1
|
Boutin L, Roger E, Gayat E, Depret F, Blot-Chabaud M, Chadjichristos CE. The role of CD146 in renal disease: from experimental nephropathy to clinics. J Mol Med (Berl) 2024; 102:11-21. [PMID: 37993561 DOI: 10.1007/s00109-023-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | - François Depret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | | | - Christos E Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
- Faculty of Medicine, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
2
|
Heim X, Bermudez J, Joshkon A, Kaspi E, Bachelier R, Nollet M, Vélier M, Dou L, Brodovitch A, Foucault-Bertaud A, Leroyer AS, Benyamine A, Daumas A, Granel B, Sabatier F, Dignat-George F, Blot-Chabaud M, Bardin N. CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. J Invest Dermatol 2022; 142:3200-3210.e5. [PMID: 35690141 DOI: 10.1016/j.jid.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
Abstract
CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xavier Heim
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.
| | | | - Ahmad Joshkon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Elise Kaspi
- Aix Marseille University, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | | | - Marie Nollet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Mélanie Vélier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Alexandre Brodovitch
- Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | | | - Audrey Benyamine
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Daumas
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine, Geriatric and Therapeutic Department, Hopital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Brigitte Granel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Florence Sabatier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Cell Therapy Laboratory, INSERM CIC BT 1409, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
3
|
The Role of T Cells in Systemic Sclerosis: An Update. IMMUNO 2022. [DOI: 10.3390/immuno2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by microvasculopathy, autoantibodies (autoAbs), and fibrosis. The pathogenesis of the disease is incompletely understood. Microvasculopathy and autoAbs appear very early in the disease process. AutoAbs, such as those directed against DNA topoisomerase I (Topo I), are disease specific and associated with disease manifestations, and indicate activation of the adaptive immune system. B cells are involved in fibrosis in SSc. T cells are also involved in disease pathogenesis. T cells show signs of antigen-induced activation; T cells of TH2 type are increased and produce profibrotic cytokines interleukin (IL)-4, IL-13, and IL-31; CD4+ cytotoxic T lymphocytes are increased in skin lesions, and cause fibrosis and endothelial cell apoptosis; circulating T follicular helper (TFH) cells are increased in SSc produce IL-21 and promote plasmablast antibody production. On the other hand, regulatory T cells are impaired in SSc. These findings provide strong circumstantial evidence for T cell implication in SSc pathogenesis and encourage new T cell-directed therapeutic strategies for the disease.
Collapse
|
4
|
Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis. Autoimmun Rev 2022; 21:103185. [PMID: 36031049 DOI: 10.1016/j.autrev.2022.103185] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with a poor prognosis. To date, the pathogenesis of SSc is still unclear; moreover, its pathological conditions include microvascular damage, inflammation, and immune abnormalities. Different types of T cells may cause vasculitis and fibrosis in SSc by means of up- and down-regulation of cell surface molecules, abnormal release of pro-fibrotic or pro-inflammatory cytokines and direct contact with fibroblasts. These T cells, which are mainly CD4 + T cells, include the subtypes, T follicular helper (Tfh) cells, regulatory T Cells (Treg), interleukin-17 (IL-17)-producing Th17 cells, CD4+ cytotoxic T lymphocytes (CTLs), and angiogenic T (Tang) cells. In addition to the Th1/Th2 imbalance, which has long been established, there is also a Th17/Treg imbalance in SSc. This imbalance may be closely related to the abnormal immune status of SSc. There is mounting evidence that suggest T cell abnormalities may be crucial to the pathogenesis of SSc. In terms of treatment, existing therapies that target T cells, such as immunosuppressive therapy (tacrolimus), Janus kinase(JAK) inhibitors, and biologics(abatacept), have had some success. Other non-drug therapies, including Mesenchymal stem cells (MSCs), have extensive and complex mechanisms of action actually including T cell regulation. Based on the current evidence, we believe that the study of T cells will further our understanding of the pathogenesis of SSc, and may lead to more targeted treatment optionsfor patients with SSc.
