1
|
Qin Y, Huang W, Zheng R, Wang Q, Yu Q, Li Y, Wang K, Tang J. The long-term efficacy of intra-cervical lymphatic immunotherapy on adults with allergic rhinitis: A randomized controlled study. Clin Transl Allergy 2024; 14:e12341. [PMID: 38343066 PMCID: PMC10859606 DOI: 10.1002/clt2.12341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The efficacy and safety of the novel immunotherapy method, intra-cervical lymphatic immunotherapy (ICLIT), need to be investigated. Comparing it with subcutaneous immunotherapy (SCIT), we clarified the long-term efficacy and safety of intra-cervical lymphatic immunotherapy on allergic rhinitis (AR), and investigated the improvement of clinical efficacy of the booster injection at 1 year after ICLIT treatment. METHODS Ninety adult patients with dust mite allergy were randomly divided into 3 groups: 30 in the SCIT group, 30 in the ILCLIT group, and 30 in ICLIT booster group. Changes in total symptom score (TSS), nasal symptom score (TNSS), ocular symptom score (TOSS) and total medication score (TMS) were evaluated in the three groups. Adverse reactions were recorded, and serum dust mite specific IgE (sIgE) and specific IgG4 were assessed in the ICLIT group and ICLIT booster group. RESULTS TSS, TNSS, TOSS, and TMS scores were significantly lower in the three groups at 36 months after treatment (p < 0. 05). And at 36 months the ICLIT-booster group showed results similar to SCIT and superior to ICLIT (p < 0. 05). Serum specific IgE decreased in all three groups at 12 and 36 months after treatment, p < 0.01. The ICLIT group and the ICLIT booster group showed a significant increase in sIgG4, p < 0.01. None of the patients in the three groups had any serious systemic adverse effects during the 3-year follow-up. CONCLUSION The ICLIT treatment is effective and safe on AR. One booster injection of allergens at 1 year can greatly improve its long-term efficacy. TRIAL REGISTRY Clinical trial registration number: ChiCTR1800017130.
Collapse
Affiliation(s)
- Yang Qin
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Weijun Huang
- The Department of OtolaryngologyFirst People's Hospital of FoshanFoshanChina
| | - Rui Zheng
- The Department of OtolaryngologyThird Affiliated Hospital of Sun Y at‐sen UniversityGuangzhouChina
| | - Qixing Wang
- The Zhu Hai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Qingqing Yu
- The Department of OtolaryngologyFirst People's Hospital of FoshanFoshanChina
| | - Yin Li
- The Department of OtolaryngologyFirst People's Hospital of FoshanFoshanChina
| | - Kai Wang
- The Department of OtolaryngologyFirst People's Hospital of FoshanFoshanChina
| | - Jun Tang
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
- The Department of OtolaryngologyFirst People's Hospital of FoshanFoshanChina
| |
Collapse
|
2
|
Wang Q, Wang K, Qin Y, Huang W, Li Y, Yu Q, Xiong Y, Guo Y, Zheng R, Tang J. Intra-cervical lymphatic immunotherapy for dust mite-induced allergic rhinoconjunctivitis in children: a 3-year prospective randomized controlled trial. Front Immunol 2023; 14:1144813. [PMID: 37593733 PMCID: PMC10428014 DOI: 10.3389/fimmu.2023.1144813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
Background Pediatric allergic rhinoconjunctivitis has become a public concern with an increasing incidence year by year. Conventional subcutaneous immunotherapy (SCIT) has long treatment time, high cost and poor compliance. The novel immunotherapy significantly shortens the course of treatment by directly injecting allergens into cervical lymph nodes, which can perform faster clinical benefits to children. Objective By comparing with SCIT, this study aimed to evaluate the long-term efficacy and safety of intra-cervical lymphatic immunotherapy (ICLIT). Methods This is a prospective randomized controlled study. A total of 50 allergic rhinoconjunctivitis children with dust mite allergy was randomly divided into ICLIT group and SCIT group, receiving three cervical intralymphatic injections of dust mite allergen or three years of subcutaneous injection, separately. Primary outcomes included total nasal symptom scores (TNSS), total ocular symptom scores (TOSS), total symptom scores (TSS), total medication scores (TMS), and total quality of life score. Secondary outcomes included pain perception and adverse reactions during treatment. Other secondary outcome was change in Dermatophagoides pteronyssinus (Derp) and Dermatophagoides farina (Derf) -specific IgE level. Results Both groups had significantly decreased TNSS, TOSS, TSS, TMS, and total quality of life score after 36 months of treatment (p<0.0001). Compared with SCIT, ICLIT could rapidly improve allergic symptoms (p<0.0001). The short-term efficacy was consistent between the two groups (p=0.07), while the long-term efficacy was better in SCIT group (p<0.0001). The pain perception in ICLIT group was lower than that in SCIT group (p<0.0001). ICLIT group was safer. Specifically, the children had only 3 mild local adverse reactions without systemic adverse reactions. The SCIT group had 14 systemic adverse reactions. At last, the serum Derp and Derf-specific IgE levels in ICLIT and SCIT groups decreased 3 years later (p<0.0001). Conclusion ICLIT could ameliorate significantly the allergic symptoms in pediatric patients with an advantage in effectiveness and safety, besides an improved life quality including shortened period of treatment, frequency of drug use and pain perception. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR1800017130.
