Jing Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
13
|
Arae K, Morita H, Unno H, Motomura K, Toyama S, Okada N, Ohno T, Tamari M, Orimo K, Mishima Y, Suto H, Okumura K, Sudo K, Miyazawa H, Taguchi H, Saito H, Matsumoto K, Nakae S. Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Sci Rep 2018; 8:11721. [PMID: 30082755 PMCID: PMC6079063 DOI: 10.1038/s41598-018-30259-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Chitin, which is a major component of house dust mites (HDM), fungi, crustaceans, etc., can activate immune cells, suggesting that it contributes to development of allergic disorders such as asthma. Although the pathophysiological sensitization route of asthmatic patients to allergens is considered via the respiratory tract, the roles of intranasally-administered chitin in development of asthma remain unclear. After ovalbumin (OVA) challenge, development of airway inflammation was profoundly exacerbated in mice sensitized with OVA in the presence of chitin. The exacerbation was dependent on IL-33, but not IL-25, thymic stromal lymphopoietin or IL-17A. Chitin enhanced IL-33-dependent IL-1β production by dendritic cells (DCs). Furthermore, chitin- and IL-33-stimulated DC-derived IL-1β promoted OVA-specific Th2 cell activation, resulting in aggravation of OVA-induced airway inflammation. These findings indicate the adjuvant activity of chitin via a new mechanism and provide important clues for development of therapeutics for allergic disorders caused by HDM, fungi and crustaceans.
Collapse
Grants
- Grants-in-Aid for Young Scientists (22790941 and 24791005) and Grants-in-Aid for Scientific Research (26461491) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The Grant for Joint Research Project of the Institute of Medical Science, the University of Tokyo (2024)
- Grants-in-Aid for Young Scientists (25860822) from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- Grants-in-Aid for Challenging Exploratory Research (15K15377 and 16K15515) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.A Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan.
- Grants-in-Aid for Young Scientists (21790942 and 24688029) and the Program for Improvement of Research Environment for Young Researchers, The Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency. A Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Ken Arae
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hirotoshi Unno
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Sumika Toyama
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Naoko Okada
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yuko Mishima
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo, 113-0033, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, 113-0033, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiroshi Miyazawa
- Department of Medical technology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Haruhiko Taguchi
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
14
|
Abstract
Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.
Collapse
Affiliation(s)
- Thomas W Flanagan
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Charles D Nichols
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
15
|
Yue H, Yan W, Ji X, Zhang Y, Li G, Sang N. Maternal exposure to NO 2 enhances airway sensitivity to allergens in BALB/c mice through the JAK-STAT6 pathway. CHEMOSPHERE 2018; 200:455-463. [PMID: 29501036 DOI: 10.1016/j.chemosphere.2018.02.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/04/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have indicated that nitrogen dioxide (NO2) exposure could increase airway sensitivity to allergens for children. Recently, fetal stress was proposed as a crucial factor for allergic airway response occurring in offspring. Considering that there is inadequate evidence linking maternal NO2 exposure to offspring airway sensitivity to allergens, pregnant Balb/c mice were exposed daily to 2.5 ppm NO2 throughout the gestation period; then, the offspring were challenged to an allergen (ovalbumin, OVA) to evaluate airway sensitivity. For air + saline group and air + OVA group, offspring mice were maternally exposed to clean air followed by treatment with saline and OVA, respectively, in adulthood. For NO2 + saline group and NO2 + OVA group, offspring mice were maternally exposed to NO2 followed by treatment with saline and OVA, respectively, in adulthood. The results showed that maternal NO2 exposure increased the level of OVA-immunoglobulin (Ig) E in serum and caused airway hyper-responsiveness and pathological changes in offspring. Furthermore, maternal NO2 exposure altered the expression of pro-inflammatory factors and impaired the T helper (Th) 1/Th2 balance. In addition, janus kinase)-signal transducer and activator of transcription 6 pathway participated in OVA-induced airway sensitivity of offspring. Our study showed that the potential risk of airway sensitivity to allergens in offspring is enhanced by maternal NO2 exposure and proposed a possible mechanism for preventing, alleviating, and evaluating the outcomes in polluted environments.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
16
|
March1 E3 Ubiquitin Ligase Modulates Features of Allergic Asthma in an Ovalbumin-Induced Mouse Model of Lung Inflammation. J Immunol Res 2018; 2018:3823910. [PMID: 29854835 PMCID: PMC5960577 DOI: 10.1155/2018/3823910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
Membrane-associated RING-CH-1 (March1) is a member of the March family of E3 ubiquitin ligases. March1 downregulates cell surface expression of MHC II and CD86 by targeting them to lysosomal degradation. Given the key roles of MHC class II and CD86 in T cell activation and to get further insights into the development of allergic inflammation, we asked whether March1 deficiency exacerbates or attenuates features of allergic asthma in mice. Herein, we used an acute model of allergy to compare the asthmatic phenotype of March1-deficient and -sufficient mice immunized with ovalbumin (OVA) and later challenged by intranasal instillation of OVA in the lungs. We found that eosinophilic inflammation in airways and lung tissue was similar between WT and March1-/- allergic mice, whereas neutrophilic inflammation was significant only in March1-/- mice. Airway hyperresponsiveness as well as levels of IFN-γ, IL-13, IL-6, and IL-10 was lower in the lungs of asthmatic March1-/- mice compared to WT, whereas lung levels of TNF-α, IL-4, and IL-5 were not significantly different. Interestingly, in the serum, levels of total and ova-specific IgE were reduced in March1-deficient mice as compared to WT mice. Taken together, our results demonstrate a role of March1 E3 ubiquitin ligase in modulating allergic responses.
Collapse
|
17
|
Serra DS, Gomes MDM, Cavalcante FSÁ, Leal-Cardoso JH. Essential oil of Croton Zehntneri attenuates lung injury in the OVA-induced asthma model. J Asthma 2018; 56:1-10. [PMID: 29437496 DOI: 10.1080/02770903.2018.1430828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Croton zehntneri Pax et Hoffm. is a Euphorbiaceae species, popularly known as "canela de cunhã," a native plant of northeastern Brazil, whose essential oil (EOCZ) shows relatively specific myorelaxant action for the smooth muscle of the airways and in the respiratory tract. Based on this information, EOCZ figures as a candidate for testing in the treatment of asthma, and the present study investigated the benefits of using EOCZ in an ovalbumin-induced asthma model. METHODS 48 male BALB/c mice were divided into six groups (n = 8). In the ST, SO100, and SO300 groups, mice were sensitized and challenged with saline, and then treated with 200 µL of 0.1% Tween 80, 100 mg/kg EOCZ and 300 mg/kg EOCZ, respectively. In the OT, OO100, and OO300 groups, mice were sensitized and challenged with OVA, and then treated with 200 µL of 0.1% Tween 80, 100 mg/kg EOCZ and 300 mg/kg EOCZ, respectively. RESULTS Our results demonstrated significant changes in all respiratory mechanics variables analyzed between the OO300 and OT groups demonstrating the effectiveness of EOCZ to attenuate the OVA-induced lung injury. In addition, the use of EOCZ at a dose of 300 mg/kg showed an antioxidant effect and decreased inflammatory cells in the pulmonary parenchyma. In conclusion, our results demonstrated that EOCZ was able to improve the lesion in the respiratory system of mice subjected to OVA-induced asthma. CONCLUSIONS The antioxidant action of EOCZ was likely the main mechanism of action in the reversal of this lesion, so more tests should be performed for its confirmation.
