1
|
Hsin L, Varese N, Aui PM, Wines BD, von Borstel A, Mascarell L, Hogarth PM, Hew M, O'Hehir RE, van Zelm MC. Accurate determination of house dust mite sensitization in asthma and allergic rhinitis through cytometric detection of Der p 1 and Der p 2 binding on basophils (CytoBas). J Allergy Clin Immunol 2024; 153:1282-1291.e10. [PMID: 38360181 DOI: 10.1016/j.jaci.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND House dust mite (HDM) is the most common allergen trigger globally for allergic rhinitis and atopic asthma. OBJECTIVES To expedite accurate confirmation of allergen sensitization, we designed fluorescent allergen tetramers to directly stain specific IgE on basophils to detect specific allergen sensitization using the flow cytometric CytoBas assay. METHODS Recombinant proteins of major HDM allergens (component), Der f 1, Der p 1, and Der p 2 were biotinylated and conjugated with fluorochrome streptavidins as tetramers. Blood samples from 64 patients who are HDM-allergic and 26 controls that are non-HDM-sensitized were incubated with allergen tetramers for evaluation of basophil binding (CytoBas) and activation (BAT) with flow cytometry. RESULTS The tetramers effectively bound and activated basophils from patients who are allergic but not from controls who are nonsensitized. CytoBas with Der p 1 as a single allergen had comparable sensitivity and specificity (92% and 100%) to BAT (91% and 100%) in detecting allergen sensitization, as did CytoBas with Der p 2 (95% and 96%) to BAT (95% and 87%). A positive staining for Der p 1 and/or Der p 2 in CytoBas was 100% sensitive and 96% specific for HDM allergy. CONCLUSIONS CytoBas has diagnostic accuracy for group 1 and group 2 HDM allergens that is comparable to BAT, but with additional advantages of multiple allergen components in a single tube and no requirement for in vitro basophil activation. These findings endorse a single, multiplex CytoBas assay for accurate and component-resolved diagnosis of aeroallergen sensitization in patients with allergic asthma and/or rhinitis.
Collapse
Affiliation(s)
- Lin Hsin
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Nirupama Varese
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Pei Mun Aui
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Bruce D Wines
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Anouk von Borstel
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Laurent Mascarell
- Innovation and Science Department, Stallergenes Greer, Antony, France
| | - P Mark Hogarth
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Robyn E O'Hehir
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Immunology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Yu PY, Zhu Y, Tan LX, Xu ZQ, Lu C, Guan XW. Immunoinformatics Construction of B Cell Epitope-Based Hypoallergenic Der f 34 Vaccine for Immunotherapy of House Dust Mite Allergy. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Martínez D, Munera M, Cantillo JF, Wortmann J, Zakzuk J, Keller W, Caraballo L, Puerta L. An Engineered Hybrid Protein from Dermatophagoides pteronyssinus Allergens Shows Hypoallergenicity. Int J Mol Sci 2019; 20:ijms20123025. [PMID: 31234267 PMCID: PMC6628193 DOI: 10.3390/ijms20123025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
The house dust mite (HDM) Dermatophagoides pteronyssinus is an important risk factor for asthma and rhinitis. Allergen specific immunotherapy that is based on recombinant proteins has been proposed for the safer and more efficient treatment of allergic diseases. The aim of this study was to design and obtain a hybrid protein (DPx4) containing antigenic regions of allergens Der p 1, Der p 2, Der p 7, and Der p 10 from this mite. DPx4 was produced in Escherichia coli and its folding was determined by circular dichroism. Non-denaturing dot-blot, ELISA, basophil activation test, dot blot with monoclonal antibodies, ELISA inhibition, and cysteine protease activity assays were performed. Mice that were immunized with DPx4 were also analyzed. We found that DPx4 had no cysteine protease activity and it showed significantly lower IgE reactivity than Der p 1, Der p 2, and D. pteronyssinus extract. DPx4 induced lower basophil activation than Der p 2 and the allergen extract. Immunized mice produced IgG antibodies that inhibited the binding of allergic patient’s IgE to the allergen extract and induced comparatively higher levels of IL-10 than the extract in peripheral blood mononuclear cells (PBMC) culture. These results suggest that DPx4 has immunological properties that are useful for the development of a mite allergy vaccine.
Collapse
Affiliation(s)
- Dalgys Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Marlon Munera
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Jose Fernando Cantillo
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Judith Wortmann
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, 8036 Graz, Austria.
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Walter Keller
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, 8036 Graz, Austria.