Collapse
Affiliation(s)
- Qixing Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Kai Wang
- Department of Otolaryngology, First People’s Hospital of Foshan, Foshan, China
| | - Yang Qin
- The First Clinical College of Guangdong Medical University, Zhanjiang, China
| | - Weijun Huang
- Department of Otolaryngology, First People’s Hospital of Foshan, Foshan, China
| | - Yin Li
- Department of Otolaryngology, First People’s Hospital of Foshan, Foshan, China
| | - Qingqing Yu
- Department of Otolaryngology, First People’s Hospital of Foshan, Foshan, China
| | - Yu Xiong
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yingwei Guo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
3
|
Wang C, Bao Y, Chen J, Chen X, Cheng L, Guo YS, Hao C, Lai H, Li H, Li J, Liu C, Liu Y, Liu Z, Lou H, Lv W, Nong G, Qiu Q, Ren X, Shao J, Shen YH, Shi L, Song XC, Song Y, Tang S, Wang H, Wang X, Wang X, Wang Z, Wei Q, Xie H, Xing Z, Xu R, Xu Y, Yang Q, Yao H, Ye J, You Y, Yu H, Yu Y, Zhang H, Zhang G, Zhang Y, Zhi Y, Zhou W, Zhu L, Zhu X, Chai R, Chen D, Guan K, Huang Z, Huang Y, Ma T, Ma Y, Meng Y, Ren L, Wang J, Wang N, Xian M, Xiang R, Zheng M, Zhang L. Chinese Guideline on Allergen Immunotherapy for Allergic Rhinitis: The 2022 Update. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:604-652. [PMID: 36426395 PMCID: PMC9709690 DOI: 10.4168/aair.2022.14.6.604] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 09/16/2023]
Abstract
In the last few decades, there has been a progressive increase in the prevalence of allergic rhinitis (AR) in China, where it now affects approximately 250 million people. AR prevention and treatment include allergen avoidance, pharmacotherapy, allergen immunotherapy (AIT), and patient education, among which AIT is the only curative intervention. AIT targets the disease etiology and may potentially modify the immune system as well as induce allergen-specific immune tolerance in patients with AR. In 2017, a team of experts from the Chinese Society of Allergy (CSA) and the Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G) produced the first English version of Chinese AIT guidelines for AR. Since then, there has been considerable progress in basic research of and clinical practice for AIT, especially regarding the role of follicular regulatory T (TFR) cells in the pathogenesis of AR and the use of allergen-specific immunoglobulin E (sIgE) in nasal secretions for the diagnosis of AR. Additionally, potential biomarkers, including TFR cells, sIgG4, and sIgE, have been used to monitor the incidence and progression of AR. Moreover, there has been a novel understanding of AIT during the coronavirus disease 2019 pandemic. Hence, there was an urgent need to update the AIT guideline for AR by a team of experts from CSA and C2AR2G. This document aims to serve as professional reference material on AIT for AR treatment in China, thus improving the development of AIT across the world.
