1
|
Ruan Y, Zhao Q, Liu Q, Zhao HY, Zhang ZY, Ding Y, Zhao XD. A novel homozygous RAG1 mutation in a girl presenting with granulomas and alopecia capitis totalis. World J Pediatr 2022; 18:294-299. [PMID: 35157248 DOI: 10.1007/s12519-021-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Ruan
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qin Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qing Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Hong-Yi Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Zhi-Yong Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Xiao-Dong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Geier CB, Farmer JR, Foldvari Z, Ujhazi B, Steininger J, Sleasman JW, Parikh S, Dilley MA, Pai SY, Henderson L, Hazen M, Neven B, Moshous D, Sharapova SO, Mihailova S, Yankova P, Naumova E, Özen S, Byram K, Fernandez J, Wolf HM, Eibl MM, Notarangelo LD, Calabrese LH, Walter JE. Vasculitis as a Major Morbidity Factor in Patients With Partial RAG Deficiency. Front Immunol 2020; 11:574738. [PMID: 33193364 PMCID: PMC7609967 DOI: 10.3389/fimmu.2020.574738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
Vasculitis can be a life-threatening complication associated with high mortality and morbidity among patients with primary immunodeficiencies (PIDs), including variants of severe and combined immunodeficiencies ((S)CID). Our understanding of vasculitis in partial defects in recombination activating gene (RAG) deficiency, a prototype of (S)CIDs, is limited with no published systematic evaluation of diagnostic and therapeutic modalities. In this report, we sought to establish the clinical, laboratory features, and treatment outcome of patients with vasculitis due to partial RAG deficiency. Vasculitis was a major complication in eight (13%) of 62 patients in our cohort with partial RAG deficiency with features of infections and immune dysregulation. Vasculitis occurred early in life, often as first sign of disease (50%) and was complicated by significant end organ damage. Viral infections often preceded the onset of predominately non-granulomatous-small vessel vasculitis. Autoantibodies against cytokines (IFN-α, -ω, and IL-12) were detected in a large fraction of the cases tested (80%), whereas the majority of patients were anti-neutrophil cytoplasmic antibodies (ANCA) negative (>80%). Genetic diagnosis of RAG deficiency was delayed up to 2 years from the onset of vasculitis. Clinical cases with sole skin manifestation responded well to first-line steroid treatment, whereas systemic vasculitis with severe end-organ complications required second-line immunosuppression and/or hematopoietic stem cell transplantation (HSCT) for definitive management. In conclusion, our data suggest that vasculitis in partial RAG deficiency is prevalent among patients with partial RAG deficiency and is associated with high morbidity. Therefore, partial RAG deficiency should be included in the differential diagnosis of patients with early-onset systemic vasculitis. Diagnostic serology may be misleading with ANCA negative findings, and search for conventional autoantibodies should be extended to include those targeting cytokines.
Collapse
Affiliation(s)
| | - Jocelyn R Farmer
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Boglarka Ujhazi
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
| | | | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Suhag Parikh
- Emory University School of Medicine, Atlanta, GA, United States
| | - Meredith A Dilley
- Department of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Lauren Henderson
- Division of Immunology, Department of Rheumatology, Boston Children's Hospital, Boston, MA, United States
| | - Melissa Hazen
- Division of Immunology, Department of Rheumatology, Boston Children's Hospital, Boston, MA, United States
| | - Benedicte Neven
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory "Immunogenetics of Pediatric autoimmune diseases", INSERM UMR1163, Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Despina Moshous
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in The Immune System, Paris, France
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Snezhina Mihailova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Petya Yankova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Elisaveta Naumova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Seza Özen
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kevin Byram
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - James Fernandez
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria.,Sigmund Freud Private University- Medical School, Vienna, Austria
| | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria.,Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Leonard H Calabrese
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - Jolan E Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States.,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
3
|
Gennery AR. The challenges presented by haematopoietic stem cell transplantation in children with primary immunodeficiency. Br Med Bull 2020; 135:4-15. [PMID: 32676650 DOI: 10.1093/bmb/ldaa017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION OR BACKGROUND For many primary immunodeficiencies (PIDs), haematopoietic stem cell transplantation (HSCT) offers treatment to cure disease. However, patients with PID present a unique set of challenges when considering HSCT. SOURCES OF DATA Review of recent literature. AREAS OF AGREEMENT The most significant recent impact on successful outcome is introduction of newborn screening programmes for diagnosis of severe combined immunodeficiency-wider adoption of screening in an increasing number of countries will see further improvements. Other PIDs have better outcomes when treated earlier, before development of co-morbidities-early referral for consideration of HSCT is important. Evolution of conditioning regimens is improving short- and long-term toxicities-targeted busulfan and low-toxicity myeloablative treosulfan regimens deliver good survival with reduced short-term toxicities. AREAS OF CONTROVERSY The most radical development, still in clinical trials, is the use of mono-antibody-based conditioning, which eliminates the requirement for chemotherapy and is likely to become much more important in HSCT for non-malignant disease in the future. GROWING POINTS Multidisciplinary working for optimum care is essential. AREAS TIMELY FOR DEVELOPING RESEARCH International collaborations are important to learn about rare presentations and complications, and to formulate the most effective and safe treatment strategies.