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| |
Collapse
|
5
|
Martínez D, Cantillo JF, Herazo H, Wortmann J, Keller W, Caraballo L, Puerta L. Characterization of a hybrid protein designed with segments of allergens from Blomia tropicalis and Dermatophagoides pteronyssinus. Immunol Lett 2018; 196:103-112. [PMID: 29408409 DOI: 10.1016/j.imlet.2018.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sensitization to allergens of the house dust mites Dermatophagoides pteronyssinnus and Blomia tropicalis is an important risk factor for asthma and allergic diseases. Allergen-specific immunotherapy is currently based on natural allergen extracts, however, in the last years recombinant allergens with different modifications have shown promising immunological properties that may be advantageously applied for developing novel allergy vaccines. METHODS A hybrid molecule (MAVAC-BD-2) containing epitopes of B. tropicalis (Blo t 5, Blo t 8 and Blo t 10) and D. pteronyssinus (Der p 1, Der p 2, Der p 7 and Der p 8) allergens was constructed, expressed in Escherichia coli and purified by affinity chromatography. Its folding was analyzed by circular dichroism. Antibody reactivities were evaluated by ELISA and non-denaturing dot blot assays using a battery of sera from mite allergic patients and non-allergic subjects. ELISA inhibition and dot blot assays with monoclonal antibodies were used to detect B-cell epitopes. Human basophil activation and induction of IgG-blocking antibodies in mice immunized with the hybrid protein were also evaluated. RESULTS MAVAC-BD-2, expressed as a 22.8 kDa protein, showed a lower frequency and strength of IgE reactivity compared to Blo t 5, Der p 1, Der p 2 and the extracts of B. tropicalis and D. pteronyssinus. MAVAC-BD-2 inhibited 26% of IgE reactivity to Der p 2 and Blo t 5, reacted with anti-Der p 1 and anti-Der p 2 monoclonal antibodies and did not induce relevant basophil activation. MAVAC-BD-2 immunized mice produced specific antibodies that reacted against mite extracts and the purified allergens, as well as IgG antibodies that blocked the human IgE reactivity to mite extracts. CONCLUSION MAVAC-BD-2 has hypoallergenic characteristics and in mice induces IgG antibodies that block the human IgE reactivity to mite extracts.
Collapse
Affiliation(s)
- Dalgys Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Helber Herazo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Judith Wortmann
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, Graz, Austria
| | - Walter Keller
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, Graz, Austria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
6
|
Wong KH, Zhou Q, Prabhu N, Furuhashi K, Chua YL, Grotenbreg GM, Kemeny DM. Blomia tropicalis allergen 5 (Blo t 5) T-cell epitopes and their ability to suppress the allergic immune response. Immunology 2017; 152:344-355. [PMID: 28581024 DOI: 10.1111/imm.12772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Blomia tropicalis is the major asthma allergen in the tropics comparable to Dermatophagoides pteronyssinus. However, little is known about the B. tropicalis epitopes recognized by T cells. Our aim was to identify the T-cell epitopes in the major B. tropicalis allergen, Blo t 5, and investigate the potential of the corresponding peptides to inhibit the allergic inflammatory lung response. C57BL/6 mice were immunized with plasmid DNA encoding Blo t 5 and T-cell epitopes identified using the interferon-γ ELISPOT assay with 15-mer overlapping peptides. C57BL/6 mice were sensitized with bone-marrow-derived dendritic cells (BMDC) pulsed with Blo t 5 allergen followed by intranasal Blo t 5 challenge. Two H-2b restricted epitopes (Bt576-90 and Bt5106-115 ) were recognized by CD4 T cells specific for Blo t 5, but no CD8 epitopes were identified. In mice sensitized with Blo t 5-pulsed BMDC and challenged with intranasal Blo t 5 Bt576-90 and Bt5106-115 , peptide-specific CD4 T cells were found to secrete the T helper type 2 cytokines interleukin-5 and interleukin-13. Intradermal administration of synthetic peptides encoding the identified T-cell epitopes suppressed allergic airway inflammation to further allergen challenges. Hence, we have identified novel CD4 T-cell epitopes specific for Blo t 5 and demonstrated that these peptides could be employed therapeutically to suppress the T-cell response in a murine model of allergic airway inflammation.