Collapse
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases and Beijing Laboratory of Allergic Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospitial of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Shi Guo
- Department of Allergy & Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuangli Hao
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - He Lai
- Department of Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huabin Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changshan Liu
- Department of Pediatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Lv
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Guangmin Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianhui Qiu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiumin Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Shao
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hong Shen
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shi
- Department of Otolaryngology,The Second Hospital of Shandong University, Jinan, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuxin Song
- Department of Allergy, Harbin Children's Hospital, Harbin, China
| | - Suping Tang
- Department of Allergy, Fuzhou Children's Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Hongtian Wang
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases and Beijing Laboratory of Allergic Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingyu Wei
- Department of Allergy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Xie
- Department of Allergy, Northern Theatre General Hospital, Shenyang, China
| | - Zhimin Xing
- Department of Otolaryngology-Head and Neck Surgery, Peking University People's Hospital, Beijing, China
| | - Rui Xu
- Department of Allergy of Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongmei Yao
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yongmei Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huanping Zhang
- Department of Allergy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Gehua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Zhi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, China
| | - Li Zhu
- Department of Otorhinolaryngology, The Third Hospital of Peking University, Beijing, China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruonan Chai
- Department of Allergy, Northern Theatre General Hospital, Shenyang, China
| | - Dehua Chen
- Department of Allergy of Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanran Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Tingting Ma
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Yuemei Ma
- Department of Allergy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifan Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Lei Ren
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jianxing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Xiang
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Zheng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Nakatsuji M, Sugiura K, Suda K, Sakurai M, Ubatani M, Muroya H, Okubo R, Noguchi R, Kamata Y, Fukutomi Y, Ishibashi O, Nishimura S, Inui T. Structure-based prediction of the IgE epitopes of the major dog allergen Can f 1. FEBS J 2021; 289:1668-1679. [PMID: 34699686 DOI: 10.1111/febs.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Allergy to dogs has become increasingly prominent worldwide. Seven dog allergens have been identified, including Canis familiaris allergen 1-7 (Can f 1-7). Although Can f 1 is a major dog allergen sensitized to 50-75% of dog-allergic subjects, its IgE epitopes have not been identified. The structural analysis of an allergen is important to identify conformational epitopes. In this study, we generated a recombinant Can f 1 protein and determined its crystal structure using X-ray crystallography. Can f 1 had a typical lipocalin fold, which is composed of an eight-stranded β-barrel and α-helix, and has high similarity to Can f 2, Can f 4, and Can f 6 in overall structure. However, the localizations of surface charges on these proteins were quite different. Based on sequence alignment and tertiary structure, we predicted five critical residues (His86, Glu98, Arg111, Glu138, and Arg152) for the IgE epitopes. The relevance of these residues to IgE reactivity was assessed by generating Can f 1 mutants with these residues substituted for alanine. Although the effects of the mutation on IgE binding depended on the sera of dog-allergic patients, H86A and R152A mutants showed reduced IgE reactivity compared with wild-type Can f 1. These results suggest that Can f 1 residues His86 and Arg152 are candidates for the IgE conformational epitope.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Keisuke Sugiura
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Keisuke Suda
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Michiko Sakurai
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Miki Ubatani
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Haruka Muroya
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Rina Okubo
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ryo Noguchi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoichi Kamata
- Department of Food and Nutrition, Senri Kinran University, Suita, Osaka, Japan
| | - Yuma Fukutomi
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Osamu Ishibashi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Shigenori Nishimura
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
5
|
|
6
|
Curin M, Garmatiuk T, Resch-Marat Y, Chen KW, Hofer G, Fauland K, Keller W, Hemmer W, Vrtala S, Focke-Tejkl M, Valenta R. Similar localization of conformational IgE epitopes on the house dust mite allergens Der p 5 and Der p 21 despite limited IgE cross-reactivity. Allergy 2018; 73:1653-1661. [PMID: 29319884 PMCID: PMC6055609 DOI: 10.1111/all.13398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Due to high IgE recognition frequency and high allergenic activity, Der p 5 and Der p 21 are clinically important house dust mite (HDM) allergens. The objective of this study was to characterize the immunodominant IgE epitopes of Der p 5 and Der p 21 responsible for their high allergenic activity. METHODS A panel of 12 overlapping peptides spanning the Der p 5 and Der p 21 sequence were synthesized to search for sequential IgE epitopes by direct testing for allergic patients' IgE reactivity. Peptide-specific antibodies raised in rabbits were used in inhibition studies for localizing conformational IgE epitopes which were visualized on the surfaces of the allergen structures by molecular modelling. IgE cross-reactivity between the allergens was investigated by IgE inhibition studies. RESULTS Immunodominant IgE epitopes defined by allergic patients' IgE on Der p 5 and Der p 21 were primarily of the conformational, discontinuous type including N- and C-terminal portions of the protein. They could be located on each allergen on one area with similar localization, but despite similar structure of the allergens, no relevant IgE cross-reactivity could be detected. CONCLUSION Our study shows that Der p 5 and Der p 21 contain a major conformational IgE epitope-containing area located on similar portions of their structure, but they lack relevant IgE cross-reactivity. These data are important for the development of modern allergy vaccines based on defined molecules for allergen-specific immunotherapy of HDM allergy.
