1
|
Hui Z, Deng H, Zhang X, Garrido C, Lirussi F, Ye XY, Xie T, Liu ZQ. Development and therapeutic potential of DNA-dependent protein kinase inhibitors. Bioorg Chem 2024; 150:107608. [PMID: 38981210 DOI: 10.1016/j.bioorg.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The deployment of DNA damage response (DDR) combats various forms of DNA damage, ensuring genomic stability. Cancer cells' propensity for genomic instability offers therapeutic opportunities to selectively kill cancer cells by suppressing the DDR pathway. DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is crucial for the non-homologous end joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs). Therefore, targeting DNA-PK is a promising cancer treatment strategy. This review elaborates on the structures of DNA-PK and its related large protein, as well as the development process of DNA-PK inhibitors, and recent advancements in their clinical application. We emphasize our analysis of the development process and structure-activity relationships (SARs) of DNA-PK inhibitors based on different scaffolds. We hope this review will provide practical information for researchers seeking to develop novel DNA-PK inhibitors in the future.
Collapse
Affiliation(s)
- Zi Hui
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Carmen Garrido
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Faculté de médecine, Université de Bourgogne, Dijon, Centre de lutte contre le cancer Georges François Leclerc, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Université de Franche Comté, France, University Hospital of Besançon (CHU), France
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China.
| |
Collapse
|
2
|
Camfield S, Chakraborty S, Dwivedi SKD, Pramanik PK, Mukherjee P, Bhattacharya R. Secrets of DNA-PKcs beyond DNA repair. NPJ Precis Oncol 2024; 8:154. [PMID: 39043779 PMCID: PMC11266574 DOI: 10.1038/s41698-024-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
The canonical role of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in repairing DNA double-strand breaks combined with its reported dysregulation in several malignancies has driven the development of DNA-PKcs inhibitors as therapeutics. However, until recently the relationship between DNA-PKcs and tumorigenesis has been primarily investigated with regard to its role in non-homologous end joining (NHEJ) repair. Emerging research has uncovered non-canonical DNA-PKcs functions involved with transcriptional regulation, telomere maintenance, metabolic regulation, and immune signaling all of which may also impinge on tumorigenesis. This review mainly discusses these non-canonical roles of DNA-PKcs in cellular biology and their potential contribution to tumorigenesis, as well as evaluating the implications of targeting DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Sydney Camfield
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sayan Chakraborty
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pijush Kanti Pramanik
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
4
|
Ghonim MA, Ju J, Pyakurel K, Ibba SV, Abouzeid MM, Rady HF, Matsuyama S, Del Valle L, Boulares AH. Unconventional activation of PRKDC by TNF-α: deciphering its crucial role in Th1-mediated inflammation beyond DNA repair as part of the DNA-PK complex. J Inflamm (Lond) 2024; 21:14. [PMID: 38689261 PMCID: PMC11059672 DOI: 10.1186/s12950-024-00386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The DNA-dependent protein kinase (DNA-PK) complex comprises a catalytic (PRKDC) and two requisite DNA-binding (Ku70/Ku80) subunits. The role of the complex in repairing double-stranded DNA breaks (DSBs) is established, but its role in inflammation, as a complex or individual subunits, remains elusive. While only ~ 1% of PRKDC is necessary for DNA repair, we reported that partial inhibition blocks asthma in mice without causing SCID. METHODS We investigated the central role of PRKDC in inflammation and its potential association with DNA repair. We also elucidated the relationship between inflammatory cytokines (e.g., TNF-α) and PRKDC by analyzing its connections to inflammatory kinases. Human cell lines, primary human endothelial cells, and mouse fibroblasts were used to conduct the in vitro studies. For animal studies, LPS- and oxazolone-induced mouse models of acute lung injury (ALI) and delayed-type hypersensitivity (DHT) were used. Wild-type, PRKDC+/-, or Ku70+/- mice used in this study. RESULTS A ~ 50% reduction in PRKDC markedly blocked TNF-α-induced expression of inflammatory factors (e.g., ICAM-1/VCAM-1). PRKDC regulates Th1-mediated inflammation, such as DHT and ALI, and its role is highly sensitive to inhibition achieved by gene heterozygosity or pharmacologically. In endothelial or epithelial cells, TNF-α promoted rapid PRKDC phosphorylation in a fashion resembling that induced by, but independent of, DSBs. Ku70 heterozygosity exerted little to no effect on ALI in mice, and whatever effect it had was associated with a specific increase in MCP-1 in the lungs and systemically. While Ku70 knockout blocked VP-16-induced PRKDC phosphorylation, it did not prevent TNF-α - induced phosphorylation of the kinase, suggesting Ku70 dispensability. Immunoprecipitation studies revealed that PRKDC transiently interacts with p38MAPK. Inhibition of p38MAPK blocked TNF-α-induced PRKDC phosphorylation. Direct phosphorylation of PRKDC by p38MAPK was demonstrated using a cell-free system. CONCLUSIONS This study presents compelling evidence that PRKDC functions independently of the DNA-PK complex, emphasizing its central role in Th1-mediated inflammation. The distinct functionality of PRKDC as an individual enzyme, its remarkable sensitivity to inhibition, and its phosphorylation by p38MAPK offer promising therapeutic opportunities to mitigate inflammation while sparing DNA repair processes. These findings expand our understanding of PRKDC biology and open new avenues for targeted anti-inflammatory interventions.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jihang Ju
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kusma Pyakurel
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Salome V Ibba
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mai M Abouzeid
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Hamada F Rady
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luis Del Valle
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - A Hamid Boulares