Collapse
Affiliation(s)
- Kenneth H Wong
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Qian Zhou
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Nayana Prabhu
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Kazuki Furuhashi
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore
| | - Yen Leong Chua
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Gijsbert M Grotenbreg
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Gritstone Oncology, Emeryville, CA, USA
| | - David M Kemeny
- Immunology Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore City, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
7
|
Cui Y, Teng F, Yu L, Zhou Y, Zhang C, Yang L. Dermatophagoides farinae allergen Der f 9: Cloning, expression, purification, characterization and IgE-binding in children with atopic asthma. Pediatr Pulmonol 2017; 52:282-292. [PMID: 27434417 DOI: 10.1002/ppul.23526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/08/2016] [Accepted: 07/03/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND The house dust mite species Dermatophagoides farinae releases allergens that cause allergies and asthma worldwide. This study sought to clone and express the full-length cDNA encoding the group 9 allergen of D. farinae (Der f 9). METHODS The published sequence of Der f 9 was used to design primers for RT-PCR and RACE to obtain the full-length cDNA encoding Der f 9. After removal of signal peptide sequence, Der f 9 was then sub-cloned into plasmid pET-28b (+), and the plasmid was transformed into Escherichia coli BL21 (DE3) cells for expression. The recombinant protein was purified by Nickel affinity chromatography, identified by SDS-PAGE, Western blotting, dot blotting, and MALDI-TOF, and tested by ELISA for IgE reactivity with sera from children with asthma. Bioinformatics analyses were used to identify features of Der f 9. RESULTS By RT-PCR, 3'-RACE, and 5'-RACE, the full-length sequence of Der f 9 was generated, which was confirmed by nucleotide sequencing. The mature Der f 9 was expressed successfully in E. coli, which was identified by SDS-PAGE. The recombinant allergen was purified by chromatography and confirmed by SDS-PAGE, Western blotting, dot blotting, and MALDI-TOF. Sera from 56.7% (17/30) of mite-allergic patients reacted with the purified recombinant Der f 9. CONCLUSIONS The successful production of recombinant Der f 9 protein revealed the importance of Der f 9 in mite allergy, and provides a foundation for further study of this allergen in diagnosis and treatment of symptoms. Pediatr Pulmonol. 2017;52:282-292. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yubao Cui
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, 224001, Jiangsu Province, P. R. China.,Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, 224006, Jiangsu Province, P. R. China
| | - Feixiang Teng
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, 224006, Jiangsu Province, P. R. China
| | - LiLi Yu
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, 224006, Jiangsu Province, P. R. China
| | - Ying Zhou
- Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, 224001, Jiangsu Province, P. R. China
| | - Chengbo Zhang
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, 224006, Jiangsu Province, P. R. China
| | - Li Yang
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Yancheng, 224006, Jiangsu Province, P. R. China
| |
Collapse
|
8
|
Batard T, Baron-Bodo V, Martelet A, Le Mignon M, Lemoine P, Jain K, Mariano S, Horiot S, Chabre H, Harwanegg C, Marquette CA, Corgier BP, Soh WT, Satitsuksanoa P, Jacquet A, Chew FT, Nony E, Moingeon P. Patterns of IgE sensitization in house dust mite-allergic patients: implications for allergen immunotherapy. Allergy 2016; 71:220-9. [PMID: 26485347 DOI: 10.1111/all.12796] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Understanding patterns of IgE sensitization in Dermatophagoides-allergic patients living in various geographical areas is necessary to design a product suitable for worldwide allergen immunotherapy (AIT). METHODS Using a HIFI Allergy customized microarray assay, IgEs specific for 12 purified allergens from Dermatophagoides pteronyssinus or D. farinae were assessed in sera from 1302 house dust mite (HDM)-allergic patients living in various areas. Comprehensive mass spectrometric (MS) analyses were conducted to characterize HDM extracts, as well as purified bodies and feces. RESULTS Patterns of IgE reactivity to HDM allergens are comparable in all cohorts of patients analyzed, encompassing adults and 5- to 17-year-old children, as well as American, Canadian, European, and Japanese patients. Overall, >70% and >80% of HDM-allergic patients are sensitized to group 1 and group 2 allergens, respectively, from D. pteronyssinus and/or D. farinae species. Furthermore, 20-47% of patients also have IgEs to allergens from groups 4, 5, 7, 13, 15, 21, and 23. All patients have IgEs to allergens present in mite bodies and feces. MS-based analyses confirmed the presence of mite allergens recorded by IUIS in D. pteronyssinus and D. farinae extracts, with groups 2, 8, 10, 11, 14, and 20 prominent in bodies and groups 1, 6, 18, and 23 well represented in feces. CONCLUSIONS Mite-specific AIT should rely upon a mixture of D. pteronyssinus and D. farinae extracts, manufactured from both feces and bodies. Such a combination is appropriate to treat children and adult Dermatophagoides-allergic patients from Asia, Europe, and North America.