Collapse
Affiliation(s)
- M. Curin
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - T. Garmatiuk
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - Y. Resch-Marat
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - K. W. Chen
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - G. Hofer
- Institute of Molecular Biosciences; BioTechMed; University of Graz; Graz Austria
| | - K. Fauland
- Institute of Molecular Biosciences; BioTechMed; University of Graz; Graz Austria
| | - W. Keller
- Institute of Molecular Biosciences; BioTechMed; University of Graz; Graz Austria
| | - W. Hemmer
- FAZ - Floridsdorf Allergy Center; Vienna Austria
| | - S. Vrtala
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - M. Focke-Tejkl
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| |
Collapse
|
7
|
Zhang W, Lin C, Sampath V, Nadeau K. Impact of allergen immunotherapy in allergic asthma. Immunotherapy 2018; 10:579-593. [PMID: 29569506 DOI: 10.2217/imt-2017-0138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although traditional pharmacological approaches improve outcomes in disease management for allergic asthma, these fail to modify the underlying immune responses. Allergen immunotherapy remains the only etiological therapy for the treatment of respiratory allergies for which clinical efficacy has been demonstrated through several well-controlled studies. In this review, we examine evidence from the past 5 years regarding the impact of allergen immunotherapy on allergic asthma to inform practitioners and stimulate further discussion and research.
Collapse
Affiliation(s)
- Wenming Zhang
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA 94305, USA
| | - Chunrong Lin
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA 94305, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA 94305, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Cirauqui C, Benito‐Villalvilla C, Sánchez‐Ramón S, Sirvent S, Diez‐Rivero CM, Conejero L, Brandi P, Hernández‐Cillero L, Ochoa JL, Pérez‐Villamil B, Sancho D, Subiza JL, Palomares O. Human dendritic cells activated with MV130 induce Th1, Th17 and IL-10 responses via RIPK2 and MyD88 signalling pathways. Eur J Immunol 2018; 48:180-193. [PMID: 28799230 PMCID: PMC5813220 DOI: 10.1002/eji.201747024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Recurrent respiratory tract infections (RRTIs) are the first leading cause of community- and nosocomial-acquired infections. Antibiotics remain the mainstay of treatment, enhancing the potential to develop antibiotic resistances. Therefore, the development of new alternative approaches to prevent and treat RRTIs is highly demanded. Daily sublingual administration of the whole heat-inactivated polybacterial preparation (PBP) MV130 significantly reduced the rate of respiratory infections in RRTIs patients, however, the immunological mechanisms of action remain unknown. Herein, we study the capacity of MV130 to immunomodulate the function of human dendritic cells (DCs) as a potential mechanism that contribute to the clinical benefits. We demonstrate that DCs from RRTIs patients and healthy controls display similar ex vivo immunological responses to MV130. By combining systems biology and functional immunological approaches we show that MV130 promotes the generation of Th1/Th17 responses via receptor-interacting serine/threonine-protein kinase-2 (RIPK2)- and myeloid-differentiation primary-response gene-88 (MyD88)-mediated signalling pathways under the control of IL-10. In vivo BALB/c mice sublingually immunized with MV130 display potent systemic Th1/Th17 and IL-10 responses against related and unrelated antigens. We elucidate immunological mechanisms underlying the potential way of action of MV130, which might help to design alternative treatments in other clinical conditions with high risk of recurrent infections.