Collapse
Affiliation(s)
- Daniel Silveira Serra
- a Institute of Biomedical Sciences , State University of Ceará , Fortaleza , Ceará , Brazil
| | | | | | | |
Collapse
|
18
|
Pina LTS, Ferro JNS, Rabelo TK, Oliveira MA, Scotti L, Scotti MT, Walker CIB, Barreto EO, Quintans Júnior LJ, Guimarães AG. Alcoholic monoterpenes found in essential oil of aromatic spices reduce allergic inflammation by the modulation of inflammatory cytokines. Nat Prod Res 2018; 33:1773-1777. [PMID: 29394874 DOI: 10.1080/14786419.2018.1434634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Allergic inflammation is a response of the body against pathogens by cytokine release and leucocyte recruitment. Recently, there was an increase in morbimortality associated with allergic inflammation, especially asthma. The treatment has many adverse effects, requiring the search for new therapies. Monoterpenes are natural products with anti-inflammatory activity demonstrated in several studies and can be an option to inflammation management. Thus, we investigated the effects of citronellol, α-terpineol and carvacrol on allergic inflammation. The model of asthma was established by OVA induction in male Swiss mice. The monoterpenes were administered (25, 50 or 100 mg/kg, i.p.) 1 h before induction. After 24hs, the animals were sacrificed to leucocytes and TNF-α quantification. Monoterpenes significantly decrease leucocyte migration and TNF-α levels, possibly by modulation of COX, PGE2 and H1 receptor, as demonstrated by molecular docking. These findings indicate that alcoholic monoterpenes can be an alternative for treatment of allergic inflammation and asthma.
Collapse
Affiliation(s)
- Lícia T S Pina
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | - Jamylle N S Ferro
- b Multidisciplinary Research Center , Federal University of Alagoas , Maceió , Brazil
| | - Thallita K Rabelo
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | - Marlange A Oliveira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | | | | | | | - Emiliano O Barreto
- b Multidisciplinary Research Center , Federal University of Alagoas , Maceió , Brazil
| | - Lucindo J Quintans Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | - Adriana G Guimarães
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil.,e Department of Health Education , Federal University of Sergipe , Lagarto , Brazil
| |
Collapse
|
19
|
Characterization of the acute inflammatory profile and resolution of airway inflammation after Igf1r-gene targeting in a murine model of HDM-induced asthma. PLoS One 2017; 12:e0190159. [PMID: 29272313 PMCID: PMC5741234 DOI: 10.1371/journal.pone.0190159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023] Open
Abstract
Asthma is a chronic inflammatory disease characterized by bronchial hyperresponsiveness, mucus overproduction and airway remodeling. Notably, we have recently demonstrated that insulin-like growth factor 1 receptor (IGF1R) deficiency in mice attenuates airway hyperresponsiveness and mucus secretion after chronic house dust mite (HDM) exposure. On this basis, inbred C57BL/6 and Igf1r-deficient mice were given HDM extract to study the acute inflammatory profile and implication of Igf1r in acute asthma pathobiology. Additionally, Igf1r-deficiency was therapeutically induced in mice to evaluate the resolution of HDM-induced inflammation. Acute HDM exposure in inbred C57BL/6 mice led to a progressive increase in inflammation, airway remodeling and associated molecular indicators. Preventively-induced Igf1r-deficiency showed reduced neutrophil and eosinophil numbers in BALF and bone marrow, a significant reduction of airway remodeling and decreased levels of related markers. In addition, therapeutic targeting of Igf1r promoted the resolution of HDM-induced-inflammation. Our results demonstrate for the first time that Igf1r is important in acute asthma pathobiology and resolution of HDM-induced inflammation. Thus, IGF1R is suggested to be a promising candidate for future therapeutic approaches for the treatment and prevention of asthma.
Collapse
|
20
|
Gregory JA, Kemi C, Ji J, Karén J, Delin I, Gerde P, Pieper MP, Adner M, Larsson K. Effects of tiotropium bromide on airway hyperresponsiveness and inflammation in mice exposed to organic dust. Pulm Pharmacol Ther 2017; 48:203-210. [PMID: 29247703 DOI: 10.1016/j.pupt.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Acute exposure to organic dust (OD) in pig barns induces intense airway inflammation with neutrophilia and hyperresponsiveness. This reaction is likely associated with increased cholinergic activity. Therefore, the involvement of cholinergic mechanisms in the reaction to acute exposure of OD was investigated in mice using the long-acting muscarinic antagonist tiotropium. METHODS BALB/c mice received tiotropium (2-200 ng) intranasally on day 1 of the study. On days 2-4, mice received vehicle or OD (25 μg) intranasally. Airway hyperresponsiveness to methacholine was assessed 24 h following the last OD exposure. Bronchoalveolar lavage (BAL) fluid, lung tissue and blood were collected for analyses. RESULTS Organic dust elevated airway responsiveness to methacholine compared with controls (PBS) assessed as Newtonian resistance (1.5 ± 0.1 vs 0.9 ± 0.1 cm H2O x s/mL), tissue damping (12.4 ± 1.4 vs 8.9 ± 0.9 cm H2O∙s/mL) and tissue elastance (41.1 ± 5.3 vs 27.2 ± 2.5 cm H2O∙s/mL). Tiotropium (200 ng) decreased the Newtonian resistance and tissue damping after exposure to PBS or OD. Organic dust exposure increased inflammatory cells in BAL fluid by almost 400%, mainly due to neutrophil influx, which was unaffected by tiotropium. Organic dust increased levels of mainly Th1 mediators. Tiotropium treatment attenuated OD-induced release of IL-2, IL-4 and IL-6. CONCLUSIONS Tiotropium decreased the OD-induced increase of specific cytokines without influencing the OD-induced increase of airway responsiveness and neutrophil infiltration into the lungs. We conclude that the cholinergic pathway contributes to the pro-inflammatory effects caused by inhalation of OD from pig barns.
Collapse
Affiliation(s)
- Joshua A Gregory
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Kemi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jie Ji
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Karén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Delin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Gerde
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael P Pieper
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Center for Allergy Research, Karolinska Institutet, Stockholm, Sweden.
| | - Kjell Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Sibilano R, Gaudenzio N, DeGorter MK, Reber LL, Hernandez JD, Starkl PM, Zurek OW, Tsai M, Zahner S, Montgomery SB, Roers A, Kronenberg M, Yu M, Galli SJ. A TNFRSF14-FcɛRI-mast cell pathway contributes to development of multiple features of asthma pathology in mice. Nat Commun 2016; 7:13696. [PMID: 27982078 PMCID: PMC5171877 DOI: 10.1038/ncomms13696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023] Open
Abstract
Asthma has multiple features, including airway hyperreactivity, inflammation and remodelling. The TNF superfamily member TNFSF14 (LIGHT), via interactions with the receptor TNFRSF14 (HVEM), can support TH2 cell generation and longevity and promote airway remodelling in mouse models of asthma, but the mechanisms by which TNFSF14 functions in this setting are incompletely understood. Here we find that mouse and human mast cells (MCs) express TNFRSF14 and that TNFSF14:TNFRSF14 interactions can enhance IgE-mediated MC signalling and mediator production. In mouse models of asthma, TNFRSF14 blockade with a neutralizing antibody administered after antigen sensitization, or genetic deletion of Tnfrsf14, diminishes plasma levels of antigen-specific IgG1 and IgE antibodies, airway hyperreactivity, airway inflammation and airway remodelling. Finally, by analysing two types of genetically MC-deficient mice after engrafting MCs that either do or do not express TNFRSF14, we show that TNFRSF14 expression on MCs significantly contributes to the development of multiple features of asthma pathology.