Collapse
Affiliation(s)
- Wei Jin
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yan Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China.
| |
Collapse
|
5
|
Nollet M, Bachelier R, Joshkon A, Traboulsi W, Mahieux A, Moyon A, Muller A, Somasundaram I, Simoncini S, Peiretti F, Leroyer AS, Guillet B, Granel B, Dignat-George F, Bardin N, Foucault-Bertaud A, Blot-Chabaud M. Multiple variants of soluble CD146 are involved in Systemic Sclerosis: identification of a novel pro-fibrotic factor. Arthritis Rheumatol 2022; 74:1027-1038. [PMID: 35001552 DOI: 10.1002/art.42063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction and vascular damages, in which expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. As CD146 also exists as a circulating soluble form (sCD146) acting as a growth factor in numerous angiogenic- and inflammatory-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and characterized the regulation and functions of the different identified variants in SSc. METHODS To this end, we performed in vitro experiments, including RNA-seq and antibody arrays, and in vivo experiments using animal models of SSc induced by bleomycin and of hindlimb ischemia. RESULTS Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of membrane CD146 through Adam10 and Tace metalloproteinases, respectively. In addition, two novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146 were identified. Of interest, I5-13-sCD146 was significantly increased in sera of SSc patients, in particular in patients with pulmonary fibrosis, whereas I10-sCD146 was decreased. Further experiments revealed that shed sCD146 and I10-sCD146 displayed pro-angiogenic activity through FAK and PKCε signalling pathways, respectively, whereas I5-13-sCD146 displayed pro-fibrotic effects through wint1/β-catenin/wisp1 pathway. CONCLUSION Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could thus constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc, but also of other angiogenesis- or fibrosis-related pathologies.
Collapse
Affiliation(s)
- Marie Nollet
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Richard Bachelier
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Ahmad Joshkon
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Waël Traboulsi
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Amandine Mahieux
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Anais Moyon
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France.,CERIMED, Aix-Marseille University, Marseille, France
| | - Alexandre Muller
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, D.Y. Patil University, Kolhapur, India
| | | | - Franck Peiretti
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Aurélie S Leroyer
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France.,CERIMED, Aix-Marseille University, Marseille, France
| | - Brigitte Granel
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France.,Internal Medicine Department, AP-HM, Marseille, France
| | | | - Nathalie Bardin
- Aix-Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | | | | |
Collapse
|
6
|
Lv Z, Feng HY, Tao W, Li HZ, Zhang X. CD146 as a Prognostic-Related Biomarker in ccRCC Correlating With Immune Infiltrates. Front Oncol 2021; 11:744107. [PMID: 34956870 PMCID: PMC8692769 DOI: 10.3389/fonc.2021.744107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Backgrounds CD146 is highly expressed in various malignant tumors and associated with the poor prognosis. However, the role of CD146 in clear cell renal cell carcinoma (ccRCC) is still unknown. This study aimed to identify the role of CD146 in ccRCC by integrated bioinformatics analysis. Methods CD146 mRNA expression and methylation data in ccRCC was examined using the TIMER, UALCAN, and MethSurv databases. CD146 expression in paraffin-embedded tissues (140 cancer samples and 140 paracancer tissues) from our cohort were examined by immunohistochemistry assay. The LinkedOmics database was used to study the signaling pathways related to CD146 expression. TIMER and TISIDB were used to analyze the correlations among CD146, CD146-coexpressed genes, tumor-infiltrating immune cells, and immunomodulators. The relationship between CD146 and drug response in renal cancer cell lines was analyzed by the CTRP and CCLE databases. Results The mRNA and protein levels of CD146 were elevated in ccRCC tissues than that in paracancer tissues. The DNA methylation of CD146 in ccRCC tissues were lower than that in normal tissues. Importantly, high CD146 expression was associated with poor prognosis in patients with ccRCC. Furthermore, multivariate Cox regression analysis showed that CD146 was an independent prognostic factor in ccRCC. GO and KEGG pathway analyses indicated the co-expressed genes of CD146 were mainly related to a variety of immune-related pathways, including Th1 and Th2 cell differentiation, Th17 cell differentiation, and leukocyte transendothelial migration. Our data demonstrated that the expression and methylation status of CD146 were strongly correlated with immune infiltration levels, immunomodulators, and chemokines. Further, the sensitivity and resistance of renal cancer cell lines to some drugs were related to CD146 expression. Conclusions Our study highlights the clinical significance of CD146 in ccRCC and provides novel insights into the immune function of CD146 in the tumor microenvironment.