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Yu W, Xu H, Sun Z, Du Y, Sun S, Abudureyimu M, Zhang M, Tao J, Ge J, Ren J, Zhang Y. TBC1D15 deficiency protects against doxorubicin cardiotoxicity via inhibiting DNA-PKcs cytosolic retention and DNA damage. Acta Pharm Sin B 2023; 13:4823-4839. [PMID: 38045047 PMCID: PMC10692480 DOI: 10.1016/j.apsb.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Clinical application of doxorubicin (DOX) is heavily hindered by DOX cardiotoxicity. Several theories were postulated for DOX cardiotoxicity including DNA damage and DNA damage response (DDR), although the mechanism(s) involved remains to be elucidated. This study evaluated the potential role of TBC domain family member 15 (TBC1D15) in DOX cardiotoxicity. Tamoxifen-induced cardiac-specific Tbc1d15 knockout (Tbc1d15CKO) or Tbc1d15 knockin (Tbc1d15CKI) male mice were challenged with a single dose of DOX prior to cardiac assessment 1 week or 4 weeks following DOX challenge. Adenoviruses encoding TBC1D15 or containing shRNA targeting Tbc1d15 were used for Tbc1d15 overexpression or knockdown in isolated primary mouse cardiomyocytes. Our results revealed that DOX evoked upregulation of TBC1D15 with compromised myocardial function and overt mortality, the effects of which were ameliorated and accentuated by Tbc1d15 deletion and Tbc1d15 overexpression, respectively. DOX overtly evoked apoptotic cell death, the effect of which was alleviated and exacerbated by Tbc1d15 knockout and overexpression, respectively. Meanwhile, DOX provoked mitochondrial membrane potential collapse, oxidative stress and DNA damage, the effects of which were mitigated and exacerbated by Tbc1d15 knockdown and overexpression, respectively. Further scrutiny revealed that TBC1D15 fostered cytosolic accumulation of the cardinal DDR element DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Liquid chromatography-tandem mass spectrometry and co-immunoprecipitation denoted an interaction between TBC1D15 and DNA-PKcs at the segment 594-624 of TBC1D15. Moreover, overexpression of TBC1D15 mutant (∆594-624, deletion of segment 594-624) failed to elicit accentuation of DOX-induced cytosolic retention of DNA-PKcs, DNA damage and cardiomyocyte apoptosis by TBC1D15 wild type. However, Tbc1d15 deletion ameliorated DOX-induced cardiomyocyte contractile anomalies, apoptosis, mitochondrial anomalies, DNA damage and cytosolic DNA-PKcs accumulation, which were canceled off by DNA-PKcs inhibition or ATM activation. Taken together, our findings denoted a pivotal role for TBC1D15 in DOX-induced DNA damage, mitochondrial injury, and apoptosis possibly through binding with DNA-PKcs and thus gate-keeping its cytosolic retention, a route to accentuation of cardiac contractile dysfunction in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
| | - Haixia Xu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhe Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yuxin Du
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Shiqun Sun
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Miyesaier Abudureyimu
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200030, China
| | - Mengjiao Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Junbo Ge
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
6
|
Azevedo-Pouly AC, Appell LE, Burdine L, Rogers LJ, Morehead LC, Fil D, Barker M, Rainwater RR, Waldrip ZJ, Koss B, Burdine MS. Chemical inhibition of DNA-PKcs impairs the activation and cytotoxicity of CD4 + helper and CD8 + effector T cells. Immunol Cell Biol 2023; 101:663-671. [PMID: 37149747 PMCID: PMC10527493 DOI: 10.1111/imcb.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/25/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Modulation of T cell activity is an effective strategy for the treatment of autoimmune diseases, immune-related disorders and cancer. This highlights a critical need for the identification of proteins that regulate T cell function. The kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is emerging as a potent regulator of the immune system, spurring interest in its use as a therapeutic target. In murine models of immune-related diseases including asthma and rheumatoid arthritis, treatment with small-molecule DNA-PKcs inhibitors decreased the disease severity. Additionally, DNA-PKcs inhibitors reduced T cell-mediated graft rejection in a murine allogenic skin graft model. These in vivo studies suggest the use of DNA-PKcs inhibitors as immunotherapy for autoimmune and T cell-mediated disorders. In this study, we sought to characterize further the effects of DNA-PKcs inhibitors on T cells to better understand their clinical potential. We determined that inhibition of DNA-PKcs using inhibitor NU7441 and the inhibitors currently in clinical trials for cancer therapy, M3184 and AZD7648, abrogated the activation of murine and human CD4+ and CD8+ T cells as evidenced by the reduced expression of the activation markers CD69 and CD25. Furthermore, inhibition of DNA-PKcs impeded metabolic pathways and the proliferation of activated T cells. This reduced the ability of OTI-CD8+ T cells to kill cancer cells and the expression of IFNγ and cytotoxic genes. These results highlight a critical role for DNA-PKcs in T cells and validate future studies using DNA-PKcs inhibitors as immune modulation therapy for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Ana C Azevedo-Pouly
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Lauren E Appell
- Department of Pediatric Hematology and Oncology, Arkansas Children’s Hospital, Little Rock, Arkansas, USA
| | - Lyle Burdine
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Transplant Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lora J Rogers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lauren C Morehead
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel Fil
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie Barker
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Randall R Rainwater
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Zachary J Waldrip
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marie Schluterman Burdine
- Division of Surgical Research, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
7
|
Yadav K, Singh D, Singh MR, Minz S, Princely Ebenezer Gnanakani S, Sucheta, Yadav R, Vora L, Sahu KK, Bagchi A, Singh Chauhan N, Pradhan M. Preclinical study models of psoriasis: State-of-the-art techniques for testing pharmaceutical products in animal and nonanimal models. Int Immunopharmacol 2023; 117:109945. [PMID: 36871534 DOI: 10.1016/j.intimp.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Local and systemic treatments exist for psoriasis, but none can do more than control its symptoms because of its numerous unknown mechanisms. The lack of validated testing models or a defined psoriatic phenotypic profile hinders antipsoriatic drug development. Despite their intricacy, immune-mediated diseases have no improved and precise treatment. The treatment actions may now be predicted for psoriasis and other chronic hyperproliferative skin illnesses using animal models. Their findings confirmed that a psoriasis animal model could mimic a few disease conditions. However, their ethical approval concerns and inability to resemble human psoriasis rightly offer to look for more alternatives. Hence, in this article, we have reported various cutting-edge techniques for the preclinical testing of pharmaceutical products for the treatment of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra (AYUSH), Government Ayurvedic College, Raipur, India
| | | |
Collapse
|
8
|