Collapse
Affiliation(s)
- Riccardo Sibilano
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marianne K. DeGorter
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Laurent L. Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, INSERM U1222, Institut Pasteur, Paris 75015, France
| | - Joseph D. Hernandez
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp M. Starkl
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences and Department of Medicine I, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Oliwia W. Zurek
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sonja Zahner
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Axel Roers
- Institute for Immunology, Technische Universität Dresden, Dresden 01307, Germany
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Mang Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Microbiology and Immunology and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
22
|
Hiraishi Y, Nambu A, Shibui A, Nakanishi W, Yamaguchi S, Morita H, Iikura M, McKenzie AN, Matsumoto K, Sudo K, Yamasoba T, Nagase T, Nakae S. TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens. Allergol Int 2016; 65:459-465. [PMID: 27209052 PMCID: PMC5074363 DOI: 10.1016/j.alit.2016.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background T cell immunoglobulin domain and mucin domain-containing molecule 3 (TIM-3), which is preferentially expressed on Th1 cells rather than Th2 cells, is considered to be a negative regulator of Th1 cell function. This suggests that TIM-3 indirectly enhances Th2-type immune responses by suppressing Th1 cell function. Methods To investigate TIM-3's possible involvement in Th2-type acute and chronic airway inflammation, wild-type and TIM-3-deficient (TIM-3−/−) mice were sensitized and challenged with a house dust mite (HDM) extract. Airway inflammation and the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) in the mice were determined by histological analysis and with a hemocytometer, respectively. Expression of mRNA in the lungs was determined by quantitative PCR, while the levels of cytokines in the BALFs and IgE in sera were determined by ELISA. Results Despite constitutive expression of TIM-3 mRNA in the lungs, the number of eosinophils in bronchoalveolar lavage fluids (BALFs) and the score of pulmonary inflammation were comparable between wild-type and TIM-3−/− mice during both acute and chronic HDM-induced airway inflammation. On the other hand, the number of lymphocytes in the BALFs of TIM-3−/− mice was significantly increased compared with wild-type mice during HDM-induced chronic, but not acute, airway inflammation, while the levels of Th2 cytokines in the BALFs and HDM-specific IgG1 and IgG2a and total IgE in the sera were comparable in both groups. Conclusions Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation.
Collapse
|
23
|
Sousa Garcia D, Chen M, Smith AK, Lazarini PR, Lane AP. Role of the type I tumor necrosis factor receptor in inflammation-associated olfactory dysfunction. Int Forum Allergy Rhinol 2016; 7:160-168. [PMID: 27671548 DOI: 10.1002/alr.21855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND To understand mechanisms of human olfactory dysfunction in chronic rhinosinusitis, an inducible olfactory inflammation (IOI) model has been utilized to chronically express inflammatory cytokines locally, resulting in neuronal loss, diminished odorant responses, and repressed olfactory regeneration. Knockout of the minor tumor necrosis factor α receptor 2 (TNFR2) was previously shown to partially rescue these olfactory changes. The purpose of current study was to investigate the role of the major TNF receptor, TNFR1, in chronic olfactory inflammation. METHODS Two experimental groups of mice were studied: TNFR1 knockout in IOI background and TNFR1 knockout with allergen-induced inflammation. Olfactory function was assayed by electro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. RESULTS TNF-α was dramatically induced in IOI-TNFR1 knockout mice, but the olfactory epithelium did not show inflammation. EOG responses were normal after either 2 or 8 weeks of TNF-α expression. Ovalbumin-sensitized TNFR1 knockout mice developed markedly diminished eosinophilic inflammatory infiltration. CONCLUSION Genetic deletion of TNFR1 completely blocks TNF-α-induced inflammation and reduces allergen-induced inflammation. Preserved EOG responses suggest a TNFR1-dependent mechanism of TNF-α-induced olfactory neuron dysfunction.
Collapse
Affiliation(s)
- Davi Sousa Garcia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amy K Smith
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paulo Roberto Lazarini
- Department of Otolaryngology, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Nguyen TH, Maltby S, Simpson JL, Eyers F, Baines KJ, Gibson PG, Foster PS, Yang M. TNF-α and Macrophages Are Critical for Respiratory Syncytial Virus-Induced Exacerbations in a Mouse Model of Allergic Airways Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:3547-58. [PMID: 27036916 DOI: 10.4049/jimmunol.1502339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Viral respiratory infections trigger severe exacerbations of asthma, worsen disease symptoms, and impair lung function. To investigate the mechanisms underlying viral exacerbation, we established a mouse model of respiratory syncytial virus (RSV)-induced exacerbation after allergen sensitization and challenge. RSV infection of OVA-sensitized/challenged BALB/c mice resulted in significantly increased airway hyperresponsiveness (AHR) and macrophage and neutrophil lung infiltration. Exacerbation was accompanied by increased levels of inflammatory cytokines (including TNF-α, MCP-1, and keratinocyte-derived protein chemokine [KC]) compared with uninfected OVA-treated mice or OVA-treated mice exposed to UV-inactivated RSV. Dexamethasone treatment completely inhibited all features of allergic disease, including AHR and eosinophil infiltration, in uninfected OVA-sensitized/challenged mice. Conversely, dexamethasone treatment following RSV-induced exacerbation only partially suppressed AHR and failed to dampen macrophage and neutrophil infiltration or inflammatory cytokine production (TNF-α, MCP-1, and KC). This mimics clinical observations in patients with exacerbations, which is associated with increased neutrophils and often poorly responds to corticosteroid therapy. Interestingly, we also observed increased TNF-α levels in sputum samples from patients with neutrophilic asthma. Although RSV-induced exacerbation was resistant to steroid treatment, inhibition of TNF-α and MCP-1 function or depletion of macrophages suppressed features of disease, including AHR and macrophage and neutrophil infiltration. Our findings highlight critical roles for macrophages and inflammatory cytokines (including TNF-α and MCP-1) in viral-induced exacerbation of asthma and suggest examination of these pathways as novel therapeutic approaches for disease management.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Steven Maltby
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Jodie L Simpson
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and Department of Respiratory and Sleep Medicine, Hunter New England Area Health Service, Newcastle, New South Wales 2305, Australia
| | - Fiona Eyers
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Katherine J Baines
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and Department of Respiratory and Sleep Medicine, Hunter New England Area Health Service, Newcastle, New South Wales 2305, Australia
| | - Peter G Gibson
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and Department of Respiratory and Sleep Medicine, Hunter New England Area Health Service, Newcastle, New South Wales 2305, Australia
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| | - Ming Yang
- Priority Research Centre for Asthma and Respiratory Diseases, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2300, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2300, Australia; and
| |
Collapse
|
25
|
Yanagisawa R, Koike E, Win-Shwe TT, Ichinose T, Takano H. Low-dose benzo[a]pyrene aggravates allergic airway inflammation in mice. J Appl Toxicol 2016; 36:1496-504. [DOI: 10.1002/jat.3308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/17/2016] [Accepted: 01/17/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Rie Yanagisawa
- Center for Environmental Health Sciences; National Institute for Environmental Studies; 16-2 , Onogawa Tsukuba 305-8506 Japan
| | - Eiko Koike
- Center for Environmental Health Sciences; National Institute for Environmental Studies; 16-2 , Onogawa Tsukuba 305-8506 Japan
| | - Tin-Tin Win-Shwe
- Center for Environmental Health Sciences; National Institute for Environmental Studies; 16-2 , Onogawa Tsukuba 305-8506 Japan
| | - Takamichi Ichinose
- Department of Health Sciences; Oita University of Nursing and Health Sciences; Oita 870-1201 Japan
| | - Hirohisa Takano
- Graduate School of Engineering; Kyoto University; Kyoto-Daigaku-Katsura , Nishikyo-ku Kyoto 615-8530 Japan
| |
Collapse
|
26
|
Ko SC, Lee DS, Park WS, Yoo JS, Yim MJ, Qian ZJ, Lee CM, Oh J, Jung WK, Choi IW. Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells. Int J Mol Med 2015; 37:243-50. [PMID: 26718326 DOI: 10.3892/ijmm.2015.2420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to examine whether the intestine gastrointestinal (GI) digests of abalone [Haliotis discus hannai (H. discus hannai)] modulate inflammatory responses and to elucidate the mechanisms involved. The GI digests of the abalone intestines were fractionated into fractions I (>10 kDa), II (5-10 kDa) and Ⅲ (<5 kDa). Of the abalone intestine GI digests (AIGIDs), fraction Ⅲ inhibited the passive cutaneous anaphylaxis (PCA) reaction in mice. Subsequently, a bioactive peptide [abalone intestine GI digest peptide (AIGIDP)] isolated from fraction Ⅲ was determined to be 1175.2 Da, and the amino acid sequence was found to be PFNQGTFAS. We noted that the purified nonameric peptide (AIGIDP) attenuated the phorbol‑12‑myristate 13-acetate plus calcium ionophore A23187 (PMACI)-induced histamine release and the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in human mast cells (HMC-1 cells). In addition, we also noted that AIGIDP inhibited the PMACI‑induced activation of nuclear factor‑κB (NF-κB) by suppressing IκBα phosphorylation and that it suppressed the production of cytokines by decreasing the phosphorylation of JNK. The findings of our study indicate that AIGIDP exerts a modulatory, anti-allergic effect on mast cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Dae-Sung Lee
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Jong Su Yoo
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Mi-Jin Yim
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Zhong-Ji Qian
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine Box G-L, Providence, RI, USA
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Il-Whan Choi
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
27
|
Donoviel MS, Hait NC, Ramachandran S, Maceyka M, Takabe K, Milstien S, Oravecz T, Spiegel S. Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases. FASEB J 2015; 29:5018-28. [PMID: 26324848 DOI: 10.1096/fj.15-274936] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive sphingolipid metabolite that regulates numerous processes important for immune responses. S1P is made within cells and must be transported out of cells to exert its effects through activation of 5 specific cell surface GPCRs in an autocrine or paracrine fashion. Spinster 2 (Spns2) transports S1P out of cells, and its deletion in mice reduces circulating levels of S1P, alters immune cell trafficking, and induces lymphopenia. Here we examined the effects of Spns2 deletion on adaptive immune responses and in autoimmune disease models. Airway inflammation and hypersensitivity as well as delayed-type contact hypersensitivity were attenuated in Spns2(-/-) mice. Similarly, Spns2 deletion reduced dextran sodium sulfate- and oxazolone-induced colitis. Intriguingly, Spns2(-/-) mice were protected from the development of experimental autoimmune encephalopathy, a model of the autoimmune disease multiple sclerosis. Deletion of Spns2 also strongly alleviated disease development in collagen-induced arthritis. These results point to a broad role for Spns2-mediated S1P transport in the initiation and development of adaptive immune related disorders.