Collapse
Affiliation(s)
- Zheng Lv
- School of Medicine, Nankai University, Tianjin, China.,Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Hua-Yi Feng
- Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People Liberation Army (PLA), Beijing, China
| | - Wang Tao
- Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People Liberation Army (PLA), Beijing, China
| | - Hong-Zhao Li
- Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Urology, The Third Medical Center, Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
7
|
Rapanotti MC, Cugini E, Nuccetelli M, Terrinoni A, Di Raimondo C, Lombardo P, Costanza G, Cosio T, Rossi P, Orlandi A, Campione E, Bernardini S, Blot-Chabaud M, Bianchi L. MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. Int J Mol Sci 2021; 22:12416. [PMID: 34830300 PMCID: PMC8623757 DOI: 10.3390/ijms222212416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD146 Antigen/blood
- CD146 Antigen/chemistry
- CD146 Antigen/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Liquid Biopsy
- Longitudinal Studies
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/blood
- Neoplasm, Residual/genetics
- Neoplastic Cells, Circulating/metabolism
- Skin Neoplasms/blood
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Solubility
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Paolo Lombardo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Piero Rossi
- Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Augusto Orlandi
- Anatomic Pathology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marcel Blot-Chabaud
- Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 13005 Marseille, France;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| |
Collapse
|
8
|
Li Q, Chen J, Yin M, Zhao J, Lu F, Wang Z, Yu X, Wang S, Zheng D, Wang H. High Level of Soluble CD146 In Cerebrospinal Fluid Might be a Biomarker of Severity of Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Front Immunol 2021; 12:680424. [PMID: 34220828 PMCID: PMC8245058 DOI: 10.3389/fimmu.2021.680424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background Disruption of the blood–brain barrier (BBB) is an important pathophysiological process of anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. A recent multi-center study showed that soluble (s) CD146 is a potential biomarker for monitoring early BBB damage and central nervous system inflammation, but little is known about sCD146 in anti-NMDAR encephalitis. Method Twenty-three anti-NMDAR encephalitis patients and seventeen controls with non-inflammatory neurological diseases were recruited. sCD146 and inflammatory cytokines in cerebrospinal fluid (CSF) and serum were detected by ELISA. Modified Rankin scale (mRS) scores were used to assess the neurological status of each patient. A follow-up review was completed three months after discharge. Results sCD146 levels in the CSF of patients with the acute stage anti-NMDAR encephalitis were significantly increased compared with controls and accompanied by increases in TNF-α, IL-6 and IL-10. CSF sCD146 was positively correlated with neuroinflammatory factors in the CSF and with mRS score. Three months after effective treatment, CSF sCD146 in patients was significantly decreased but remained significantly different compared with the controls. Conclusion Our data suggested that higher expression of CSF sCD146 correlated with more serious neurological damage. Therefore, levels of CSF sCD146 may represent a promising indicator for monitoring disease and optimizing clinical treatment decisions in the early stages of anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Qing Li
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jinglong Chen
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Mengzhuo Yin
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jun Zhao
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Fuchang Lu
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xiaoqi Yu
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Shuangyan Wang
- Department of Geriatric Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Joshkon A, Heim X, Dubrou C, Bachelier R, Traboulsi W, Stalin J, Fayyad-Kazan H, Badran B, Foucault-Bertaud A, Leroyer AS, Bardin N, Blot-Chabaud M. Role of CD146 (MCAM) in Physiological and Pathological Angiogenesis-Contribution of New Antibodies for Therapy. Biomedicines 2020; 8:biomedicines8120633. [PMID: 33352759 PMCID: PMC7767164 DOI: 10.3390/biomedicines8120633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The fundamental role of cell adhesion molecules in mediating various biological processes as angiogenesis has been well-documented. CD146, an adhesion molecule of the immunoglobulin superfamily, and its soluble form, constitute major players in both physiological and pathological angiogenesis. A growing body of evidence shows soluble CD146 to be significantly elevated in the serum or interstitial fluid of patients with pathologies related to deregulated angiogenesis, as autoimmune diseases, obstetric and ocular pathologies, and cancers. To block the undesirable effects of this molecule, therapeutic antibodies have been developed. Herein, we review the multifaceted functions of CD146 in physiological and pathological angiogenesis and summarize the interest of using monoclonal antibodies for therapeutic purposes.