Collapse
Affiliation(s)
- A R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne NE1 4LP, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
4
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
5
|
Ben-Ali M, Kechout N, Mekki N, Yang J, Chan KW, Barakat A, Aadam Z, Gamara J, Gargouri L, Largueche B, BelHadj-Hmida N, Nedri A, Ameur HB, Mellouli F, Boukari R, Bejaoui M, Bousfiha A, Ben-Mustapha I, Lau YL, Barbouche MR. Genetic Approaches for Definitive Diagnosis of Agammaglobulinemia in Consanguineous Families. J Clin Immunol 2019; 40:96-104. [PMID: 31696364 DOI: 10.1007/s10875-019-00706-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022]
Abstract
Autosomal recessive agammaglobulinemia (ARA) is a primary immunodeficiency characterized by absent peripheral B cells, severe hypogammaglobulinemia, and absent BTK gene mutations. In ARA, mutations occur in genes encoding the pre-B cell receptor (pre-BCR) or downstream signaling proteins. In this work, we used candidate gene and whole-exome sequencing to investigate the molecular basis of ARA in 6 patients from 4 consanguineous North-African families. Sanger sequencing of candidate genes encoding the pre-BCR components (ΙGΗΜ, CD79A, CD79B, IGLL1, and VPREB1) was initially performed and determined the genetic defect in five patients. Two novel mutations in IGHM (p.Val378Alafs*1 and p.Ile184Serfs*21) were identified in three patients from two unrelated kindred and a novel nonsense mutation was identified in CD79A (p.Trp66*) in two siblings from a third kindred. Whole-exome sequencing (WES) was performed on the sixth patient who harbored a homozygous stop mutation at position 407 in the RAG2 gene (p.Glu407*). We concluded that conventional gene sequencing, especially when multiple genes are involved in the defect as is the case in ARA, is costly and time-consuming, resulting in delayed diagnosis that contributes to increased morbidity and mortality. In addition, it fails to identify the involvement of novel and unsuspected gene defects when the phenotype of the patients is atypical. WES has the potential to provide a rapid and more accurate genetic diagnosis in ARA, which is crucial for the treatment of the patients.
Collapse
Affiliation(s)
- Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia.,Université Tunis El Manar, 1068, Tunis, Tunisia
| | - Nadia Kechout
- Department of Immunology, Institut Pasteur d'Algérie, Algiers, Algeria.,Faculty of Medicine of Algiers, Algiers, Algeria
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia.,Université Tunis El Manar, 1068, Tunis, Tunisia
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Abdelhamid Barakat
- Laboratory of Molecular and Human Genetics, Department of Scientific Research, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Zahra Aadam
- Laboratory of Molecular and Human Genetics, Department of Scientific Research, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Jouda Gamara
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia.,Université Tunis El Manar, 1068, Tunis, Tunisia
| | - Lamia Gargouri
- Department of Paediatrics, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Beya Largueche
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia.,Université Tunis El Manar, 1068, Tunis, Tunisia
| | - Nabil BelHadj-Hmida
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia.,Université Tunis El Manar, 1068, Tunis, Tunisia
| | - Amel Nedri
- Department of Paediatrics, Medenine Hospital, Medenine, Tunisia
| | | | - Fethi Mellouli
- National Bone Marrow Transplantation Center, Jebel Lakhdar, Tunis, Tunisia
| | - Rachida Boukari
- Department of Pediatrics, CHU Mustapha-Bacha, Faculty of Medicine of Algiers, Algiers, Algeria
| | - Mohamed Bejaoui
- National Bone Marrow Transplantation Center, Jebel Lakhdar, Tunis, Tunisia
| | - Aziz Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Ibn Rochd, King Hassan II University, Casablanca, Morocco
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia.,Université Tunis El Manar, 1068, Tunis, Tunisia
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, LR11IPT02 (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, BP74, 1002, Tunis-Belvédère, Tunisia. .,Université Tunis El Manar, 1068, Tunis, Tunisia.