Collapse
Affiliation(s)
- T. Batard
- Research and Development; Stallergenes; Antony France
| | - V. Baron-Bodo
- Research and Development; Stallergenes; Antony France
| | - A. Martelet
- Research and Development; Stallergenes; Antony France
| | - M. Le Mignon
- Research and Development; Stallergenes; Antony France
| | - P. Lemoine
- Research and Development; Stallergenes; Antony France
| | - K. Jain
- Research and Development; Stallergenes; Antony France
| | - S. Mariano
- Research and Development; Stallergenes; Antony France
| | - S. Horiot
- Research and Development; Stallergenes; Antony France
| | - H. Chabre
- Research and Development; Stallergenes; Antony France
| | - C. Harwanegg
- Thermo Fisher Scientific ImmunoDiagnostics/Phadia Austria GmbH; Vienna Austria
| | | | | | - W. T. Soh
- Chulalongkorn University; Bangkok Thailand
| | | | - A. Jacquet
- Chulalongkorn University; Bangkok Thailand
| | - F. T. Chew
- National University of Singapore; Singapore City Singapore
| | - E. Nony
- Research and Development; Stallergenes; Antony France
| | - P. Moingeon
- Research and Development; Stallergenes; Antony France
| |
Collapse
|
9
|
Bouaziz A, Walgraffe D, Bouillot C, Herman J, Foguenne J, Gothot A, Louis R, Hentges F, Jacquet A, Mailleux AC, Chevigné A, Galleni M, Adam E, Dumez ME. Development of recombinant stable house dust mite allergen Der p 3 molecules for component-resolved diagnosis and specific immunotherapy. Clin Exp Allergy 2015; 45:823-34. [PMID: 25406386 DOI: 10.1111/cea.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/30/2014] [Accepted: 09/10/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND The allergen Der p 3 is underrepresented in house dust mite (HDM) extracts probably due to autolysis. Recombinant stable molecule of the allergen is thus needed to improve the diagnosis of allergy and the safety and efficacy of immunotherapy. OBJECTIVE The current study reports the immunological characterization of two recombinant molecules of the HDM allergen Der p 3 as useful tools for diagnosis and immunotherapy. METHODS Recombinant mature (rDer p 3) and immature (proDer p 3) Der p 3 and their corresponding S196A mutants were produced in Pichia pastoris and purified. The stability, IgE-binding capacity and allergenicity of the different proteins were analysed and compared with those of the major mite allergen Der p 1 used as a reference. Additionally, the immunogenicity of the different allergens was evaluated in a murine model of Der p 3 sensitization. RESULTS Compared to the IgE reactivity to recombinant and natural Der p 3 (nDer p 3), the mean IgE binding of patient's sera to rDer p 3-S196A (50%) was higher. The poorly binding to nDer p 3 or rDer p 3 was due to autolysis of the allergen. Contrary to Der p 3, proDer p 3 displayed very weak IgE reactivity, as measured by sandwich ELISA and competitive inhibition, rat basophil leukaemia degranulation and human basophil activation assays. Moreover, proDer p 3 induced a TH 1-biased immune response that prevented allergic response in mice but retained Der p 3-specific T-cell reactivity. CONCLUSION rDer p 3-S196A should be used for the diagnosis of HDM allergy elicited by Der p 3, and proDer p 3 may represent a hypoallergen of Der p 3.
Collapse
Affiliation(s)
- A Bouaziz
- Macromolécules Biologiques, Centre d'ingénierie des Protéines, Université de Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pomés A, Chruszcz M, Gustchina A, Wlodawer A. Interfaces between allergen structure and diagnosis: know your epitopes. Curr Allergy Asthma Rep 2015; 15:506. [PMID: 25750181 DOI: 10.1007/s11882-014-0506-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Allergy diagnosis is based on the patient's clinical history and can be strengthened by tests that confirm the origin of sensitization. In the past 25 years, these tests have evolved from the exclusive in vivo or in vitro use of allergen extracts, to complementary molecular-based diagnostics that rely on in vitro measurements of IgE reactivity to individual allergens. For this to occur, an increase in our understanding of the molecular structure of allergens, largely due to the development of technologies such as molecular cloning and expression of recombinant allergens, X-ray crystallography, or nuclear magnetic resonance (NMR), has been essential. New in vitro microarray or multiplex systems are now available to measure IgE against a selected panel of purified natural or recombinant allergens. The determination of the three-dimensional structure of allergens has facilitated detailed molecular studies, including the analysis of antigenic determinants for diagnostic purposes.