Collapse
Affiliation(s)
- Michael S Donoviel
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Nitai C Hait
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Subramaniam Ramachandran
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael Maceyka
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Kazuaki Takabe
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sheldon Milstien
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tamas Oravecz
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- *Lexicon Pharmaceuticals Incorporated, The Woodlands, Texas, USA; and Department of Biochemistry and Molecular Biology, and Department of Surgery and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
28
|
Morita H, Arae K, Unno H, Toyama S, Motomura K, Matsuda A, Suto H, Okumura K, Sudo K, Takahashi T, Saito H, Matsumoto K, Nakae S. IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS One 2015; 10:e0134226. [PMID: 26230091 PMCID: PMC4521793 DOI: 10.1371/journal.pone.0134226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND IL-25, IL-33 and TSLP are produced predominantly by epithelial cells and are known to induce Th2-type cytokines. Th2-type cytokines are involved not only in host defense against nematodes, but also in the development of Th2-type allergic diseases. TSLP was reported to be crucial for development of allergic airway inflammation in mice after inhalation of allergens to which they had been sensitized epicutaneously (EC) beforehand. However, the roles of IL-25 and IL-33 in the setting remain unclear. METHODS Mice deficient in IL-25 and IL-33 were sensitized EC with ovalbumin (OVA) and then challenged intranasally with OVA. Airway inflammation, the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) and airway hyperresponsiveness (AHR) in the mice were determined, respectively, by histological analysis, with a hemocytometer, and by using plethysmograph chambers with a ventilator. Expression of mRNA in the skin and lungs was determined by quantitative PCR, while the BALF levels of myeloperoxidase (MPO) and eosinophil peroxidase (EPO) and the serum levels of IgE were determined by ELISA. RESULTS Normal OVA-specific Th2- and Th17-cell responses of lymph nodes and spleens were observed in IL-25-deficient (IL-25-/-) and IL-33-/- mice after EC sensitization with OVA. Nevertheless, the number of eosinophils, but not neutrophils, in the BALFs, and the levels of Th2 cytokines, but not Th17 cytokines, in the lungs were significantly decreased in the IL-25-/- and IL-33-/- mice pre-sensitized EC with OVA, followed by inhalation of OVA, whereas their levels of AHR and OVA-specific serum IgE were normal. CONCLUSIONS Both IL-25 and IL-33 are critical for induction of Th2-type cytokine-mediated allergic airway eosinophilia, but not Th17-type cytokine-mediated airway neutrophilia, at the local sites of lungs in the challenge phase of mice sensitized EC with OVA. They do not affect OVA-specific T-cell induction in the sensitization phase.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160–8582, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
- Department of Immunology, Faculty of Health Science, Kyorin University, Tokyo, 192–8508, Japan
| | - Hirotoshi Unno
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
- Department of Pediatrics, Jikei University School of Medicine, Tokyo 105–8461, Japan
| | - Sumika Toyama
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113–8412, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113–8412, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo 160–8402, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160–8582, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157–8535, Japan
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113–8412, Japan
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108–8639, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama 332–0012, Japan
- * E-mail:
| |
Collapse
|
29
|
Autocrine hemokinin-1 functions as an endogenous adjuvant for IgE-mediated mast cell inflammatory responses. J Allergy Clin Immunol 2014; 135:1019-1030.e8. [PMID: 25201259 DOI: 10.1016/j.jaci.2014.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Efficient development of atopic diseases requires interactions between allergen and adjuvant to initiate and amplify the underlying inflammatory responses. Substance P (SP) and hemokinin-1 (HK-1) are neuropeptides that signal through the neurokinin-1 receptor (NK1R) to promote inflammation. Mast cells initiate the symptoms and tissue effects of atopic disorders, secreting TNF and IL-6 after FcεRI cross-linking by antigen-IgE complexes (FcεRI-activated mast cells [FcεRI-MCs]). Additionally, MCs express the NK1R, suggesting an adjuvant role for NK1R agonists in FcεRI-MC-mediated pathologies; however, in-depth research addressing this relevant aspect of MC biology is lacking. OBJECTIVE We sought to investigate the effect of NK1R signaling and the individual roles of SP and HK-1 as potential adjuvants for FcεRI-MC-mediated allergic disorders. METHODS Bone marrow-derived mast cells (BMMCs) from C57BL/6 wild-type (WT) or NK1R(-/-) mice were used to investigate the effects of NK1R signaling on FcεRI-MCs. BMMCs generated from Tac1(-/-) mice or after culture with Tac4 small interfering RNA were used to address the adjuvancy of SP and HK-1. WT, NK1R(-/-), and c-Kit(W-sh/W-sh) mice reconstituted with WT or NK1R(-/-) BMMCs were used to evaluate NK1R signaling on FcεRI-MC-mediated passive local and systemic anaphylaxis and on airway inflammation. RESULTS FcεRI-activated MCs upregulated NK1R and HK-1 transcripts and protein synthesis, without modifying SP expression. In a positive signaling loop HK-1 promoted TNF and IL-6 secretion by MC degranulation and protein synthesis, the latter through the phosphoinositide 3-kinase/Akt/nuclear factor κB pathways. In vivo NK1R signaling was necessary for the development of passive local and systemic anaphylaxis and airway inflammation. CONCLUSIONS FcεRI stimulation of MCs promotes autocrine secretion of HK-1, which signals through NK1R to provide adjuvancy for efficient development of FcεRI-MC-mediated disorders.
Collapse
|
30
|
Borriello F, Granata F, Varricchi G, Genovese A, Triggiani M, Marone G. Immunopharmacological modulation of mast cells. Curr Opin Pharmacol 2014; 17:45-57. [PMID: 25063971 DOI: 10.1016/j.coph.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Mast cells produce a wide spectrum of mediators and they have been implicated in several physiopathological conditions (e.g. allergic reactions and certain tumors). Pharmacologic agents that modulate the release of mediators from mast cells has helped to elucidate the biochemical mechanisms by which immunological and non-immunological stimuli activate these cells. Furthermore, the study of surface receptors and signaling pathways associated with mast cell activation revealed novel pharmacologic targets. Thus, the development of pharmacologic agents based on this new wave of knowledge holds promise for the treatment of several mast cell-mediated disorders.