Collapse
Affiliation(s)
- Ahmad Joshkon
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
- Correspondence:
| | - Xavier Heim
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Service d’immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Cléa Dubrou
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Richard Bachelier
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Wael Traboulsi
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Jimmy Stalin
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
| | - Alexandrine Foucault-Bertaud
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Aurelie S. Leroyer
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Nathalie Bardin
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Service d’immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Marcel Blot-Chabaud
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| |
Collapse
|
10
|
CD146/sCD146 in the Pathogenesis and Monitoring of Angiogenic and Inflammatory Diseases. Biomedicines 2020; 8:biomedicines8120592. [PMID: 33321883 PMCID: PMC7764286 DOI: 10.3390/biomedicines8120592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.
Collapse
|
11
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Leroyer AS, Blin MG, Bachelier R, Bardin N, Blot-Chabaud M, Dignat-George F. CD146 (Cluster of Differentiation 146). Arterioscler Thromb Vasc Biol 2020; 39:1026-1033. [PMID: 31070478 DOI: 10.1161/atvbaha.119.312653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD146 (cluster of differentiation 146) is an adhesion molecule that is expressed by different cells constituting vessels, particularly endothelial cells. The last 30 years of research in this field have shown that CD146 plays a key role in the control of several vessel functions. Three forms of CD146 have been described, including 2 transmembrane isoforms and a soluble protein that is detectable in the plasma. These CD146 forms mediate pleiotropic functions through homophilic and heterophilic interactions with proteins present on surrounding partners. Several studies used neutralizing antibodies, siRNA, or genetically modified mice to demonstrate the involvement of CD146 in the regulation of angiogenesis, vascular permeability, and leukocyte transmigration. In this review, we will focus on the current knowledge of the roles of CD146 in vascular homeostasis and diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Aurélie S Leroyer
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Muriel G Blin
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Richard Bachelier
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Nathalie Bardin
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.).,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, France (N.B., F.D.-G.)
| | - Marcel Blot-Chabaud
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Françoise Dignat-George
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.).,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, France (N.B., F.D.-G.)
| |
Collapse
|
13
|
Gabsi A, Heim X, Dlala A, Gati A, Sakhri H, Abidi A, Amri S, Neili B, Leroyer AS, Bertaud A, Smiti Khanfir M, Said F, Houman MH, Granel B, Blot-Chabaud M, Bardin N, Marrakchi R. TH17 cells expressing CD146 are significantly increased in patients with Systemic sclerosis. Sci Rep 2019; 9:17721. [PMID: 31776424 PMCID: PMC6881361 DOI: 10.1038/s41598-019-54132-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder characterized by vascular damage, excessive fibrosis and abnormal T cells immune-regulation. CD146 is an adhesion molecule essentially expressed in the vascular system, but also on TH17 lymphocytes. In view of the recently described role of CD146 in SSc, we hypothesized an involvement of CD146 positive TH17 cells in this disease. Compared to healthy controls, we showed that both soluble form of CD146 (sCD146), and IL17A levels were increased in patients with SSc with a positive correlation between both factors. A significant increase in TH17 cells attested by an increase of RORγT, IL17A mRNA and CD4+ IL17A+ cell was observed in patients with SSc. Interestingly, the percentage of TH17 cells expressing CD146 was higher in patients with SSc and inversely correlated with pulmonary fibrosis. In vitro experiments showed an augmentation of the percentage of TH17 cells expressing CD146 after cell treatment with sCD146, suggesting that, in patients the increase of this sub-population could be the consequence of the sCD146 increase in serum. In conclusion, TH17 cells expressing CD146 could represent a new component of the adaptive immune response, opening the way for the generation of new tools for the management of SSc.