Collapse
Affiliation(s)
- Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc., 1216 Harris Street, Charlottesville, VA, 22903, USA,
| | | | | | | |
Collapse
|
11
|
Tanyaratsrisakul S, Jirapongsananuruk O, Kulwanich B, Hales BJ, Thomas WR, Piboonpocanun S. Effect of Amino Acid Polymorphisms of House Dust Mite Der p 2 Variants on Allergic Sensitization. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:55-62. [PMID: 26540502 PMCID: PMC4695409 DOI: 10.4168/aair.2016.8.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Abstract
Purpose The sequence variations of the Der p 2 allergen of Dermatophagoides pteronyssinus diverge along 2 pathways with particular amino acid substitutions at positions 40,47,111, and 114. The environmental prevalence and IgE binding to Der p 2 variants differ among regions. To compare IgE binding to Der p 2 variants between sera from Bangkok, Thailand and Perth, Western Australia with different variants and to determine the variant-specificity of antibodies induced by vaccination with recombinant variants. Methods The structures of recombinant variants produced in yeast were compared by circular dichroism and 1-anilinonaphthalene 8-sulfonic acid staining of their lipid-binding cavity. Sera from subjects in Bangkok and Perth where different variants are found were compared by the affinity (IC50) of IgE cross-reactivity to different variants and by direct IgE binding. Mice were immunized with the variants Der p 2.0101 and Der p 2.0110, and their IgG binding to Der p 2.0103, 2.0104, and 2.0109 was measured. Results The secondary structures of the recombinant variants resembled the natural allergen but with differences in ANS binding. The IC50 of Der p 2.0101 required 7-fold higher concentrations to inhibit IgE binding to the high-IgE-binding Der p 2.0104 than for homologous inhibition in sera from Bangkok where it is absent, while in sera from Perth that have both variants the IC50 was the same and low. Reciprocal results were obtained for Der p 2.0110 not found in Perth. Direct binding revealed that Der p 2.0104 was best for detecting IgE in both regions, followed by Der p 2.0101 with binding to other variants showing larger differences. Mouse anti-Der p 2.0101 antibodies had a high affinity of cross-reactivity but bound poorly to other variants. Conclusions The affinity of IgE antibody cross-reactivity, the direct IgE binding, and the specificities of antibodies induced by vaccination show that measures of allergic sensitization and therapeutic strategies could be optimized with knowledge of Der p 2 variants.
Collapse
Affiliation(s)
- Sasipa Tanyaratsrisakul
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom Thailand, Thailand
| | | | - Bhakkawarat Kulwanich
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom Thailand, Thailand
| | - Belinda J Hales
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Wayne R Thomas
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Surapon Piboonpocanun
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom Thailand, Thailand.
| |
Collapse
|
12
|
Cui YB, Zhou Y, Wang N, Teng FX, Yu LL, Bian YH, Song JX, Yang L, Zhang CB. Expression, cloning, and IgE-binding of the full-length dust mite allergen Der f 8. Immunol Res 2015; 60:60-8. [PMID: 24838264 DOI: 10.1007/s12026-014-8553-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dermatophagoides farinae, a domestic mite species, produces some of the most potent allergens that contribute to allergy in China and worldwide. We sought to clone and express the group 8 allergen of D. farinae (Der f 8) to investigate its IgE-binding reactivity. The full-length cDNA encoding Der f 8 was generated by using RT-PCR and 5' RACE, cloned into pCold-TF expression vector, confirmed by nucleotide sequencing, sub-cloned into pET-28b (+), and transfected into E. coli BL21 cells for expression. After purification by nickel affinity chromatography and identified by SDS-PAGE, the recombinant Der f 8 bound with sera from 40.9 % (9/22) of mite-allergic patients according to ELISA testing. Analysis of the recombinant DNA sequence revealed a 231 amino acid open reading frame encoding a protein with a derived molecular mass of 26.4 kDa and an isoelectric point of 6.84. The deduced amino acid sequence has nine phosphorylation sites, displaying strong homology with glutathione S-transferase, and its secondary structure comprises alpha helix (45.5 %), extended strand (11.3 %), and random coils (43.3 %). BLAST through the National Center for Biotechnology Information database and alignment identified similarity with group 8 allergens or glutathione S-transferases of Dermatophagoides pteronyssinus, Suidasia medanensis, Lepidoglyphus destructor, Glycyphagus domesticus, and Aleuroglyphus ovatus (64, 65, 53, 53, and 50 %, respectively). The first recombinant Der f 8 protein produced in full length successfully bound with patient IgE, demonstrating the importance of Der f 8 in mite allergy.
Collapse
Affiliation(s)
- Yu-Bao Cui
- Department of Laboratory Medicine, Yancheng Health Vocational and Technical College, Jiefangnan Road 263, Yancheng, 224006, Jiangsu Province, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Immunization with Hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity. PLoS One 2014; 9:e111649. [PMID: 25365343 PMCID: PMC4218792 DOI: 10.1371/journal.pone.0111649] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.