Collapse
Affiliation(s)
- Cristina Cirauqui
- Department of Biochemistry and Molecular BiologySchool of ChemistryComplutense UniversityMadridSpain
| | | | - Silvia Sánchez‐Ramón
- Department of ImmunologyInstituto de Investigación SanitariaHospital Clínico San Carlos (IdISSC)MadridSpain
- Dpt. of Microbiology I‐ImmunologySchool of MedicineComplutense University of MadridMadridSpain
| | - Sofía Sirvent
- Department of Biochemistry and Molecular BiologySchool of ChemistryComplutense UniversityMadridSpain
| | | | - Laura Conejero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Lourdes Hernández‐Cillero
- Department of ImmunologyInstituto de Investigación SanitariaHospital Clínico San Carlos (IdISSC)MadridSpain
- Genomics and Microarray LaboratoryDepartment of Medical OncologyInstituto de Investigación SanitariaHospital Clínico San Carlos (IdISSC)MadridSpain
| | - Juliana Lucía Ochoa
- Department of ImmunologyInstituto de Investigación SanitariaHospital Clínico San Carlos (IdISSC)MadridSpain
| | - Beatriz Pérez‐Villamil
- Genomics and Microarray LaboratoryDepartment of Medical OncologyInstituto de Investigación SanitariaHospital Clínico San Carlos (IdISSC)MadridSpain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - José Luis Subiza
- Department of ImmunologyInstituto de Investigación SanitariaHospital Clínico San Carlos (IdISSC)MadridSpain
- Dpt. of Microbiology I‐ImmunologySchool of MedicineComplutense University of MadridMadridSpain
- Inmunotek S.L.MadridSpain
| | - Oscar Palomares
- Department of Biochemistry and Molecular BiologySchool of ChemistryComplutense UniversityMadridSpain
| |
Collapse
|
9
|
Bao Y, Chen J, Cheng L, Guo Y, Hong S, Kong W, Lai H, Li H, Li H, Li J, Li T, Lin X, Liu S, Liu Z, Lou H, Meng J, Qiu Q, Shen K, Tang W, Tao Z, Wang C, Wang X, Wei Q, Xiang L, Xie H, Xu Y, Zhang G, Zhang Y, Zheng Y, Zhi Y, Chen D, Hong H, Li Q, Liu L, Meng Y, Wang N, Wang Y, Zhou Y, Zhang L. Chinese Guideline on allergen immunotherapy for allergic rhinitis. J Thorac Dis 2017; 9:4607-4650. [PMID: 29268533 DOI: 10.21037/jtd.2017.10.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present document is based on a consensus reached by a panel of experts from Chinese Society of Allergy (CSA) and Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G). Allergen immunotherapy (AIT), has increasingly been used as a treatment for allergic rhinitis (AR) globally, as it has been shown to provide a long-term effect in improving nasal and ocular symptoms, reducing medication need, and improving quality of life. AIT is currently the only curative intervention that can potentially modify the immune system in individuals suffering from AR and prevent the development of new sensitization and the progression of disease from AR to asthma. Although the use of AIT is becoming more acceptable in China, to date no AR immunotherapy guideline from China is available for use by the international community. This document has thus been produced and covers the main aspects of AIT undertaken in China; including selection of patients for AIT, the allergen extracts available on the Chinese market, schedules and doses of allergen employed in different routes of AIT, assessment of effect and safety, patients' administration and follow-up, and management of adverse reactions. The Chinese guideline for AR immunotherapy will thus serve as a reference point by doctors, healthcare professionals and organizations involved in the AIT of AR in China. Moreover, this guideline will serve as a source of information for the international community on AIT treatment strategies employed in China.
Collapse
Affiliation(s)
- Yixiao Bao
- Department of Pediatric Respiratory Medicine, Pubin Children Hospital, Shanghai Children Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Cheng
- Department of Otorhinolaryngology, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,International Centre for Allergy Research, Nanjing Medical University, Nanjing 210029, China
| | - Yinshi Guo
- Department of Allergy & Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Suling Hong
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Lai
- Department of Allergy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Houyong Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Allergy and Clinical Immunology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Tianying Li
- Department of otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoping Lin
- The PLA Center of respiratory and allergic disease diagnosing and management, Shenyang 110016, China
| | - Shixi Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zheng Liu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Juan Meng
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianhui Qiu
- Department of Otorhinolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kunling Shen
- Department of Pediatric Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Shanghai Ruijin Hospital affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 200025, China
| | - Zezhang Tao
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Qingyu Wei
- Department of Allergy, NO.202 Hospital of PLA, Shenyang 110003, China
| | - Li Xiang
- Department of Allergy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Hua Xie
- Department of Respiratory Medicine, the General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Yu Xu
- Department of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Yiwu Zheng
- Scientific Affairs, ALK, Guangzhou 510300, China
| | - Yuxiang Zhi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100720, China
| | - Dehua Chen
- Department of otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyu Hong
- Department of otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Quansheng Li
- Department of Allergy, NO.202 Hospital of PLA, Shenyang 110003, China
| | - Lin Liu
- Department of Otorhinolaryngology, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Nan Wang
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yihui Wang
- Department of Pediatric Respiratory Medicine, Pubin Children Hospital, Shanghai Children Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yue Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | | |
Collapse
|
10
|
Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy 2017; 72:1461-1474. [PMID: 28474379 DOI: 10.1111/all.13199] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 12/28/2022]
Abstract
The number of patients suffering from allergic asthma and rhinoconjunctivitis has increased dramatically within the last decades. Allergen-specific immunotherapy (AIT) is the only available cause-oriented therapy so far. AIT reduces symptoms, but has also a disease-modifying effect. Disadvantages are a long-lasting procedure, and in a few cases potential systemic adverse reactions. Encapsulation of allergens or DNA vaccines into nanostructures may provide advantages compared to the conventional AIT with noncapsulated allergen extracts: The protein/DNA molecule can be protected from degradation, higher local concentrations and targeted delivery to the site of action appear possible, and most importantly, recognition of encapsulated allergen by the immune system, especially by IgE antibodies, is prevented. AIT with nanoparticles (NPs) may offer a safer and potentially more efficient way of treatment for allergic diseases. In this review, we summarize the use of biodegradable NPs consisting of synthetic or natural polymers, liposomes, and virus-like particles as well as nonbiodegradable NPs like dendrimers, and carbon- or metal-based NPs for AIT. More or less successful applications of these NPs in prophylactic as well as therapeutic vaccination approaches in rodents or other animals as well as first human clinical trials are discussed in detail.