Collapse
Affiliation(s)
- Francesco Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, School of Medicine, Salerno, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
31
|
Choi JP, Kim YM, Choi HI, Choi SJ, Park HT, Lee WH, Gho YS, Jee YK, Jeon SG, Kim YK. An important role of tumor necrosis factor receptor-2 on natural killer T cells on the development of dsRNA-enhanced Th2 cell response to inhaled allergens. Allergy 2014; 69:186-98. [PMID: 24191851 DOI: 10.1111/all.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent evidence indicates that TNF-α is a key mediator of the development of dsRNA-enhanced Th2 cell response to inhaled allergens. Natural killer T (NKT) cells may be a candidate source of Th2-polarizing cytokines. OBJECTIVE The objective of this study was to evaluate the role of lung NKT cells on the development of TNF-α-mediated Th2 cell response. METHODS A virus-associated asthma mouse model was generated by the administration of ovalbumin (OVA, 75 μg) and poly[I:C] (0.1 μg). Role of NKT and type I NKT cells was evaluated using CD1d- and Jα18-deficient mice. TNF-α receptors (TNFRs) were antagonized by using TNFR blocking peptides. RESULTS The number of infiltrated NKT cells was increased in a virus-associated asthma mouse model. Increase in Th2 and Th17 cytokine levels in wild-type mice were abolished in both CD1d- and Jα18-deficient mice. In vitro co-culture experiments with alveolar macrophages and NKT cells showed that TNF-α produced by macrophages in the presence of poly[I:C] acts on NKT cells, inducing production of Th2-polarizing cytokines. Moreover, the induction of Th2-polarizing cytokines by poly[I:C] or recombinant TNF-α was impaired in both CD1d- and Jα18-deficient mice and that the above effect was reversed by a TNF-α receptor-2 (TNFR2) blocking peptide, but not by a TNFR1 blocker. CONCLUSIONS These findings suggest that NKT cells play a key role in the development of Th2 cell response to inhaled allergens and that TNF-α produced by alveolar macrophages induces Th2 cell response, via TNFR2 on NKT cells.
Collapse
Affiliation(s)
- J.-P. Choi
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - Y.-M. Kim
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - H.-I. Choi
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - S.-J. Choi
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - H. T. Park
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - W.-H. Lee
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - Y. S. Gho
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - Y.-K. Jee
- Department of Internal Medicine; Dankook University College of Medicine; Cheonan Korea
| | - S. G. Jeon
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - Y.-K. Kim
- Department of Life Sciences; Pohang University of Science and Technology (POSTECH); Pohang Korea
| |
Collapse
|
32
|
Gabehart KE, Royce SG, Maselli DJ, Miyasato SK, Davis EC, Tang MLK, Jourdan Le Saux C. Airway hyperresponsiveness is associated with airway remodeling but not inflammation in aging Cav1-/- mice. Respir Res 2013; 14:110. [PMID: 24138138 PMCID: PMC4015038 DOI: 10.1186/1465-9921-14-110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-β. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-β receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge. Methods AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling. Results Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1. Conclusion A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claude Jourdan Le Saux
- Department of Cell and Molecular Biology, John A, Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
33
|
Takada E, Furuhata M, Nakae S, Ichijo H, Sudo K, Mizuguchi J. Requirement of apoptosis-inducing kinase 1 for the induction of bronchial asthma following stimulation with ovalbumin. Int Arch Allergy Immunol 2013; 162:104-14. [PMID: 23921222 DOI: 10.1159/000353240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 05/22/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bronchial asthma is a chronic inflammatory disease of the airway. Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase kinase kinase family, is activated by environmental stress and plays a crucial role in the induction of apoptosis and inflammation. To examine whether ASK1 is involved in the induction of bronchial asthma, we investigated the role of ASK1 using a genetic approach in the production of cytokines, as well as the development of airway hyperreactivity (AHR) and antibody responses using a murine airway inflammation model. METHODS ASK1-deficient (ASK1(-/-)) and control wild-type (WT) mice were immunized with ovalbumin (OVA) without alum intraperitoneally, followed by intranasal administration of OVA. Airway infiltration of inflammatory cells, cytokine production, AHR and antibody production were assayed. The asthmatic phenotype was assessed following intranasal administration of IL-13 or TNF-α. RESULTS ASK1(-/-) mice sensitized with OVA displayed an impaired inflammatory cell infiltration into airways and a decreased AHR relative to WT mice. Moreover, the production of OVA-specific IgE antibodies and proasthmatic cytokines (IL-5, IL-13 and TNF-α) was substantially reduced in OVA-stimulated ASK1(-/-) mice. Intranasal administration of IL-13 and OVA enhanced the accumulation of inflammatory cells in OVA-primed ASK1(-/-) mice. The OVA-induced AHR in response to methacholine was enhanced by IL-13 in WT mice but not ASK1(-/-) mice. CONCLUSIONS The ASK1 signaling pathway regulates the OVA-induced asthmatic phenotype, specifically AHR sensitivity and cytokine production. Therefore, the ASK1 signaling pathway is a promising target for therapeutic intervention in some asthmatic patients.
Collapse
Affiliation(s)
- Eiko Takada
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Bouchard JC, Beal DR, Kim J, Vaickus LJ, Remick DG. Chemokines mediate ethanol-induced exacerbations of murine cockroach allergen asthma. Clin Exp Immunol 2013; 172:203-16. [PMID: 23574317 DOI: 10.1111/cei.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2012] [Indexed: 10/27/2022] Open
Abstract
Asthma imposes considerable patient and economic burdens, with the most severe cases causing the greatest affliction. Identifying stimuli that worsen asthma severity is an essential step to controlling both disease morbidity and the lessening economic impact. This study provides the first mechanistic investigation into how acute ethanol exposure will increase asthma severity in a murine model of mild cockroach allergen (CRA)-induced asthma. Outbred mice were sensitized to induce mild allergic asthma, with intratracheal CRA exposures on days 0 and 14. On day 21 mice were gavaged with water or 32% ethanol, and the third allergen exposure was given 30 min post-gavage. Asthmatic responses were measured at several time-points up to 42 h after the third allergen challenge. Ethanol-gavaged mice showed increased asthma severity within 90 min post-allergen challenge, with exacerbations lasting for 24 h. Ethanol caused greater airways obstruction, including an eightfold increase in epithelial cell mucin and increased mucus plugs, resulting in a 50% reduction in bronchiole patency. Ethanol gavage also induced significant increases in airways hyperreactivity. While T helper type 1 (Th1) and Th2 cytokines were not altered by ethanol gavage, pulmonary neutrophil and eosinophil recruitment were augmented. This increase was associated with increased chemokine production. Administration 2 h prior to ethanol gavage of a neutralizing antibody cocktail to keratinocyte-derived chemokine, macrophage inflammatory protein-2, eotaxin-1 and eotaxin-2 prevented ethanol-induced eosinophil recruitment and airways hyperreactivity. These data provide evidence that acute alcohol exposure immediately prior to a mild allergen-triggered asthmatic episode will exacerbate asthma severity mediated by increased production of chemokines.