Collapse
|
14
|
Moingeon P. Progress in the development of specific immunotherapies for house dust mite allergies. Expert Rev Vaccines 2014; 13:1463-73. [PMID: 25187166 DOI: 10.1586/14760584.2014.948861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allergen-specific immunotherapy is used to treat patients exposed and co-sensitized to the two common house dust mites, Dermatophagoides pteronyssinus and Dermatophagoides farinae. Based on seroepidemiological studies and a detailed characterization of mite allergens, an optimal immunotherapeutic product should associate extracts from the two Dermatophagoides species, and include both bodies and fecal particles. Both subcutaneous and sublingual immunotherapies performed with aqueous mite extracts are safe and efficacious in children and adults with mite-induced rhinitis and/or asthma. Double-blind placebo-controlled studies are conducted to further document the efficacy of immunotherapeutic products, with promising results that were obtained already with sublingual tablets. Current developments of second-generation products relying upon recombinant allergens and peptides are reviewed.
Collapse
Affiliation(s)
- Philippe Moingeon
- Stallergenes SA, Research and Pharmaceutical Development, 6 rue Alexis de Tocqueville, 92160 Antony, France
| |
Collapse
|
15
|
Banerjee S, Weber M, Blatt K, Swoboda I, Focke-Tejkl M, Valent P, Valenta R, Vrtala S. Conversion of Der p 23, a new major house dust mite allergen, into a hypoallergenic vaccine. THE JOURNAL OF IMMUNOLOGY 2014; 192:4867-75. [PMID: 24733847 DOI: 10.4049/jimmunol.1400064] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Der p 23, a new, major house dust mite (HDM) allergen that is recognized by >70% of HDM-allergic patients, has high allergenic activity and, therefore, must be considered an important component for HDM-specific immunotherapy. We constructed and characterized a hypoallergenic Der p 23 vaccine for HDM immunotherapy. Three nonallergenic peptides from the C-terminal IgE epitope-containing part of Der p 23 (P4, P5) and P6, a mutant peptide containing serines instead of cysteines, were identified. Peptides were fused to the hepatitis B virus-derived PreS domain as recombinant fusion proteins (i.e., PreS-2XP4P5 and PreS-4XP6) that were expressed in Escherichia coli and purified to homogeneity. Compared with Der p 23, PreS-2XP4P5 and PreS-4XP6 showed no relevant IgE reactivity and exhibited considerably reduced allergenic activity in basophil activation tests using blood from HDM-allergic patients. Upon immunization of rabbits, only PreS-2XP4P5 induced high levels of Der p 23-specific IgG Abs that inhibited binding of patients' IgE to Der p 23, comparable to IgG Abs induced with Der p 23, whereas Abs induced with PreS-4XP6 had only low blocking capacity. Additionally, IgG Abs induced with PreS-2XP4P5 inhibited Der p 23-induced basophil activation comparable to IgG Abs induced with Der p 23. Compared with Der p 23, PreS-2XP4P5 induced lower T cell proliferation but higher levels of the tolerogenic cytokine IL-10 and the Th1 cytokine IFN-γ in PBMCs from HDM-allergic patients, indicating an immunomodulatory capacity of the fusion protein. Therefore, PreS-2XP4P5 represents a promising candidate for immunotherapy of HDM-allergic patients.
Collapse
Affiliation(s)
- Srinita Banerjee
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vrtala S, Huber H, Thomas WR. Recombinant house dust mite allergens. Methods 2014; 66:67-74. [PMID: 23911838 PMCID: PMC4582397 DOI: 10.1016/j.ymeth.2013.07.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023] Open
Abstract
House dust mites (HDM) are a globally important source of allergen responsible for the sensitization of more than 50% of allergic patients. Specific immunotherapy with HDM extracts is effective but allergen extracts cannot be fully standardized and severe side-effects can occur during the protracted course of treatment. The introduction of molecular biological techniques into allergy research allowed the indentification of more than 20 groups of HDM allergens. Recombinant HDM allergens can be produced in defined concentrations and consistent quality and allow the development of vaccines for HDM allergy with reduced allergenic activity and retained immunogenicity. The immunotherapy trials in pollen allergic patients with recombinant pollen allergens/hypoallergenic allergen derivatives have shown that this treatment is effective and indicated that recombinant HDM vaccines might improve immunotherapy of HDM allergic patients. Here we report the steps for the development of vaccines for HDM allergy. After selection of the most prevalent HDM species, the panel of allergens to be included into a therapeutic vaccine for HDM allergy needs to be determined. HDM allergens with high IgE-binding frequency and clinical relevance will be modified into hypoallergenic variants and evaluated for their allergenic activity and immunogenicity. Derivatives with reduced allergenic activity but with retained immunogenicity would be good candidates for a HDM vaccine for safe and efficient immunotherapy.