Han J, Wan M, Ma Z, Yi H. Regulation of DNA-PK activity promotes the progression of TNBC via enhancing the immunosuppressive function of myeloid-derived suppressor cells. Cancer Med 2023; 12:5939-5952. [PMID: 36373232 PMCID: PMC10028116 DOI: 10.1002/cam4.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND DNA-dependent protein kinase (DNA-PK) is engaged in DNA damage repair and is significantly expressed in triple negative breast cancer (TNBC). Inhibiting DNA-PK to reduce DNA damage repair provides a possibility of tumor treatment. NU7441, a DNA-PK inhibitor, can regulate the function and differentiation of CD4+ T cells and effectively enhance immunogenicity of monocyte-derived dendritic cells. However, the effect of NU7441 on the tumor progression activity of immunosuppressive myeloid-derived suppressor cells (MDSCs) in TNBC remains unclear. RESULTS In this study, we found that NU7441 alone significantly increased tumor growth in 4 T1 (a mouse TNBC cell line) tumor-bearing mice. Bioinformatics analysis showed that DNA-PK and functional markers of MDSCs (iNOS, Arg1, and IDO) tended to coexist in breast cancer patients. The mutations of these genes were significantly correlated with lower survival in breast cancer patients. Moreover, NU7441 significantly decreased the percentage of MDSCs in peripheral blood mononuclear cells (PBMCs), spleen and tumor, but enhanced the immunosuppressive function of splenic MDSCs. Furthermore, NU7441 increased MDSCs' DNA-PK and pDNA-PK protein levels in PBMCs and in the spleen and increased DNA-PK mRNA expression and expression of MDSCs functional markers in splenic MDSCs from tumor-bearing mice. NU7441 combined with gemcitabine reduced tumor volume, which may be because gemcitabine eliminated the remaining MDSCs with enhanced immunosuppressive ability. CONCLUSIONS These findings highlight that the regulation of DNA-PK activity by NU7441 promotes TNBC progression via enhancing the immunosuppressive function of MDSCs. Moreover, NU7441 combined with gemcitabine offers an efficient therapeutic approach for TNBC and merits deeper investigation.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| |
Collapse
|
9
|
El-Elimat T, Al-Khawlani AR, Al-Sawalha NA, Sa'ed MM, Al-Qiam R, Sharie AHA, Qinna NA. The effect of beetroot juice on airway inflammation in a murine model of asthma. J Food Biochem 2022; 46:e14381. [PMID: 35976974 DOI: 10.1111/jfbc.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
The effects of beetroot juice on airways inflammation, cytokine levels, and oxidative stress biomarkers were evaluated using an allergen-induced murine model of asthma. Ovalbumin (OVA)-sensitized and challenged BALB/c mice were used as an asthma model. BALB/c mice were randomly assigned into four groups: control (Ova sensitization and normal saline challenge), control and beetroot (Ova sensitization and normal saline challenge plus beetroot juice), Ova S/C [Ova sensitization and challenge (Ova S/C)], Ova S/C and beetroot juice (Ova S/C plus beetroot juice). The bronchoalveolar lavage fluid (BALF) was analyzed for total and differential inflammatory cells count. The levels of cytokines [interleukin (IL)-10, IL-13, and IL-18], and oxidative stress biomarkers [glutathione peroxidase (GPx), catalase, and thiobarbituric acid reactive substances (TBARS)] were analyzed in the lung tissue. Simultaneous administration of beetroot juice and Ova S/C significantly increased the total inflammatory cells compared to the control (p = .0001) and Ova S/C (p = .013) groups and significantly increased the number of eosinophils (p ˂ .0001) and macrophages (p ˂ .0001) compared to the control. Moreover, the simultaneous administration of beetroot juice and Ova S/C did not affect the level of IL-10, IL-13, IL-18, GPx, or TBARS compared to the control (p > .05), but it significantly increased the level of catalase (p = .002). Results suggest that beetroot juice aggravates asthma by enhancing airway inflammation. However, it does not affect airway inflammation in healthy mice. PRACTICAL APPLICATIONS: Asthma is a chronic airway inflammatory disease that is characterized by variable degrees of airways inflammation and obstruction. Paradox data are reported in the literature regarding beetroot and asthma. The present study revealed that beetroot juice exacerbates asthma by enhancing airway inflammation. However, it is safe and has no effects on airway inflammation in healthy mice. Patients having asthma or a history of asthma are advised to avoid the consumption of beetroot.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nour A Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Marwan M Sa'ed
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Reema Al-Qiam
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
10
|
Tan L, Fu L, Zheng L, Fan W, Tan H, Tao Z, Xu Y. TET2 Regulates 5-Hydroxymethylcytosine Signature and CD4 + T-Cell Balance in Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:254-272. [PMID: 35255541 PMCID: PMC8914607 DOI: 10.4168/aair.2022.14.2.254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/23/2022]
Abstract
Purpose Previous studies have shown the role of ten-eleven translocation 2 (TET2) in CD4+ T cells. However, its function in CD4+ T cells under allergic inflammation is unclear. We aimed to investigate the epigenomic distribution of DNA 5-hydroxymethylcytosine (5hmC) and the role of TET2 in CD4+ T cells of allergic rhinitis (AR). Methods The hMeDIP-seq was performed to identify sequences with 5hmC deposition in CD4+ T cells of AR patients. Tet2-deficient or wild type mice were stimulated with ovalbumin (OVA) to develop an AR mouse model. The histopathology in nasal mucosae, Th1/Th2/Treg/Th17 cell percentage, concentrations of Th-related cytokines, expression of Tet and differential hydroxymethylated genes (DhMG), and the global deposition of 5hmC in sorted CD4+ T cells were detected. Results Epigenome-wide 5hmC landscape and DhMG in the CD4+ T cells of AR patients were identified. Tet2 depletion did not led to spontaneous inflammation. However, under the stimulation of allergen, OVA, loss of Tet2 resulted in the exacerbation of allergic inflammation, which was characterized by severer allergic symptoms, more inflammatory cells infiltrating the nasal lamina propria, sharper imbalances between Th1/Th2 and Treg/Th17 cells, and excessive secretion of OVA-specific IgE and Th2-related cytokines. Moreover, altered mRNA production of several DhMG and sharp decrease in 5hmC deposition were also observed in Tet2-deficient OVA-exposed mice. Conclusions TET2 may regulate DNA 5hmC, DhMG expressions, and CD4+ T cell balance in AR.
Collapse
Affiliation(s)
- Lu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lisheng Fu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanyu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Waldrip ZJ, Burdine L, Harrison DK, Azevedo-Pouly AC, Storey AJ, Moffett OG, Mackintosh SG, Burdine MS. DNA-PKcs kinase activity stabilizes the transcription factor Egr1 in activated immune cells. J Biol Chem 2021; 297:101209. [PMID: 34562454 PMCID: PMC8551498 DOI: 10.1016/j.jbc.2021.101209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and nonhomologous end joining (NHEJ). However, DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify phosphorylation targets of DNA-PKcs. Our results indicate that DNA-PKcs phosphorylates the transcription factor Egr1 (early growth response protein 1) at serine 301. Expression of Egr1 is induced early upon T cell activation and dictates T cell response by modulating expression of cytokines and key costimulatory molecules such as IL (interleukin) 2, IL6, IFNγ, and NFκB. Inhibition of DNA-PKcs by treatment with a DNA-PKcs specific inhibitor NU7441 or shRNA knockdown increased proteasomal degradation of Egr1. Mutation of serine 301 to alanine via CRISPR-Cas9 reduced EGR1 protein expression and decreased Egr1-dependent transcription of IL2 in activated T cells. Our findings identify DNA-PKcs as a critical intermediary link between T cell activation and T cell fate and a novel phosphosite involved in regulating Egr1 activity.