Collapse
Affiliation(s)
- J C Bouchard
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
35
|
Ni X, Li X, Tao S, Xu M, Ma H, Wang X. Blockade of ankyrin repeat-rich membrane spanning protein modulates extracellular signal-regulated kinase expression and inhibits allergic inflammation in ovalbumin-sensitized mice. Biomed Rep 2013; 1:674-678. [PMID: 24649008 DOI: 10.3892/br.2013.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/24/2013] [Indexed: 11/05/2022] Open
Abstract
Ankyrin repeat-rich membrane spanning protein (ARMS), also known as kinase D-interacting substrate of 220 kDa (Kidins220), is a transmembrane protein that has been reported to be involved in the pathogenesis of asthma through the nerve growth factor (NGF)/tyrosine kinase A (TrkA) receptor signaling pathway. To investigate whether NGF/TrkA-Kidins220/ARMS-extracellular signal-regulated kinase (ERK) signaling is activated in airway inflammation of asthma, BALB/c mice were sensitized and challenged with ovalbumin (OVA). The effects of Kidins220/ARMS on ERK, interleukin (IL)-1β, IL-4 and tumor necrosis factor (TNF)-α in lung tissues following the allergic airway challenge in mice were assessed by administering anti-ARMS antibody to the mice. Pathological changes in the bronchi and lung tissues were examined via hematoxylin and eosin staining. The phosphorylated ERK, IL-1β, IL-4 and TNF-α levels were determined using western blot analysis and ELISA and were found to be overexpressed in lung tissues following the allergen challenge. Moreover, after the mice were treated with anti-NGF, anti-TrkA or anti-ARMS, the levels of Kidins220/ARMS, phosphorylated ERK, IL-1β, IL-4, TNF-α and allergen-induced airway inflammation were downregulated. These results suggested that NGF/TrkA-Kidins220/ARMS-ERK signaling was activated in airway inflammation induced by the allergic airway challenge, possibly representing a new mechanism in asthma.
Collapse
Affiliation(s)
- Xiuqin Ni
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China ; Biopharmaceutical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| | - Xing Li
- Department of Nephrology, Daqing People's Hospital, Daqing, Heilongjiang 163310, P.R. China
| | - Shuhua Tao
- Biopharmaceutical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| | - Minghui Xu
- Biopharmaceutical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| | - Hongmei Ma
- Biopharmaceutical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| | - Xiuli Wang
- Biopharmaceutical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
36
|
Daniłowicz-Luebert E, Steinfelder S, Kühl AA, Drozdenko G, Lucius R, Worm M, Hamelmann E, Hartmann S. A nematode immunomodulator suppresses grass pollen-specific allergic responses by controlling excessive Th2 inflammation. Int J Parasitol 2013; 43:201-10. [DOI: 10.1016/j.ijpara.2012.10.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/18/2012] [Accepted: 10/24/2012] [Indexed: 11/16/2022]
|
37
|
Chen CG, Wang HY, Dai Y, Wang JL, Xu WH. Tripterygium polyglycosid attenuates the established airway inflammation in asthmatic mice. Chin J Integr Med 2013; 19:282-8. [PMID: 23321997 DOI: 10.1007/s11655-013-1410-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the effect of Tripterygium polyglycosid on establishing airway eosinophil infiltration and related airway hyperresponsiveness of asthmatic mice. METHODS A mature murine asthmatic model was made with ovabulmin sensitized and challenged C57BL/6 mice. Forty mice were divided into four groups with 10 mice in each group: mice sensitized and challenged with saline (WS group), mice sensitized and challenged with ovalbumin (WO group), mice sensitized and challenged with ovalbumin and treated with Tripterygium polyglycosid (TP group) and Dexamethasone (DXM group). The mice were intraperitoneally injected with 20 μg chicken ovabulmin emulsified in injected alum on days 0 and 14, then were challenged with an aerosol generated from 1% ovabulmin on days 24, 25 and 26. Tripterygium polyglycosid was injected intraperitoneally at 50 mg/kg on days 25, 26 and 27 after ovabulmin challenge. Dexamethasone was administrated to mice at 2 mg/kg on day 21, 23 before ovabulmin challenge. The airway hyperresponsiveness, mucus production, eosinophils in parabronchial area and bronchoalveolar lavage fluid and the level of interleukin-5, granulo-macrophage clone stimulating factor in bronchoalveolar lavage fluid were measured as indexes of inflammation. RESULTS Tripterygium polyglycosid treatment after ovabulmin challenge completely inhibited eosinophil infiltration in bronchoalveolar lavage fluid [(0.63 ± 0.34)× 10(4) vs. (75.0 ± 14.8)× 10(4), P<0.05] and the peribrochial area (12.60 ± 3.48 mm(2) vs. 379.0 ± 119.3 mm(2), P<0.05), mucus overproduction in airway (2.8 ± 1.7 vs. 7.1±5.6, P<0.05), and increased interleukin-5 levels in bronchoalveolar lavage fluid (28.8 ± 2.8 pg/mL vs. 7.5 ± 3.5 pg/mL, P<0.05). Meanwhile, Tripterygium polyglycosid treatment after ovabulmin challenge also partially inhibited airway hyperresponsiveness. The level of granulo-macrophage clone stimulating factor in bronchoalveolar lavage fluid didn't change with drugs intervention. CONCLUSIONS The administration of Tripterygium polyglycosid could inhibit the established airway inflammation and reduce the airway hyperresponsiveness of allergic asthmatic mice. It provides a possible alternative therapeutic for asthma.
Collapse
Affiliation(s)
- Chang-Gui Chen
- Department of General Practice, the Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou 310006, China
| | | | | | | | | |
Collapse
|
38
|
Kim HK, Lee CH, Kim JM, Ayush O, Im SY, Lee HK. Biphasic late airway hyperresponsiveness in a murine model of asthma. Int Arch Allergy Immunol 2012; 160:173-83. [PMID: 23018605 DOI: 10.1159/000341645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nonspecific airway hyperresponsiveness (AHR) is one of the cardinal features of bronchial asthma. Early AHR is caused by chemical mediators released from pulmonary mast cells activated in an IgE-dependent way. However, the mechanism of late AHR remains unclear. METHODS Features of airway allergic inflammation were analyzed, including antigen-induced AHR, using a murine model of asthma. The model was suitable for examining the sequential early molecular events occurring after the initial airway exposure to antigen. RESULTS AHR increased at 10-12 h after airway challenge, followed by the second-phase response, which was larger and broader in resistance at 18-30 h. Pretreatment of sensitized animals with anti-tumor necrosis factor (TNF) before airway challenge or induction of allergic asthma in TNF(-/-) mice resulted in abrogation of the first-phase late AHR. Intratracheal instillation of TNF induced a single peak of AHR at 10 h. IgE and IgG immune complexes induced the development of the first-phase late AHR by TNF production. Pretreatment with cytosolic phospholipase inhibitor and 5-lipoxygenase inhibitors abolished the first-phase late AHR as well as the leukotriene B(4) levels in the airway. CpG-oligodeoxynucleotide (ODN) pretreatment reduced airway levels of Th2 cytokines, eosinophil infiltration and second-phase late AHR. However, CpG-ODN did not reduce TNF levels or the magnitude of first-phase late AHR. CONCLUSION Biphasic late AHR occurs in a murine model of asthma. First- and second-phase late AHR is caused by TNF and Th2 response, respectively.