Collapse
Affiliation(s)
- Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Huber
- Biomay AG, Lazarettgasse 19. 1090 Vienna, Austria
| | - Wayne R Thomas
- Center for Child Health Research, University of Western Australia, Telethon Institute of Child Health Research, West Perth, Australia.
| |
Collapse
|
17
|
Mas S, Barderas R, Colás C, Quiralte J, Rodríguez R, Villalba M. The natural profilin from Russian thistle (Salsola kali ) contains a low IgE-binding ability isoform - molecular and immunological characterization. FEBS J 2012; 279:4338-49. [DOI: 10.1111/febs.12024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Carlos Colás
- Hospital Clínico Universitario ‘Lozano Blesa’; Zaragoza; Spain
| | | | | | | |
Collapse
|
18
|
Chen KW, Blatt K, Thomas WR, Swoboda I, Valent P, Valenta R, Vrtala S. Hypoallergenic Der p 1/Der p 2 combination vaccines for immunotherapy of house dust mite allergy. J Allergy Clin Immunol 2012; 130:435-43.e4. [PMID: 22789398 DOI: 10.1016/j.jaci.2012.05.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND More than 50% of allergic patients have house dust mite (HDM) allergy. Group 1 and 2 allergens are the major HDM allergens. OBJECTIVE We sought to produce and perform preclinical characterization of a recombinant hypoallergenic combination vaccine for specific immunotherapy of HDM allergy. METHODS Synthetic genes coding for 2 hybrid proteins consisting of reassembled Der p 1 and Der p 2 fragments with (recombinant Der p 2 [rDer p 2]/1C) and without (rDer p 2/1S) cysteines were expressed in Escherichia coli and purified to homogeneity by means of affinity chromatography. Protein fold was determined by using circular dichroism analysis, allergenic activity was determined by testing IgE reactivity and using basophil activation assays, and the presence of T-cell epitopes was determined based on lymphoproliferation in allergic patients. Mice and rabbits were immunized to study the molecules' ability to induce an allergic response and whether they induce allergen-specific IgG capable of inhibiting allergic patients' IgE binding to the allergens, respectively. RESULTS rDer p 2/1C and rDer p 2/1S were expressed in large amounts in E coli as soluble and folded proteins. Because of the lack of disulfide bonds, rDer p 2/1S did not form aggregates and was obtained as a monomeric protein, whereas rDer p 2/1C did form aggregates. Both hypoallergens lacked relevant IgE reactivity and had reduced ability to induce allergic inflammation and allergic responses but induced similar T-cell proliferation as the wild-type allergens. Immunization with the hypoallergens (rDer p 2/1S > rDer p 2/1C) induced IgG antibodies in rabbits that inhibited the IgE reactivity of patients with HDM allergy to Der p 1 and Der p 2. CONCLUSION The preclinical characterization indicates that particularly rDer p 2/1S can be used as a safe hypoallergenic molecule for both tolerance and vaccination approaches to treat HDM allergy.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Conrad ML, Renz H, Blaser K. Immunological approaches for tolerance induction in allergy. Curr Top Microbiol Immunol 2012; 352:1-26. [PMID: 21598104 DOI: 10.1007/82_2011_128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergy is the consequence of an inappropriate inflammatory immune response generated against harmless environmental antigens. In allergic disorders such as asthma and rhinitis, the Th2 mediated phenotype is a result of loss of peripheral tolerance mechanisms. In cases such as these, approaches such as immunotherapy attempt to treat the underlying cause of allergic disease by restoring tolerance. Immunotherapy initiates many complex mechanisms within the immune system that result in initiation of innate immunity, activation of both cellular and humoral B cell immunity, as well as triggering T regulatory subsets which are major players in the establishment of peripheral tolerance. Though studies clearly demonstrate immunotherapy to be efficacious, research to improve this treatment is ongoing. Investigation of allergenicity versus immunogenicity, native versus modified allergens, and the use of adjuvant and modality of dosing are all current strategies for immunotherapy advancement that will be reviewed in this article.