Collapse
Affiliation(s)
- Zachary J Waldrip
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Lyle Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Transplant Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - David K Harrison
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Ana Clara Azevedo-Pouly
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Olivia G Moffett
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marie Schluterman Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Center for Translational Pediatric Research, Arkansas Children's Research Institute, Little Rock, Arkansas, USA.
| |
Collapse
|
12
|
Cusack RP, Whetstone CE, Xie Y, Ranjbar M, Gauvreau GM. Regulation of Eosinophilia in Asthma-New Therapeutic Approaches for Asthma Treatment. Cells 2021; 10:cells10040817. [PMID: 33917396 PMCID: PMC8067385 DOI: 10.3390/cells10040817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a complex and chronic inflammatory disease of the airways, characterized by variable and recurring symptoms, reversible airflow obstruction, bronchospasm, and airway eosinophilia. As the pathophysiology of asthma is becoming clearer, the identification of new valuable drug targets is emerging. IL-5 is one of these such targets because it is the major cytokine supporting eosinophilia and is responsible for terminal differentiation of human eosinophils, regulating eosinophil proliferation, differentiation, maturation, migration, and prevention of cellular apoptosis. Blockade of the IL-5 pathway has been shown to be efficacious for the treatment of eosinophilic asthma. However, several other inflammatory pathways have been shown to support eosinophilia, including IL-13, the alarmin cytokines TSLP and IL-33, and the IL-3/5/GM-CSF axis. These and other alternate pathways leading to airway eosinophilia will be described, and the efficacy of therapeutics that have been developed to block these pathways will be evaluated.
Collapse
|
13
|
Acute effect of inhaled iloprost on exercise dynamic hyperinflation in COPD patients: A randomized crossover study. Respir Med 2021; 180:106354. [PMID: 33721696 DOI: 10.1016/j.rmed.2021.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE We tested whether the prostacyclin analog inhaled iloprost modulates dead space, dynamic hyperinflation (DH), and systemic inflammation/oxidative stress during maximal exercise in subjects with chronic obstructive pulmonary disease (COPD) who were not selected based on pulmonary hypertension (PH). METHODS Twenty-four COPD patients with moderate-severe obstruction (age 59 ± 7 years, FEV1 53 ± 13% predicted) participated in a randomized, double-blind, placebo-controlled crossover trial. Each subject received a single nebulized dose of 5.0 μg iloprost or placebo on non-consecutive days followed by maximal cardiopulmonary exercise tests. The primary outcome was DH quantified by end-expiratory lung volume/total lung capacity ratio (EELV/TLC) at metabolic isotime. RESULTS Inhaled iloprost was well-tolerated and reduced submaximal alveolar dead-space fraction but did not significantly reduce DH (0.70 ± 0.09 vs 0.69 ± 0.07 following placebo and iloprost, respectively, p = 0.38). Maximal exercise time (9.1 ± 2.3 vs 9.3 ± 2.2 min, p = 0.31) and peak oxygen uptake (17.4 ± 6.3 vs 17.9 ± 6.9 mL/kg/min, p = 0.30) were not significantly different following placebo versus iloprost. CONCLUSIONS A single dose of inhaled iloprost was safe and reduced alveolar dead space fraction; however, it was not efficacious in modulating DH or improving exercise capacity in COPD patients who were not selected for the presence of PH.
Collapse
|
14
|
Harrison DK, Waldrip ZJ, Burdine L, Shalin SC, Burdine MS. DNA-PKcs Inhibition Extends Allogeneic Skin Graft Survival. Transplantation 2021; 105:540-549. [PMID: 32890138 PMCID: PMC7902289 DOI: 10.1097/tp.0000000000003442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Organ transplantation is life-saving and continued investigations into immunologic mechanisms that drive organ rejection are needed to improve immunosuppression therapies and prevent graft failure. DNA-dependent protein kinase catalytic subunit, DNA dependent-protein kinase catalytic subunit (DNA-PKcs), is a critical component of both the cellular and humoral immune responses. In this study, we investigate the contribution of DNA-PKcs to allogeneic skin graft rejection to potentially highlight a novel strategy for inhibiting transplant rejection. METHODS Fully MHC mismatched murine allogeneic skin graft studies were performed by transplanting skin from BalbC mice to C57bl6 mice and treating with either vehicle or the DNA-PKcs inhibitor NU7441. Graft rejection, cytokine production, immune cell infiltration, and donor-specific antibody formation were analyzed. RESULTS DNA-PKcs inhibition significantly reduced necrosis and extended graft survival compared with controls (mean survival 14 d versus 9 d, respectively). Inhibition reduced the production of the cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ and the infiltration of CD3+ lymphocytes into grafts. Furthermore, DNA-PKcs inhibition reduced the number of CD19+ B cells and CD19+ CD138+ plasma cells coinciding with a significant reduction in donor-specific antibodies. At a molecular level, we determined that the immunosuppressive effects of DNA-PKcs inhibition were mediated, in part, via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling through reduced expression of the p65 subunit. CONCLUSIONS Our data confirm that DNA-PKcs contributes to allogeneic graft rejection and highlight a novel immunologic function for DNA-PKcs in the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells and concomitant cytokine production.
Collapse
Affiliation(s)
- David K. Harrison
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Zachary J. Waldrip
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Lyle Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sara C. Shalin
- Department of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marie Schluterman Burdine
- Division of Surgical Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| |
Collapse
|
15
|
Taha HR, Al-Sawalha NA, Alzoubi KH, Khabour OF. Effect of E-Cigarette aerosol exposure on airway inflammation in a murine model of asthma. Inhal Toxicol 2020; 32:503-511. [PMID: 33297792 DOI: 10.1080/08958378.2020.1856238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The popularity of electronic cigarettes (E-Cigs) smoking is increasing worldwide including patients with asthma. In this study, the effects of E-Cigs aerosol exposure on airway inflammation in an allergen-driven murine model of asthma were investigated. MATERIALS AND METHODS Balb/c mice were randomly assigned to; control group (received fresh air, Ovalbumin (Ova) sensitization and saline challenge), E-Cig group (received E-Cig aerosol, Ova sensitization, and saline challenge), Ova S/C group (received fresh air, Ova sensitization and Ova challenge) and E-Cig + Ova S/C group. Bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cells and inflammatory mediators, respectively. RESULTS Exposure to E-Cig aerosol significantly increased the number of all types of inflammatory cells in BALF (p < 0.05). Further, E-Cig aerosol reduced levels of transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-2 in lung tissue homogenate (p < 0.05). Combined E-Cig aerosol and Ova S/C increased the airway recruitment of inflammatory cells, especially neutrophils, eosinophils, and lymphocytes (p < 0.05), increased the level of interleukin (IL)-13, and reduced the level of TGF-β1 (p < 0.05). CONCLUSIONS E-Cig aerosol exposure induced airway inflammation in both control mice and allergen-driven murine model of asthma. The inflammatory response induced by E-Cig was slightly higher in allergen-driven murine model of asthma than in healthy animals.