Collapse
Affiliation(s)
- Hae-Kyoung Kim
- Department of Immunology, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Zhu M, Williams AS, Chen L, Wurmbrand AP, Williams ES, Shore SA. Role of TNFR1 in the innate airway hyperresponsiveness of obese mice. J Appl Physiol (1985) 2012; 113:1476-85. [PMID: 22984249 DOI: 10.1152/japplphysiol.00588.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe(fat) mice that were either sufficient or genetically deficient in TNFR1 (Cpe(fat) and Cpe(fat)/TNFR1(-/-) mice) and in lean mice that were either sufficient or genetically deficient in TNFR1 [wild-type (WT) and TNFR1(-/-) mice]. Compared with lean WT mice, Cpe(fat) mice exhibited airway hyperresponsiveness. Airway hyperresponsives was also greater in Cpe(fat)/TNFR1(-/-) than in Cpe(fat) mice. Compared with WT mice, Cpe(fat) mice had increases in bronchoalveolar lavage fluid concentrations of several inflammatory moieties including eotaxin, IL-9, IP-10, KC, MIG, and VEGF. These factors were also significantly elevated in Cpe(fat)/TNFR1(-/-) vs. TNFR1(-/-) mice. Additional moieties including IL-13 were also elevated in Cpe(fat)/TNFR1(-/-) vs. TNFR1(-/-) mice but not in Cpe(fat) vs. WT mice. IL-17A mRNA expression was greater in Cpe(fat)/TNFR1(-/-) vs. Cpe(fat) mice and in TNFR1(-/-) vs. WT mice. Analysis of serum indicated that obesity resulted in systemic as well as pulmonary inflammation, but TNFR1 deficiency had little effect on this systemic inflammation. Our results indicate that TNFR1 is protective against the airway hyperresponsiveness associated with obesity and suggest that effects on pulmonary inflammation may be contributing to this protection.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Choi JP, Kim YS, Kim OY, Kim YM, Jeon SG, Roh TY, Park JS, Gho YS, Kim YK. TNF-alpha is a key mediator in the development of Th2 cell response to inhaled allergens induced by a viral PAMP double-stranded RNA. Allergy 2012; 67:1138-48. [PMID: 22765163 DOI: 10.1111/j.1398-9995.2012.02871.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Viral pathogen-associated molecular patterns, such as dsRNA, disrupt airway tolerance to inhaled allergens. Specifically, the Th2 and Th17 cell responses are induced by low-dose dsRNA and the Th1-dominant response by high-dose dsRNA. OBJECTIVE In this model, we evaluate the role of TNF-α in the development of adaptive immune dysfunction to inhaled allergens induced by airway sensitization with dsRNA-containing allergens. METHODS A virus-associated asthma mouse model was generated via simultaneous airway administration of ovalbumin (OVA) and low (0.1 μg) or high (10 μg) doses of polyinosine-polycytidylic acid (poly[I:C]). The effect of TNF-α on Th2 airway inflammation was evaluated using TNF-α-deficient mice and recombinant TNF-α. RESULTS TNF-α production was enhanced by airway exposure to low and high doses of poly[I:C]. After airway sensitization with OVA plus low-dose poly[I:C], TNF-α-deficient mice exhibited less OVA-induced airway inflammation than did wild-type (WT) mice. However, this did not occur upon sensitization with high-dose poly[I:C]. In terms of T-cell response, the production of IL-4 from lung T cells after OVA challenge was enhanced by airway sensitization with OVA plus low-dose poly[I:C] in WT mice, and this phenotype was inhibited by the absence of TNF-α. Moreover, the Th2 cell response induced by sensitization with OVA plus low-dose poly[I:C], which was abolished in TNF-α-deficient mice, was restored in these mice upon addition of recombinant TNF-α. CONCLUSION The results of this study suggest that TNF-α produced by airway exposure to low-dose dsRNA is a key mediator in the development of Th2 cell response to inhaled allergens.
Collapse
Affiliation(s)
- J.-P. Choi
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - Y.-S. Kim
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - O. Y. Kim
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - Y.-M. Kim
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - S. G. Jeon
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - T.-Y. Roh
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - J.-S. Park
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang; Korea
| | - Y. S. Gho
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| | - Y.-K. Kim
- Division of Molecular and Life Sciences; Department of Life Science; Pohang University of Science and Technology (POSTECH); Pohang
| |
Collapse
|
41
|
Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC, Alvarez SE, Conrad D, Ryan JJ, Milstien S, Spiegel S. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol 2012; 131:501-11.e1. [PMID: 22939756 DOI: 10.1016/j.jaci.2012.07.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P), which is produced by 2 sphingosine kinase (SphK) isoenzymes, SphK1 and SphK2, has been implicated in IgE-mediated mast cell responses. However, studies of allergic inflammation in isotype-specific SphK knockout mice have not clarified their contribution, and the role that S1P plays in vivo in a mast cell- and IgE-dependent murine model of allergic asthma has not yet been examined. OBJECTIVE We used an isoenzyme-specific SphK1 inhibitor, SK1-I, to investigate the contributions of S1P and SphK1 to mast cell-dependent airway hyperresponsiveness (AHR) and airway inflammation in mice. METHODS Allergic airway inflammation and AHR were examined in a mast cell-dependent murine model of ovalbumin (OVA)-induced asthma. C57BL/6 mice received intranasal delivery of SK1-I before sensitization and challenge with OVA or only before challenge. RESULTS SK1-I inhibited antigen-dependent activation of human and murine mast cells and suppressed activation of nuclear factor κB (NF-κB), a master transcription factor that regulates the expression of proinflammatory cytokines. SK1-I treatment of mice sensitized to OVA in the absence of adjuvant, in which mast cell-dependent allergic inflammation develops, significantly reduced OVA-induced AHR to methacholine; decreased numbers of eosinophils and levels of the cytokines IL-4, IL-5, IL-6, IL-13, IFN-γ, and TNF-α and the chemokines eotaxin and CCL2 in bronchoalveolar lavage fluid; and decreased pulmonary inflammation, as well as activation of NF-κB in the lungs. CONCLUSION S1P and SphK1 play important roles in mast cell-dependent, OVA-induced allergic inflammation and AHR, in part by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Megan M Price
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va 23298-0614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kushwah R, Hu J. Analysis of pulmonary dendritic cell maturation and migration during allergic airway inflammation. J Vis Exp 2012:e4014. [PMID: 22847488 DOI: 10.3791/4014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Collapse
Affiliation(s)
- Rahul Kushwah
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton
| | | |
Collapse
|
43
|
Brown MA, Hatfield JK. Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy? Front Immunol 2012; 3:147. [PMID: 22701454 PMCID: PMC3369183 DOI: 10.3389/fimmu.2012.00147] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/19/2012] [Indexed: 12/14/2022] Open
Abstract
There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens, and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention.
Collapse
Affiliation(s)
- Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|
44
|
Morita H, Arae K, Ohno T, Kajiwara N, Oboki K, Matsuda A, Suto H, Okumura K, Sudo K, Takahashi T, Matsumoto K, Nakae S. ST2 requires Th2-, but not Th17-, type airway inflammation in epicutaneously antigen- sensitized mice. Allergol Int 2012; 61:265-73. [PMID: 22361513 DOI: 10.2332/allergolint.11-oa-0379] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND IL-33 is known to induce Th2-type cytokine production by various types of cells through its receptors, ST2 and IL-1RAcP. Polymorphism in the ST2 and/or IL-33 genes was found in patients with atopic dermatitis and asthma, implying that the IL-33/ST2 pathway is closely associated with susceptibility to these diseases. Exposure to allergens through damaged skin is suspected to be a trigger for allergen sensitization, resulting in development of such allergic disorders as asthma and atopic dermatitis. METHODS To elucidate the role(s) of the IL-33/ST2 pathway in asthma in individuals who had been epicutaneously sensitized to an antigen, wild-type and ST2-/- mice were epicutaneously sensitized with ovalbumin (OVA) and then were intranasally challenged with OVA. The degree of airway inflammation, the number of leukocytes and the activities of myeloperoxidase (MPO) and eosinophil peroxidase (EPO) in bronchoalveolar lavage fluids (BALFs), The levels of cytokines and chemokines in lungs and OVA-specific IgE levels in sera were determined by histological analysis, a hemocytometer, colorimetric assay, quantitative PCR or ELISA, respectively. RESULTS The number of eosinophils in BALFs, the levels of Th2 cytokines and chemoattractants in the lungs and OVA-specific IgE in sera from ST2-/- mice were significantly reduced compared with wild-type mice. Although the number of neutrophils in BALFs and the pulmonary levels of IL-17 were comparable in both mice, the levels of MPO activity in BALFs and neutrophil chemoattractants in the lung were reduced in ST2-/- mice. CONCLUSIONS The IL-33/ST2 pathway is crucial for Th2-cytokine-mediated eosinophilic, rather than Th17-cytokine-mediated neutrophilic, airway inflammation in mice that had been epicutaneously sensitized with antigens and then challenged with antigen.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lutfi R, Ledford JR, Zhou P, Lewkowich IP, Page K. Dendritic cell-derived tumor necrosis factor α modifies airway epithelial cell responses. J Innate Immun 2012; 4:542-52. [PMID: 22517116 DOI: 10.1159/000336984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/01/2012] [Indexed: 12/31/2022] Open
Abstract
Mucosal dendritic cells (DC) are intimately associated with the airway epithelium and thus are ideally situated to be first responders to pathogens. We hypothesize that DC drive innate immune responses through early release of tumor necrosis factor (TNF) α, which drives airway epithelial cell responses. In a mouse model, TNFα release was significantly increased following a single exposure to German cockroach (GC) frass, an event independent of neutrophil recruitment into the airways. While lung epithelial cells and alveolar macrophages failed to release TNFα following GC frass exposure, bone marrow-derived DC (BMDC) produced substantial amounts of TNFα suggesting their importance as early responding cells. This was confirmed by flow cytometry of pulmonary myeloid DC. Addition of GC frass-pulsed BMDC or conditioned media from GC frass-pulsed BMDC to primary mouse tracheal epithelial cells (MTEC) or MLE-15 cells induced chemokine (C-C) motif ligand (CCL) 20 and granulocyte macrophage (GM) colony-stimulating factor (CSF), both of which are important for DC recruitment, survival and differentiation. Importantly, DC do not produce CCL20 or GM-CSF following allergen exposure. Blocking TNFα receptor 1 (TNFR1) completely abolished chemokine production, suggesting that BMDC-derived TNFα induced airway epithelial cell activation and enhancement of the innate immune response. Lastly, blocking TNFR1 in vivo resulted in significantly decreased CCL20 and GM-CSF production in the lungs of mice. Together, our data strongly suggest that DC-derived TNFα plays a crucial role in the initiation of innate immune responses through the modification of airway epithelial cell responses.