| |
Collapse
|
6
|
Cifaldi C, Brigida I, Barzaghi F, Zoccolillo M, Ferradini V, Petricone D, Cicalese MP, Lazarevic D, Cittaro D, Omrani M, Attardi E, Conti F, Scarselli A, Chiriaco M, Di Cesare S, Licciardi F, Davide M, Ferrua F, Canessa C, Pignata C, Giliani S, Ferrari S, Fousteri G, Barera G, Merli P, Palma P, Cesaro S, Gattorno M, Trizzino A, Moschese V, Chini L, Villa A, Azzari C, Finocchi A, Locatelli F, Rossi P, Sangiuolo F, Aiuti A, Cancrini C, Di Matteo G. Targeted NGS Platforms for Genetic Screening and Gene Discovery in Primary Immunodeficiencies. Front Immunol 2019; 10:316. [PMID: 31031743 PMCID: PMC6470723 DOI: 10.3389/fimmu.2019.00316] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Primary Immunodeficiencies (PIDs) are a heterogeneous group of genetic immune disorders. While some PIDs can manifest with more than one phenotype, signs, and symptoms of various PIDs overlap considerably. Recently, novel defects in immune-related genes and additional variants in previously reported genes responsible for PIDs have been successfully identified by Next Generation Sequencing (NGS), allowing the recognition of a broad spectrum of disorders. Objective: To evaluate the strength and weakness of targeted NGS sequencing using custom-made Ion Torrent and Haloplex (Agilent) panels for diagnostics and research purposes. Methods: Five different panels including known and candidate genes were used to screen 105 patients with distinct PID features divided in three main PID categories: T cell defects, Humoral defects and Other PIDs. The Ion Torrent sequencing platform was used in 73 patients. Among these, 18 selected patients without a molecular diagnosis and 32 additional patients were analyzed by Haloplex enrichment technology. Results: The complementary use of the two custom-made targeted sequencing approaches allowed the identification of causative variants in 28.6% (n = 30) of patients. Twenty-two out of 73 (34.6%) patients were diagnosed by Ion Torrent. In this group 20 were included in the SCID/CID category. Eight out of 50 (16%) patients were diagnosed by Haloplex workflow. Ion Torrent method was highly successful for those cases with well-defined phenotypes for immunological and clinical presentation. The Haloplex approach was able to diagnose 4 SCID/CID patients and 4 additional patients with complex and extended phenotypes, embracing all three PID categories in which this approach was more efficient. Both technologies showed good gene coverage. Conclusions: NGS technology represents a powerful approach in the complex field of rare disorders but its different application should be weighted. A relatively small NGS target panel can be successfully applied for a robust diagnostic suspicion, while when the spectrum of clinical phenotypes overlaps more than one PID an in-depth NGS analysis is required, including also whole exome/genome sequencing to identify the causative gene.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Davide Petricone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Attardi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Francesca Conti
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Alessia Scarselli
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Maria Chiriaco
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Silvia Di Cesare
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Francesco Licciardi
- Division of Immunology and Rheumatology, Department of Paediatric Infectious Diseases, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Montin Davide
- Division of Immunology and Rheumatology, Department of Paediatric Infectious Diseases, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Clementina Canessa
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Simona Ferrari
- Unit of Medical Genetics, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Pediatric Department, San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Merli
- Department of Onco-Hematology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Paolo Palma
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
| | - Simone Cesaro
- Paediatric Hematology-Oncology, “Ospedale della Donna e del Bambino”, Verona, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Giannina Gaslini, Genoa, Italy
| | - Antonio Trizzino
- Department of Pediatric Hematology and Oncology, “ARNAS Civico Di Cristina Benfratelli” Hospital, Palermo, Italy
| | - Viviana Moschese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata Policlinico Tor Vergata, Rome, Italy
| | - Loredana Chini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata Policlinico Tor Vergata, Rome, Italy
| | - Anna Villa
- Milan Unit, National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB), Milan, Italy
- Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Chiara Azzari
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy
- Meyer Children's Hospital, Florence, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, University of Rome La Sapienza, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Scientific Institute for Research and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Unit of Immune and Infectious Diseases, University Department of Pediatrics (DPUO), Scientific Institute for Research and Healthcare (IRCCS) Childrens' Hospital Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Abstract
Recombination-activating genes (
RAG)
1 and
RAG2 initiate the molecular processes that lead to lymphocyte receptor formation through VDJ recombination. Nonsense mutations in
RAG1/
RAG2 cause the most profound immunodeficiency syndrome, severe combined immunodeficiency (SCID). Other severe and less-severe clinical phenotypes due to mutations in
RAG genes are now recognized. The degree of residual protein function may permit some lymphocyte receptor formation, which confers a less-severe clinical phenotype. Many of the non-SCID phenotypes are associated with autoimmunity. New findings into the effect of mutations in