Collapse
Affiliation(s)
- Huda R Taha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
16
|
Yu J, Lu R, Nedrow JR, Sgouros G. Response of breast cancer carcinoma spheroids to combination therapy with radiation and DNA-PK inhibitor: growth arrest without a change in α/ β ratio. Int J Radiat Biol 2020; 96:1534-1540. [PMID: 33074046 DOI: 10.1080/09553002.2020.1838659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Agents that increase tumor radiosensitivity are of interest in improving outcomes in radiotherapy (XRT). DNA-PK inhibitors radiosensitize and alter cell adhesion proteins. We investigated combination radiation and a DNA-PK inhibitor in monolayers vs spheroids. MATERIALS AND METHODS Using HER2 positive mammary carcinoma cells, we investigated the impact of NU7441, a DNA-PK inhibitor, on irradiated monolayer and spheroid cultures. Colony formation assays were performed with monolayer culture cells and spheroids after irradiation with/without NU7441 (5 μM). RESULTS In monolayer culture cells, α/β increased from 3.0 ± 0.2 Gy (XRT alone) to 6.9 ± 0.2 Gy (XRT+NU7441). Corresponding α/β values for cells obtained by disaggregating treated spheroids were 3.6 ± 0.7 Gy (XRT alone) and 3.5 ± 0.2 Gy (XRT+NU7441). However, spheroid survival was highly sensitive to NU7441 incubation. After 4 Gy XRT alone 75% of the irradiated spheroids remained intact; when NU7441 treatment was involved, 13% remained intact. No spheroids survived to 3 weeks at 6 Gy or more. The discrepancy between the minimal change in α/β from cells derived from spheroids and the spheroid growth response was not related to poor penetration of NU7441. CONCLUSIONS DNA-PK inhibitor NU7441 radiosensitized monolayer cells but not cells obtained from spheroids. NU7441 and radiation increased spheroid fragmentation.
Collapse
Affiliation(s)
- Jing Yu
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Lu
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jessie R Nedrow
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - George Sgouros
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Farhat T, Dudakovic A, Chung JH, van Wijnen AJ, St-Arnaud R. Inhibition of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. J Cell Physiol 2020; 236:1195-1213. [PMID: 32686190 DOI: 10.1002/jcp.29927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.
Collapse
Affiliation(s)
- Theresa Farhat
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jay H Chung
- Laboratory of Obesity & Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute (NIH), Bethesda, Maryland
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol 2020; 115:11. [PMID: 31919590 DOI: 10.1007/s00395-019-0773-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/27/2019] [Indexed: 01/24/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel inducer to promote mitochondrial apoptosis and suppress tumor growth in a variety of cells although its role in cardiovascular diseases remains obscure. This study was designed to examine the role of DNA-PKcs in cardiac ischemia reperfusion (IR) injury and mitochondrial damage. Cardiomyocyte-specific DNA-PKcs knockout (DNA-PKcsCKO) mice were subjected to IR prior to assessment of myocardial function and mitochondrial apoptosis. Our data revealed that IR challenge, hypoxia-reoxygenation (HR) or H2O2-activated DNA-PKcs through post-transcriptional phosphorylation in murine hearts or cardiomyocytes. Mice deficient in DNA-PKcs in cardiomyocytes were protected against cardiomyocyte death, infarct area expansion and cardiac dysfunction. DNA-PKcs ablation countered IR- or HR-induced oxidative stress, mPTP opening, mitochondrial fission, mitophagy failure and Bax-mediated mitochondrial apoptosis, possibly through suppression of Bax inhibitor-1 (BI-1) activity. A direct association between DNA-PKcs and BI-1 was noted where DNA-PKcs had little effect on BI-1 transcription but interacted with BI-1 to promote its degradation. Loss of DNA-PKcs stabilized BI-1, thus offering resistance of mitochondria and cardiomyocytes against IR insult. Moreover, DNA-PKcs ablation-induced beneficial cardioprotection against IR injury was mitigated by concurrent knockout of BI-1. Double deletion of DNA-PKcs and BI-1 failed to exert protection against global IR injury and mitochondrial damage, confirming a permissive role of BI-1 in DNA-PKcs deletion-elicited cardioprotection against IR injury. DNA-PKcs serves as a novel causative factor for mitochondrial damage via suppression of BI-1, en route to the onset and development of cardiac IR injury.
Collapse
|
19
|
Wong WW, Jackson RK, Liew LP, Dickson BD, Cheng GJ, Lipert B, Gu Y, Hunter FW, Wilson WR, Hay MP. Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361. Biochem Pharmacol 2019; 169:113641. [PMID: 31541630 DOI: 10.1016/j.bcp.2019.113641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) plays a key role in repair of radiation-induced DNA double strand breaks (DSB) by non-homologous end-joining. DNA-PK inhibitors (DNA-PKi) are therefore efficient radiosensitisers, but normal tissue radiosensitisation represents a risk for their use in radiation oncology. Here we describe a novel prodrug, SN38023, that is metabolised to a potent DNA-PKi (IC87361) selectively in radioresistant hypoxic cells. DNA-PK inhibitory potency of SN38023 was 24-fold lower than IC87361 in cell-free assays, consistent with molecular modelling studies suggesting that SN38023 is unable to occupy one of the predicted DNA-PK binding modes of IC87361. One-electron reduction of the prodrug by radiolysis of anoxic formate solutions, and by metabolic reduction in anoxic HCT116/POR cells that overexpress cytochrome P450 oxidoreductase (POR), generated IC87361 efficiently as assessed by LC-MS. SN38023 inhibited radiation-induced Ser2056 autophosphorylation of DNA-PK catalytic subunit and radiosensitised HCT116/POR and UT-SCC-54C cells selectively under anoxia. SN38023 was an effective radiosensitiser in anoxic HCT116 spheroids, demonstrating potential for penetration into hypoxic tumour tissue, but in spheroid co-cultures of high-POR and POR-null cells it showed no evidence of bystander effects resulting from local diffusion of IC87361. Pharmacokinetics of IC87361 and SN38023 at maximum achievable doses in NIH-III mice demonstrated sub-optimal exposure of UT-SCC-54C tumour xenografts and did not provide significant tumour radiosensitisation. In conclusion, SN38023 has potential for exploiting hypoxia for selective delivery of a potent DNA-PKi to the most radioresistant subpopulation of cells in tumours. However, prodrugs providing improved systemic pharmacokinetics and that release DNA-PKi that elicit bystander effects are needed to maximise therapeutic utility.