Collapse
Affiliation(s)
- Melanie L Conrad
- Department of Clinical Chemistry and Molecular Diagnostics, Biomedical Research Centre, Philipps University of Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| | | | | |
Collapse
|
20
|
Ferrari E, Breda D, Longhi R, Vangelista L, Nakaie CR, Elviri L, Casali E, Pertinhez TA, Spisni A, Burastero SE. In search of a vaccine for mouse allergy: significant reduction of Mus m 1 allergenicity by structure-guided single-point mutations. Int Arch Allergy Immunol 2011; 157:226-37. [PMID: 22041937 DOI: 10.1159/000327551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mouse urinary proteins are relevant allergens from mice urine. We used the recombinant protein Mus m 1 as an allergen model to identify if, by altering Mus m 1 architecture via single-point mutations, we could effectively modify its allergenicity. METHODS Based on structural considerations, we synthesized two single-point mutants, Mus m 1-Y120A and Mus m 1-Y120F, which were expected to harbor large structural alterations. Circular dichroism and fluorescence analysis showed significant conformational rearrangements of the aromatic side chains in the internal cavity of Mus m 1-Y120A when compared to Mus m 1-Y120F and Mus m 1. Evaluation of the allergenic potential of the recombinant molecules was performed in vitro with both immunochemical approaches and assays based on the measurement of basophil degranulation. Moreover, to assess the integrity of the T cell epitopes and as an in vitro measure of immunogenicity, we tested the reactivity of T lymphocytes from subjects allergic to mouse urine against proteins and synthetic peptides encompassing the immunodominant linear epitope containing the mutation. RESULTS We found that the selected point mutation was able to modulate the protein allergenicity, and to severely impair the recognition of Mus m 1 by IgE, while T cell reactivity was fully maintained. CONCLUSIONS In silico predicted, minimum selected structural modifications allowed to design one protein with reduced allergenicity and preserved immunogenicity. Structurally guided mutations can direct the design of proteins with reduced allergenicity which can be used as vaccines for a safer and more effective immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Experimental Medicine, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sabin BR, Saltoun CA, Avila PC. Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol 2011; 127:342-50. [DOI: 10.1016/j.jaci.2010.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 02/07/2023]
|
22
|
O'Mahony L, Akdis M, Crameri R, Akdis CA. Novel immunotherapeutic approaches for allergy and asthma. Autoimmunity 2011; 43:493-503. [PMID: 20380589 DOI: 10.3109/08916931003674725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The immune response is a tightly regulated process, which normally results in protection from infection and tolerance of innocuous environmental antigens. However, in allergic disease, the activated immune response results in a chronic pro-inflammatory state characterized by antibody secretion (IgE) and T cell activation to normally well-tolerated antigens. Currently, the treatment of allergic disease is focused on the suppression of key inflammatory mediators or inflammatory cell populations and include anti-histamines, anti-leukotrienes, β2 adrenergic receptor agonists and corticosteroids. However, these approaches only provide a temporary suppression of disease symptoms. Successful long-term treatment can only be provided by allergen-specific immunotherapy (allergen-SIT), which restores normal immunity against allergens. This review will discuss novel approaches to the management of allergy and asthma by targeting the T regulatory cell via modulation of the commensal microbiota and allergen-SIT.
Collapse
Affiliation(s)
- Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.
| | | | | | | |
Collapse
|
23
|
Peden DB, Bush RK. Advances in environmental and occupational respiratory diseases in 2009. J Allergy Clin Immunol 2010; 125:559-62. [PMID: 20138350 DOI: 10.1016/j.jaci.2010.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
The year 2009 led to a number of significant advances in environmental and occupational allergic diseases. The role of exposure to environmental pollutants, respiratory viruses, and allergen exposure showed significant advances. New allergens were identified. Occupational asthma and the relationship of complementary and alternative medicine to allergic diseases were extensively reviewed. New approaches to immunotherapy, novel vaccine techniques, and methods to reduce risks for severe allergic disease were addressed.
Collapse
Affiliation(s)
- David B Peden
- Division of Pediatric Allergy, Immunology Rheumatology and Infectious Diseases and the Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
24
|
Mueller GA, Edwards LL, Aloor JJ, Fessler MB, Glesner J, Pomés A, Chapman MD, London RE, Pedersen LC. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol 2010; 125:909-917.e4. [PMID: 20226507 DOI: 10.1016/j.jaci.2009.12.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sensitization to house dust mite allergens is strongly correlated with asthma. Der p 7 elicits strong IgE antibody and T-cell responses in patients with mite allergy. However, the structure and biological function of this important allergen are unknown. Allergen function might contribute to allergenicity, as shown for the protease activity of group 1 mite allergens and the interaction with the innate immune system by group 2 mite allergens. OBJECTIVE We sought to determine the crystal structure of Der p 7 and to investigate its biological function. METHODS X-ray crystallography was used to determine the Der p 7 structure. Nuclear magnetic resonance analysis and biochemical assays were used to examine the binding of Der p 7 to predicted ligands. RESULTS Der p 7 has an elongated structure, with two 4-stranded antiparallel beta-sheets that wrap around a long C-terminal helix. The fold of Der p 7 is similar to that of LPS-binding protein (LBP), which interacts with Toll-like receptors after binding LPS and other bacterially derived lipid ligands. Nuclear magnetic resonance and biochemical assays indicate that Der p 7 does not bind LPS but binds with weak affinity to the bacterial lipopeptide polymyxin B in the predicted binding site of Der p 7. CONCLUSIONS Der p 7 binds a bacterially derived lipid product, a common feature of some allergens. The finding that the group 7, as well as the group 2, mite allergens are structurally similar to different proteins in the Toll-like receptor pathway further strengthens the connections between dust mites, innate immunity, and allergy.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|