RAG1/2 on the developing T- and B-lymphocyte receptor give insight into the development of autoimmunity. This article summarizes recent findings and places the genetic and molecular findings in a clinical context.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Gennery AR. Advances in genetic and molecular understanding of Omenn syndrome - implications for the future. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1478287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Andrew R Gennery
- Clinical Resource Building, Floor 4, Block 2, Great North Children’s Hospital, Newcastle Upon Tyne, UK
| |
Collapse
|
9
|
DNA recombination defects in Kuwait: Clinical, immunologic and genetic profile. Clin Immunol 2017; 187:68-75. [PMID: 29051008 PMCID: PMC5826831 DOI: 10.1016/j.clim.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
Defects in DNA Recombination due to mutations in RAG1/2 or DCLRE1C result in combined immunodeficiency (CID) with a range of disease severity. We present the clinical, immunologic and molecular characteristics of 21 patients with defects in RAG1, RAG2 or DCLRE1C, who accounted for 24% of combined immune deficiency cases in the Kuwait National Primary Immunodeficiency Disorders Registry. The distribution of the patients was as follow: 8 with RAG1 deficiency, 6 with RAG2 deficiency and 7 with DCLRE1C deficiency. Nine patients presented with SCID, 6 with OS, 2 with leaky SCID and 4 with CID and granuloma and/or autoimmunity (CID-G/AI). Eight patients [(7 SCID and 1 OS) (38%)] received hematopoietic stem cell transplant (HSCT). The median age of HSCT was 11.5 months and the median time from diagnosis to HSCT was 6 months. Fifty percent of the transplanted patients are alive while only 23% of the untransplanted ones are alive. Defects in V(D)J recombination result in combined immunodeficiency. Pediatricians awareness about the spectrum of CID presentation is crucial for better outcome. International collaboration is needed to study HSCT outcome for different genetic causes of CID.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory manifestations are the biggest clinical challenge in the care of patients with common variable immunodeficiency (CVID). The increasing pathogenic knowledge and potential therapeutic implications require a new evaluation of the status quo. (Figure is included in full-text article.) RECENT FINDINGS The conundrum of the simultaneous manifestation of primary immunodeficiency and autoimmune disease (AID) is increasingly elucidated by newly discovered genetic defects. Thus, cytotoxic T lymphocyte-associated antigen 4 or caspase-9 deficiency presenting with CVID-like phenotypes reiterate concepts of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome and autoimmune lymphoproliferative syndrome. Activating signaling defects downstream of antigen or cytokine receptors are often associated with loss-of-tolerance in the affected patients. Increasingly, forms of combined immunodeficiency are discovered among CVID-like patients. Although different autoimmune manifestations often coincide in the same patient their immunopathology varies. Treatment of AID in CVID remains a challenge, but based on a better definition of the immunopathology first attempts of targeted treatment have been made. SUMMARY The increasing comprehension of immunological concepts promoting AID in CVID will allow better and in some cases possibly even targeted treatment. A genetic diagnosis therefore becomes important information in this group of patients, especially in light of the fact that some patients might require hematopoietic stem cell transplantation because of their underlying immunodeficiency.
Collapse
|
11
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2014. J Allergy Clin Immunol 2015; 135:1132-41. [PMID: 25956014 DOI: 10.1016/j.jaci.2015.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Genetic identification of immunodeficiency syndromes has become more efficient with the availability of whole-exome sequencing, expediting the identification of relevant genes and complementing traditional linkage analysis and homozygosity mapping. New genes defects causing immunodeficiency include phophoglucomutase 3 (PGM3), cytidine 5' triphosphate synthase 1 (CTPS1), nuclear factor κB-inducing kinase (NIK), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10), phosphoinositide-3 kinase regulatory subunit 1 (PIK3R1), IL21, and Jagunal homolog 1 (JAGN1). New case reports expanded the clinical spectrum of gene defects. For example, a specific recombination-activating gene 1 variant protein with partial recombinant activity might produce Omenn syndrome or a common variable immunodeficiency phenotype. Central and peripheral B-cell tolerance was investigated in patients with several primary immunodeficiencies, including common variable immunodeficiency and Wiskott-Aldrich syndrome, to explain the occurrence of autoimmunity and inflammatory disorders. The role of IL-12 and IL-15 in the enhancement of natural killer cell activity was reported. Newborn screening for T-cell deficiency is being implemented in more states and is achieving its goal of defining the true incidence of severe combined immunodeficiency and providing early treatment that offers the highest survival for these patients. Definitive treatment of severe immunodeficiency with both hematopoietic stem cell transplantation and gene therapy was reported to be successful, with increasing definition of conditions needed for optimal outcomes. Progress in HIV infection is directed toward the development of an effective vaccine and the eradication of hidden latent virus reservoirs.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and the Departments of Pediatrics and Pathology, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
12
|
Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens. PLoS One 2015; 10:e0133220. [PMID: 26186701 PMCID: PMC4506145 DOI: 10.1371/journal.pone.0133220] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
Abstract
Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency.
Collapse
|