Collapse
Affiliation(s)
- Way Wua Wong
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Rosanna K Jackson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Lydia P Liew
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Gary J Cheng
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Michael P Hay
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
20
|
PARP-1 Is Critical for Recruitment of Dendritic Cells to the Lung in a Mouse Model of Asthma but Dispensable for Their Differentiation and Function. Mediators Inflamm 2019; 2019:1656484. [PMID: 31178661 PMCID: PMC6507252 DOI: 10.1155/2019/1656484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 02/01/2023] Open
Abstract
Dendritic cells (DCs) are critical in asthma and many other immune diseases. We previously demonstrated a role for PARP-1 in asthma. Evidence on PARP-1 playing a role in Th2-associated DC function is not clear. In this study, we examined whether PARP-1 is critical for DC differentiation and function using bone marrow progenitors and their migration to the lung in an ovalbumin-based mouse model of asthma. Results show that changes in PARP-1 levels during GM-CSF-induced DC differentiation from bone marrow progenitors were cyclic and appear to be part of an array of changes that included STAT3/STAT5/STAT6/GRAIL/RAD51. Interestingly, PARP-1 gene deletion affected primarily STAT6 and γH2AX. PARP-1 inhibition significantly reduced the migration of DCs to the lungs of ovalbumin-challenged mice, which was associated with a concomitant reduction in lung levels of the adhesion molecule VCAM-1. The requirement of PARP-1 for VCAM-1 expression was confirmed using endothelial and lung smooth muscle cells. PARP-1 expression and activity were also required for VCAM-1 in differentiated DCs. An assessment of CD11b+/CD11c+/MHCIIhigh DCs in spleens and lymph nodes of OVA-sensitized mice revealed that PARP-1 inhibition genetically or by olaparib exerted little to no effect on DC differentiation, percentage of CD80+/CD86+/CD40+-expressing cells, or their capacity to promote proliferation of ovalbumin-primed (OTII) CD4+ T cells. These findings were corroborated using GM-CSF-induced differentiation of DCs from the bone marrow. Surprisingly, the PARP-1−/− DCs exhibited a higher intrinsic capacity to induce OTII CD4+ T cell proliferation in the absence of ovalbumin. Overall, our results show that PARP-1 plays little to no role in DC differentiation and function and that the protective effect of PARP-1 inhibition against asthma is associated with a prevention of DC migration to the lung through a reduction in VCAM-1 expression. Given the current use of PARP inhibitors (e.g., olaparib) in the clinic, the present results may be of interest for the relevant therapies.
Collapse
|
21
|
Hsiao WY, Tsai CW, Chang WS, Wang S, Chao CY, Chen WC, Shen TC, Hsia TC, Bau DAT. Association of Polymorphisms in DNA Repair Gene XRCC3 with Asthma in Taiwan. In Vivo 2018; 32:1039-1043. [PMID: 30150425 DOI: 10.21873/invivo.11344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
AIM Accumulating evidence suggests that DNA damage and repair play a role in asthma etiology, however, little is known about the contribution of genotypes of DNA repair genes to asthma susceptibility. This study aimed to examine the contribution of genotypes of DNA double-strand break repair gene X-ray repair cross complementing protein 3 (XRCC3) and its polymorphisms to asthma risk in the Taiwanese. MATERIALS AND METHODS Associations of seven XRCC3 genotypes, namely rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539 and rs28903081, with the risk of asthma were investigated among 198 patients with asthma and 453 non-asthma controls by polymerase chain reaction-restriction fragment length polymorphism genotyping methodology. RESULTS Unlike Caucasian populations, no polymorphic genotypes at XRCC3 rs3212057 or rs28903081 were found among the Taiwanese. For the genotypes of XRCC3 rs1799794, rs45603942, rs861530, rs1799796 and rs861539, the percentages of hetero-and homo-variant genotypes were not differentially represented between the asthma patient and the non-asthma control groups. In addition, there was no differential distribution of allelic frequencies for these XRCC3 polymorphic sites between the two groups. No interaction of these genotypes with gender or age were found. CONCLUSION Although XRCC3 plays a role in asthma etiology, the variant XRCC3 genotypes do not serve as practicable predictive markers for asthma risk in Taiwanese.
Collapse
Affiliation(s)
- Wan-Yun Hsiao
- Department of Respiratory Therapy, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory - Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory - Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Shengyu Wang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Wei-Chun Chen
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Shen
- Terry Fox Cancer Research Laboratory - Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory - Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory - Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
22
|
Ghonim MA, Wang J, Ibba SV, Luu HH, Pyakurel K, Benslimane I, Mousa S, Boulares AH. Sulfated non-anticoagulant heparin blocks Th2-induced asthma by modulating the IL-4/signal transducer and activator of transcription 6/Janus kinase 1 pathway. J Transl Med 2018; 16:243. [PMID: 30172259 PMCID: PMC6119587 DOI: 10.1186/s12967-018-1621-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/25/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The efficacy of heparins and low-MW-heparins (LMWH) against human asthma has been known for decades. However, the clinical utility of these compounds has been hampered by their anticoagulant properties. Much effort has been put into harnessing the anti-inflammatory properties of LMWH but none have been used as therapy for asthma. Sulfated-non-anticoagulant heparin (S-NACH) is an ultra-LMWH with no systemic anticoagulant effects. OBJECTIVE The present study explored the potential of S-NACH in blocking allergic asthma and examined the potential mechanism by which it exerts its effects. METHODS Acute and chronic ovalbumin-based mouse models of asthma, splenocytes, and a lung epithelial cell line were used. Mice were challenged with aerosolized ovalbumin and administered S-NACH or saline 30 min after each ovalbumin challenge. RESULTS Sulfated-non-anticoagulant heparin administration in mice promoted a robust reduction in airway eosinophilia, mucus production, and airway hyperresponsiveness even after chronic repeated challenges with ovalbumin. Such effects were linked to suppression of Th2 cytokines IL-4/IL-5/IL-13/GM-CSF and ovalbumin-specific IgE without any effect on IFN-γ. S-NACH also reduced lung fibrosis in mice that were chronically-exposed to ovalbumin. These protective effects of S-NACH may be attributed to modulation of the IL-4/JAK1 signal transduction pathway through an inhibition of STAT6 phosphorylation and a subsequent inhibition of GATA-3 and inducible NO synthase expression. The effect of the drug on STAT6 phosphorylation coincided with a reduction in JAK1 phosphorylation upon IL-4 treatment. The protective effects of S-NACH treatment was associated with reduction of the basal expression of the two isoforms of arginase ARG1 and ARG2 in lung epithelial cells. CONCLUSIONS Our study demonstrates that S-NACH constitutes an opportunity to benefit from the well-known anti-asthma properties of heparins/LMWH while bypassing the risk of bleeding. Our results show, for the first time, that such anti-asthma effects may be associated with reduction of the IL-4/JAK1/STAT6 pathway.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.,The Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jeffrey Wang
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Salome V Ibba
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Hanh H Luu
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kusma Pyakurel
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Ilyes Benslimane
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Shaker Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.,Vascular Vision Pharmaceuticals Co., Rensselaer, NY, USA
| | - A Hamid Boulares
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Wang Y, Lin J, Shu J, Li H, Ren Z. Oxidative damage and DNA damage in lungs of an ovalbumin-induced asthmatic murine model. J Thorac Dis 2018; 10:4819-4830. [PMID: 30233855 DOI: 10.21037/jtd.2018.07.74] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Asthma is characterized to chronic airway inflammation. However, the role of oxidative damage and DNA damage in the pathophysiology of asthma have rarely been studied. On the other hand, there are evidences that DNA-dependent protein kinase (DNA-PK) participates in DNA damage repair and regulates innate immune responses and proinflammatory signaling pathways. Methods After ovalbumin (OVA)-induced asthmatic murine model was established, airway hyper-responsiveness (AHR), total and differential bronchoalveolar lavage fluid (BALF) cell counts. IL-4, IL-8, IL-13 and TNF-α were chosen to evaluate the airway inflammation, and oxidative damage indicators levels (8-isoprostane and 8-OhdG) in BALF were measured. Alkaline comet assay was conducted to detected DNA damage. Histological analysis was conducted after hematoxylin and eosin (HE) straining, and proteins were extracted for 3-nitrotyrosine (3-NT) detection and immunoblotting. Results AHR, infiltration of inflammatory cells and pro-inflammatory cytokine levels in lungs were significantly higher in asthmatic mice. OVA challenge resulted in robust increase in 3-NT, 8-isoprostane and 8OHdG in lungs, which represented oxidative damage level. DNA damage and repair proteins levels in asthma were also increased. NU7441 aggravated the DNA damage level. However, it suppressed infiltration of lung inflammatory cells and inflammatory cytokine levels, suggesting that DNA-PK may be a potential target for treatment of allergic asthma. Conclusions Our study showed that oxidative damage and DNA damage existed in the airway of asthmatic mice. NU7441 augmented DNA damage level, and moreover, it also attenuated infiltration of inflammatory cells and pro-inflammatory cytokine levels in asthmatic lungs.