Collapse
Affiliation(s)
- Amira Gabsi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia. .,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.
| | - Xavier Heim
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Service dImmunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Akram Dlala
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Asma Gati
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Haifa Sakhri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Ahmed Abidi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Sonia Amri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | - Bilel Neili
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| | | | | | - Monia Smiti Khanfir
- Internal medicine service, University hospital center LA RABTA, 1007, Tunis, Tunisia.,Université de Tunis El Manar, Faculté de Medicine de Tunis, 1007, Tunis, Tunisia
| | - Fatma Said
- Internal medicine service, University hospital center LA RABTA, 1007, Tunis, Tunisia.,Université de Tunis El Manar, Faculté de Medicine de Tunis, 1007, Tunis, Tunisia
| | - Mohamed Habib Houman
- Internal medicine service, University hospital center LA RABTA, 1007, Tunis, Tunisia.,Université de Tunis El Manar, Faculté de Medicine de Tunis, 1007, Tunis, Tunisia
| | - Brigitte Granel
- Department of Internal Medicine and Therapeutics, Timone Hospital, Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France.,Service dImmunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Raja Marrakchi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR05SE05, 2092, Tunis, Tunisia
| |
Collapse
|
14
|
Zhang L, Luo Y, Teng X, Wu Z, Li M, Xu D, Wang Q, Wang F, Feng J, Zeng X, Yan X. CD146: a potential therapeutic target for systemic sclerosis. Protein Cell 2018; 9:1050-1054. [PMID: 29671201 PMCID: PMC6251808 DOI: 10.1007/s13238-018-0531-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lingling Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Moyon A, Garrigue P, Balasse L, Fernandez S, Brige P, Nollet M, Hache G, Blot-Chabaud M, Dignat-George F, Guillet B. Early prediction of revascularisation by angiomotin-targeting positron emission tomography. Theranostics 2018; 8:4985-4994. [PMID: 30429881 PMCID: PMC6217063 DOI: 10.7150/thno.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
This study aimed to develop a PET imaging agent of angiomotin (AMOT) expression, a potential biomarker of functional tissue regeneration in post-ischaemic conditions. Methods: Hindlimb ischaemia was induced by ligature and resection of the right femoral artery in mice, and clinical score and limb perfusion were evaluated up to 30 days after surgery. AMOT expression was evaluated by histology and Western blot analysis. NODAGA-conjugates of AMOT ligand, sCD146, were designed, synthesised and radiolabelled with gallium-68. 68Ga-sCD146 microPET/CT imaging was performed from day 1 to day 30 after ischaemia. 68Ga-sCD146 specificity for AMOT was evaluated by autoradiography. Results: Immunohistochemistry showed a significant endothelial overexpression of AMOT from day 5 up to day 10 in the ischaemic hindlimb. 68Ga-sCD146 PET signal intensity correlated significantly with AMOT immunohistochemistry evaluation. 68Ga-sCD146 PET imaging showed a significant uptake in the ischaemic hindlimb from day 2 to day 15, peaking on day 5 (ipsi/contralateral ratio = 2.4 ± 1.3, P = 0.0005) and significantly decreased after pharmacological blocking (62.57 ± 11% decrease in PET signal P = 0.032). Finally, we observed a significant correlation between day 5 68Ga-sCD146 PET signal intensity and clinical recovery (day 28) or hindlimb perfusion recovery (day 30). Conclusions: This work reports for the first time an early and sustained increase in AMOT expression after hindlimb ischaemia in mice. We therefore developed an AMOT-targeting imaging agent, 68Ga-sCD146, and showed its specific uptake up to 21 days after ischaemic hindlimb using microPET imaging. Correlation of early post-ischaemic PET signal with both delayed perfusion recovery and clinical outcome allows us to postulate that 68Ga-sCD146 represents a promising radiotracer for tissue angiogenesis assessment.
Collapse
|