Collapse
Affiliation(s)
- R Lutfi
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
46
|
Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFα in bronchoepithelial cells. Biochem J 2012; 442:127-37. [PMID: 22082005 DOI: 10.1042/bj20111269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway inflammation in allergen-induced asthma is associated with eicosanoid release. These bioactive lipids exhibit anti- and pro-inflammatory activities with relevance to pulmonary pathophysiology. We hypothesized that sensitization/challenge using an extract from the ubiquitous fungus Aspergillus fumigatus in a mouse model of allergic asthma would result in altered phospholipase gene expression, thus modulating the downstream eicosanoid pathway. We observed the most significant induction in the group IVC PLA2 (phospholipase A2) [also known as cPLA2γ (cytosolic PLA2γ) or PLA2G4C]. Our results infer that A. fumigatus extract can induce cPLA2γ levels directly in eosinophils, whereas induction in lung epithelial cells is most likely to be a consequence of TNFα (tumour necrosis factor α) secretion by A. fumigatus-activated macrophages. The mechanism of TNFα-dependent induction of cPLA2γ gene expression was elucidated through a combination of promoter deletions, ChIP (chromatin immunoprecipitation) and overexpression studies in human bronchoepithelial cells, leading to the identification of functionally relevant CRE (cAMP-response element), NF-κB (nuclear factor κB) and E-box promoter elements. ChIP analysis demonstrated that RNA polymerase II, ATF-2 (activating transcription factor 2)-c-Jun, p65-p65 and USF (upstream stimulating factor) 1-USF2 complexes are recruited to the cPLA2γ enhancer/promoter in response to TNFα, with overexpression and dominant-negative studies implying a strong level of co-operation and interplay between these factors. Overall, our results link cytokine-mediated alterations in cPLA2γ gene expression with allergic asthma and outline a complex regulatory mechanism.
Collapse
|
47
|
Aujla SJ, Alcorn JF. T(H)17 cells in asthma and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:1066-79. [PMID: 21315804 DOI: 10.1016/j.bbagen.2011.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The chronic airway disease asthma causes significant burden to patients as well as the healthcare system with limited options for prevention or cure. Inadequate treatment strategies are most likely due to the complex heterogeneous nature of asthma. Furthermore, the severe asthma phenotype is characterized by the lack of a response to standard medication, namely, corticosteroids. SCOPE OF REVIEW In the last several years it has been shown that the eosinophilic/atopic phenotype of asthma driven by T(H)2 mechanisms is not the only immunologic pathway contributing to disease. In fact, there has been evidence revealing that severe asthmatics in particular have neutrophilic inflammation, and this is associated with corticosteroid resistance. T(H)17 cells, a recently discovered lineage of T helper cells, play an important role in lung host defense against multiple pathogens via production of the cytokine IL-17. IL-17 promotes neutrophil production and chemotaxis via multiple factors. MAJOR CONCLUSIONS Mouse and human studies provide robust evidence that T(H)17 cells and IL-17 play a role in severe asthma and may contribute to corticosteroid resistance. GENERAL SIGNIFICANCE As we learn more about T(H)17 cells in severe asthma, the goal is to potentially target this pathway for treatment in the hope of significantly improving the quality of life for those children and adults affected with this disease. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Shean J Aujla
- Department of Pedaitrics, Children's Hospital of Pittsburgh of UPMC, Pitsburgh, PA 15224, USA
| | | |
Collapse
|
48
|
Maillet I, Schnyder-Candrian S, Couillin I, Quesniaux VFJ, Erard F, Moser R, Fleury S, Kanda A, Dombrowicz D, Szymkowski DE, Ryffel B. Allergic Lung Inflammation Is Mediated by Soluble Tumor Necrosis Factor (TNF) and Attenuated by Dominant-Negative TNF Biologics. Am J Respir Cell Mol Biol 2011; 45:731-9. [DOI: 10.1165/rcmb.2010-0512oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
49
|
Lin CC, Liou CJ, Chiang CY, Huang WY, Huang WC. Danggui Buxue Tang attenuates eosinophil infiltration and airway hyperresponsiveness in asthmatic mice. Ann Allergy Asthma Immunol 2011; 107:501-9. [PMID: 22123379 DOI: 10.1016/j.anai.2011.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/24/2011] [Accepted: 08/16/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Danggui Buxue Tang (DBT), an herbal formula containing Angelica sinensis (AS) and Astragalus membranaceus (AM) (AS:AM = 1:5, designated as DBT1 here), has been used in Chinese medicine to enhance qi and blood circulation. In addition, DBT has served as a treatment for atopic dermatitis in dogs in Taiwan. It also may improve fibrosis in a rat model of pulmonary fibrosis. OBJECTIVE In this study, we evaluated the effect of oral administration of DBT1 in asthma in ovalbumin (OVA)-sensitized mice. METHODS Female BALB/c mice were sensitized and challenged with OVA and fed with DBT1 or modified formulas of DBT1, designated as DBT2 (AS:AM = 1:1) and DBT3 (AS:AM = 5:1), from days 21 to 27. RESULTS DBT1 suppressed airway hyperresponsiveness and eosinophil infiltration in bronchoalveolar lavage fluid (BALF) and lung, and Th2-associated cytokines and chemokines were inhibited in BALF. In addition, levels of OVA-immunoglobulin E (IgE) also were suppressed in serum. However, treatment with DBT2 or DBT3 showed no improved effects relative to DBT1 in treating asthmatic symptoms. CONCLUSIONS These results suggest that orally administered DBT (DBT1) can reduce allergic reactions in OVA-sensitized mice.
Collapse
|
50
|
Abstract
Mast cells (MCs) promote a wide range of localized and systemic inflammatory responses. Their involvement in immediate as well as chronic inflammatory reactions at both local and distal sites points to an extraordinarily powerful immunoregulatory capacity with spatial and temporal versatility. MCs are preferentially found in close proximity to both vascular and lymphatic vessels. On activation, they undergo a biphasic secretory response involving the rapid release of prestored vasoactive mediators followed by de novo synthesized products. Many actions of MCs are related to their capacity to regulate vascular flow and permeability and to the recruitment of various inflammatory cells from the vasculature into inflammatory sites. These mediators often work in an additive fashion and achieve their inflammatory effects locally by directly acting on the vascular and lymphatic endothelia, but they also can affect distal sites. Along these lines, the lymphatic and endothelial vasculatures of the host act as a conduit for the dissemination of MC signals during inflammation. The central role of the MC-endothelial cell axis to immune homeostasis is emphasized by the fact that some of the most effective current treatments for inflammatory disorders are directed at interfering with this interaction.
Collapse
|