Collapse
Affiliation(s)
- Yuanfang Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiangtao Lin
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Shu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hong Li
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhencui Ren
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
24
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Yoshino N, Takeshita R, Kawamura H, Sasaki Y, Kagabu M, Sugiyama T, Muraki Y, Sato S. Mast cells partially contribute to mucosal adjuvanticity of surfactin in mice. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:117-127. [PMID: 29105371 PMCID: PMC5818442 DOI: 10.1002/iid3.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
Introduction Surfactin (SF) is a cyclic lipopeptide that has potent mucosal adjuvant properties. However, immunological mechanisms of SF adjuvant action have not yet been elucidated. As some cyclic lipopeptides, such as polymyxin, can stimulate histamine release from mast cells, we hypothesized that mast cell activation is critical for SF adjuvanticity. Methods/Results We observed that following intranasal immunization with ovalbumin (OVA) plus SF, the titers of the OVA‐specific antibody (Ab) in the mucosal secretions and plasma of mast cell‐deficient mice were significantly lower than those in congenic normal mice, although OVA‐specific Ab did not entirely disappear from mast cell‐deficient mice. SF induced degranulation of mast cells and release of histamine in vitro. To investigate whether SF stimulated mast cells in vivo, we measured body temperature of mice immunized intranasally with OVA plus SF because histamine level affects body temperature. Following immunizations, body temperature of immunized congenic normal mice transiently decreased, whereas body temperature of mast cell‐deficient mice did not change. Plasma levels of OVA‐specific IgE Ab were not significantly different in mast cell‐deficient and congenic normal mice. These findings suggest that SF directly affected mast cells in an IgE Ab‐independent fashion. Furthermore, we analyzed the effects of SF on MC/9 mast cells cultured in vitro. MC/9 cells stimulated by SF released not only histamine but also leukotriene B4 and prostaglandin D2. Moreover, SF up‐regulated mRNA expression levels of Tnf, Ccr5, and Il4 genes in mast cells. These cytokines may play a facilitating role in OVA‐specific immune responses in mice. Conclusion Overall, our results showed that mast cell activation partially mediated SF adjuvanticity.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Shigehiro Sato
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
26
|
Al-Khami AA, Ghonim MA, Del Valle L, Ibba SV, Zheng L, Pyakurel K, Okpechi SC, Garay J, Wyczechowska D, Sanchez-Pino MD, Rodriguez PC, Boulares AH, Ochoa AC. Fuelling the mechanisms of asthma: Increased fatty acid oxidation in inflammatory immune cells may represent a novel therapeutic target. Clin Exp Allergy 2017; 47:1170-1184. [PMID: 28456994 DOI: 10.1111/cea.12947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increasing evidence has shown the close link between energy metabolism and the differentiation, function, and longevity of immune cells. Chronic inflammatory conditions such as parasitic infections and cancer trigger a metabolic reprogramming from the preferential use of glucose to the up-regulation of fatty acid oxidation (FAO) in myeloid cells, including macrophages and granulocytic and monocytic myeloid-derived suppressor cells. Asthma is a chronic inflammatory condition where macrophages, eosinophils, and polymorphonuclear cells play an important role in its pathophysiology. OBJECTIVE We tested whether FAO might play a role in the development of asthma-like traits and whether the inhibition of this metabolic pathway could represent a novel therapeutic approach. METHODS OVA- and house dust mite (HDM)-induced murine asthma models were used in this study. RESULTS Key FAO enzymes were significantly increased in the bronchial epithelium and inflammatory immune cells infiltrating the respiratory epithelium of mice exposed to OVA or HDM. Pharmacologic inhibition of FAO significantly decreased allergen-induced airway hyperresponsiveness, decreased the number of inflammatory cells, and reduced the production of cytokines and chemokines associated with asthma. CONCLUSIONS AND CLINICAL RELEVANCE These novel observations suggest that allergic airway inflammation increases FAO in inflammatory cells to support the production of cytokines, chemokines, and other factors important in the development of asthma. Inhibition of FAO by re-purposing existing drugs approved for the treatment of heart disease may provide a novel therapeutic approach for the treatment of asthma.
Collapse
Affiliation(s)
- A A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Faculty of Science, Tanta University, Tanta, Egypt
| | - M A Ghonim
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - L Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - S V Ibba
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Zheng
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - K Pyakurel
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - S C Okpechi
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Garay
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - D Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - M D Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - P C Rodriguez
- University of Augusta Cancer Center, Augusta, GA, USA
| | - A H Boulares
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
27
|
Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, Tay IJJ, Wong WSF, Engelward BP. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. J Allergy Clin Immunol 2016; 138:84-96.e1. [PMID: 27157131 DOI: 10.1016/j.jaci.2016.02.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/14/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. OBJECTIVE We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. METHODS We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. RESULTS HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. CONCLUSION This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology.