Collapse
Affiliation(s)
- H. Pohlit
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Mainz Germany
- Graduate School of Excellence Materials Science in Mainz; Johannes Gutenberg-University Mainz; Mainz Germany
| | - I. Bellinghausen
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - H. Frey
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Mainz Germany
| | - J. Saloga
- Department of Dermatology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| |
Collapse
|
11
|
Clustering of conformational IgE epitopes on the major dog allergen Can f 1. Sci Rep 2017; 7:12135. [PMID: 28939849 PMCID: PMC5610169 DOI: 10.1038/s41598-017-11672-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin E (IgE)-associated allergy affects more than 25% of the population. Can f 1 is the major dog allergen associated with respiratory symptoms but the epitopes recognized by allergic patients IgE on Can f 1 are unknown. To characterize IgE epitopes of Can f 1 recognized by dog allergic patients, six overlapping peptides spanning the Can f 1 sequence were synthesized. In direct IgE epitope mapping experiments peptides were analyzed for IgE reactivity by dot blot and Enzyme-linked immunosorbent assay (ELISA) with sera from dog allergic patients. For indirect epitope-mapping, rabbits were immunized with the peptides to generate specific IgG antibodies which were used to inhibit allergic patients’ IgE binding to Can f 1. IgE binding sites were visualized on a model of the Can f 1 three-dimensional structure. We found that Can f 1 does not contain any relevant sequential IgE epitopes. However, IgE inhibition experiments with anti-peptide specific IgGs showed that Can f 1 N- and C-terminal portion assembled a major conformational binding site. In conclusion, our study is the first to identify the major IgE epitope-containing area of the dog allergen Can f 1. This finding is important for the development of allergen-specific treatment strategies.
Collapse
|
12
|
Advances and highlights in allergen immunotherapy: On the way to sustained clinical and immunologic tolerance. J Allergy Clin Immunol 2017; 140:1250-1267. [PMID: 28941667 DOI: 10.1016/j.jaci.2017.08.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Allergen immunotherapy (AIT) is an effective treatment strategy for allergic diseases and has been used for more than 100 years. In recent years, however, the expectations on concepts, conduct, statistical evaluation, and reporting have developed significantly. Products have undergone dose-response and confirmative studies in adults and children to provide evidence for the optimal dosage, safety, and efficacy of AIT vaccines using subcutaneous and sublingual delivery pathways in large patient cohorts, ensuring solid conclusions to be drawn from them for the advantage of patients and societies alike. Those standards should be followed today, and products answering to them should be preferred over others lacking optimization and proof of efficacy and safety. Molecular and cellular mechanisms of AIT include early mast cell and basophil desensitization effects, regulation of T- and B-cell responses, regulation of IgE and IgG4 production, and inhibition of responses from eosinophils, mast cells, and basophils in the affected tissues. There were many developments to improve vaccination strategies, demonstration of new molecules involved in molecular mechanisms, and demonstration of new biomarkers for AIT during the last few years. The combination of probiotics, vitamins, and biological agents with AIT is highlighting current advances. Development of allergoids and recombinant and hypoallergenic vaccines to skew the immune response from IgE to IgG4 and regulation of dendritic cell, mast cell, basophil, innate lymphoid cell, T-cell, and B-cell responses to allergens are also discussed in detail.
Collapse
|