Collapse
Affiliation(s)
- Tze Khee Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology (SMART), Infectious Diseases Interdisciplinary Research Group, Singapore
| | - Xin Yi Loh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - W N Felicia Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - Na Li
- Singapore-MIT Alliance for Research and Technology (SMART), Infectious Diseases Interdisciplinary Research Group, Singapore
| | - Ian J J Tay
- Agency for Science, Technology and Research Graduate Academy, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Mass
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore.
| | - Bevin P Engelward
- Singapore-MIT Alliance for Research and Technology (SMART), Infectious Diseases Interdisciplinary Research Group, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Mass
| |
Collapse
|
28
|
Wawrzyniak P, Akdis CA, Finkelman FD, Rothenberg ME. Advances and highlights in mechanisms of allergic disease in 2015. J Allergy Clin Immunol 2016; 137:1681-1696. [PMID: 27090934 DOI: 10.1016/j.jaci.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
Abstract
This review highlights some of the advances in mechanisms of allergic disease, particularly anaphylaxis, including food allergy, drug hypersensitivity, atopic dermatitis (AD), allergic conjunctivitis, and airway diseases. During the last year, a mechanistic advance in food allergy was achieved by focusing on mechanisms of allergen sensitization. Novel biomarkers and treatment for mastocytosis were presented in several studies. Novel therapeutic approaches in the treatment of atopic dermatitis and psoriasis showed that promising supplementation of the infant's diet in the first year of life with immunoactive prebiotics might have a preventive role against early development of AD and that therapeutic approaches to treat AD in children might be best directed to the correction of a TH2/TH1 imbalance. Several studies were published emphasizing the role of the epithelial barrier in patients with allergic diseases. An impaired skin barrier as a cause for sensitization to food allergens in children and its relationship to filaggrin mutations has been an important development. Numerous studies presented new approaches for improvement of epithelial barrier function and novel biologicals used in the treatment of inflammatory skin and eosinophilic diseases. In addition, novel transcription factors and signaling molecules that can develop as new possible therapeutic targets have been reported.
Collapse
Affiliation(s)
- Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, and the Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
29
|
PARP is activated in human asthma and its inhibition by olaparib blocks house dust mite-induced disease in mice. Clin Sci (Lond) 2015. [PMID: 26205779 PMCID: PMC4613510 DOI: 10.1042/cs20150122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study establishes poly(ADP-ribose)polymerase's (PARP's) role in chronic asthma, demonstrates that it is activated in human asthma, increases the clinical relevance of targeting PARP for blocking or preventing chronic asthma in humans and presents olaparib as a likely candidate drug. Our laboratory established a role for poly(ADP-ribose)polymerase (PARP) in asthma. To increase the clinical significance of our studies, it is imperative to demonstrate that PARP is actually activated in human asthma, to examine whether a PARP inhibitor approved for human testing such as olaparib blocks already-established chronic asthma traits in response to house dust mite (HDM), a true human allergen, in mice and to examine whether the drug modulates human cluster of differentiation type 4 (CD4+) T-cell function. To conduct the study, human lung specimens and peripheral blood mononuclear cells (PBMCs) and a HDM-based mouse asthma model were used. Our results show that PARP is activated in PBMCs and lung tissues of asthmatics. PARP inhibition by olaparib or gene knockout blocked established asthma-like traits in mice chronically exposed to HDM including airway eosinophilia and hyper-responsiveness. These effects were linked to a marked reduction in T helper 2 (Th2) cytokine production without a prominent effect on interferon (IFN)-γ or interleukin (IL)-10. PARP inhibition prevented HDM-induced increase in overall cellularity, weight and CD4+ T-cell population in spleens of treated mice whereas it increased the T-regulatory cell population. In CD3/CD28-stimulated human CD4 +T-cells, olaparib treatment reduced Th2 cytokine production potentially by modulating GATA binding protein-3 (gata-3)/IL-4 expression while moderately affecting T-cell proliferation. PARP inhibition inconsistently increased IL-17 in HDM-exposed mice and CD3/CD28-stimulated CD4+ T cells without a concomitant increase in factors that can be influenced by IL-17. In the present study, we provide evidence for the first time that PARP-1 is activated in human asthma and that its inhibition is effective in blocking established asthma in mice.
Collapse
|
30
|
Ghonim MA, Pyakurel K, Ibba SV, Al-Khami AA, Wang J, Rodriguez P, Rady HF, El-Bahrawy AH, Lammi MR, Mansy MS, Al-Ghareeb K, Ramsay A, Ochoa A, Naura AS, Boulares AH. PARP inhibition by olaparib or gene knockout blocks asthma-like manifestation in mice by modulating CD4(+) T cell function. J Transl Med 2015; 13:225. [PMID: 26169874 PMCID: PMC4501284 DOI: 10.1186/s12967-015-0583-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Background An important portion of asthmatics do not respond to current therapies. Thus, the need for new therapeutic drugs is urgent. We have demonstrated a critical role for PARP in experimental asthma. Olaparib, a PARP inhibitor, was recently introduced in clinical trials against cancer. The objective of the present study was to examine the efficacy of olaparib in blocking established allergic airway inflammation and hyperresponsiveness similar to those observed in human asthma in animal models of the disease. Methods We used ovalbumin (OVA)-based mouse models of asthma and primary CD4+ T cells. C57BL/6J WT or PARP-1−/− mice were subjected to OVA sensitization followed by a single or multiple challenges to aerosolized OVA or left unchallenged. WT mice were administered, i.p., 1 mg/kg, 5 or 10 mg/kg of olaparib or saline 30 min after each OVA challenge. Results Administration of olaparib in mice 30 min post-challenge promoted a robust reduction in airway eosinophilia, mucus production and hyperresponsiveness even after repeated challenges with ovalbumin. The protective effects of olaparib were linked to a suppression of Th2 cytokines eotaxin, IL-4, IL-5, IL-6, IL-13, and M-CSF, and ovalbumin-specific IgE with an increase in the Th1 cytokine IFN-γ. These traits were associated with a decrease in splenic CD4+ T cells and concomitant increase in T-regulatory cells. The aforementioned traits conferred by olaparib administration were consistent with those observed in OVA-challenged PARP-1−/− mice. Adoptive transfer of Th2-skewed OT-II-WT CD4+ T cells reversed the Th2 cytokines IL-4, IL-5, and IL-10, the chemokine GM-CSF, the Th1 cytokines IL-2 and IFN-γ, and ovalbumin-specific IgE production in ovalbumin-challenged PARP-1−/−mice suggesting a role for PARP-1 in CD4+ T but not B cells. In ex vivo studies, PARP inhibition by olaparib or PARP-1 gene knockout markedly reduced CD3/CD28-stimulated gata-3 and il4 expression in Th2-skewed CD4+ T cells while causing a moderate elevation in t-bet and ifn-γ expression in Th1-skewed CD4+ T cells. Conclusions Our findings show the potential of PARP inhibition as a viable therapeutic strategy and olaparib as a likely candidate to be tested in human asthma clinical trials.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Kusma Pyakurel
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Salome V Ibba
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Amir A Al-Khami
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Jeffrey Wang
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Paulo Rodriguez
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Hamada F Rady
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Ali H El-Bahrawy
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Matthew R Lammi
- Pulmonary and Critical Care Section, School of Medicine, Louisiana State University, New Orleans, LA, USA.
| | - Moselhy S Mansy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Kamel Al-Ghareeb
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Alistair Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Augusto Ochoa
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Amarjit S Naura
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Department of Biochemistry, Panjab University, Chandigarh, India.
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|