1
|
Choi YJ, Oh JW. The Impact of Climate Change on the Sporulation of Atmospheric Fungi. Immunol Allergy Clin North Am 2024; 44:45-54. [PMID: 37973259 DOI: 10.1016/j.iac.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The U.S. Global Change Research Program, Fourth National Climate Assessment reports that it is extremely likely that human activities, especially emissions of greenhouse gases, are the dominant cause of the observed warming since the mid-20th century. There are no convincing alternative explanations supported by observational evidence.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea; Department of Pediatrics, Hanyang University Guri Hospital, 153 Gyungchun-Ro, Guri, Gyunggi-Do 11923, Korea
| | - Jae-Won Oh
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea; Department of Pediatrics, Hanyang University Guri Hospital, 153 Gyungchun-Ro, Guri, Gyunggi-Do 11923, Korea.
| |
Collapse
|
2
|
Gill R, Rojas‐Ruiz A, Boucher M, Henry C, Bossé Y. More airway smooth muscle in males versus females in a mouse model of asthma: A blessing in disguise? Exp Physiol 2023; 108:1080-1091. [PMID: 37341687 PMCID: PMC10988431 DOI: 10.1113/ep091236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? The lung response to inhaled methacholine is reputed to be greater in male than in female mice. The underpinnings of this sex disparity are ill defined. What is the main finding and its importance? We demonstrated that male airways exhibit a greater content of airway smooth muscle than female airways. We also found that, although a more muscular airway tree in males might contribute to their greater responsiveness to inhaled methacholine than females, it might also curb the heterogeneity in small airway narrowing. ABSTRACT Mouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty-four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine-induced bronchoconstriction). However, for a well-matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.
Collapse
Affiliation(s)
- Rebecka Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Andrés Rojas‐Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| |
Collapse
|
3
|
Schulte PA, Jacklitsch BL, Bhattacharya A, Chun H, Edwards N, Elliott KC, Flynn MA, Guerin R, Hodson L, Lincoln JM, MacMahon KL, Pendergrass S, Siven J, Vietas J. Updated assessment of occupational safety and health hazards of climate change. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:183-206. [PMID: 37104117 PMCID: PMC10443088 DOI: 10.1080/15459624.2023.2205468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Workers, particularly outdoor workers, are among the populations most disproportionately affected by climate-related hazards. However, scientific research and control actions to comprehensively address these hazards are notably absent. To assess this absence, a seven-category framework was developed in 2009 to characterize the scientific literature published from 1988-2008. Using this framework, a second assessment examined the literature published through 2014, and the current one examines literature from 2014-2021. The objectives were to present literature that updates the framework and related topics and increases awareness of the role of climate change in occupational safety and health. In general, there is substantial literature on worker hazards related to ambient temperatures, biological hazards, and extreme weather but less on air pollution, ultraviolet radiation, industrial transitions, and the built environment. There is growing literature on mental health and health equity issues related to climate change, but much more research is needed. The socioeconomic impacts of climate change also require more research. This study illustrates that workers are experiencing increased morbidity and mortality related to climate change. In all areas of climate-related worker risk, including geoengineering, research is needed on the causality and prevalence of hazards, along with surveillance to identify, and interventions for hazard prevention and control.
Collapse
Affiliation(s)
- P. A. Schulte
- Advanced Technologies and Laboratories International, Inc, Cincinnati, Ohio
| | - B. L. Jacklitsch
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - A. Bhattacharya
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - H. Chun
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Atlanta, Georgia
| | - N. Edwards
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia
| | - K. C. Elliott
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Anchorage, Alaska
| | - M. A. Flynn
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - R. Guerin
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - L. Hodson
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) (retired), Cincinnati, Ohio
| | - J. M. Lincoln
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - K. L. MacMahon
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - S. Pendergrass
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) (retired), Cincinnati, Ohio
| | - J. Siven
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - J. Vietas
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| |
Collapse
|
4
|
Nishida C, Yatera K. The Impact of Ambient Environmental and Occupational Pollution on Respiratory Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2788. [PMID: 35270479 PMCID: PMC8910713 DOI: 10.3390/ijerph19052788] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ambient pollutants and occupational pollutants may cause and exacerbate various lung and respiratory diseases. This review describes lung and respiratory diseases in relation to ambient pollutants, particularly particulate matter (PM2.5), and occupational air pollutants, excluding communicable diseases and indoor pollutants, including tobacco smoke exposure. PM2.5 produced by combustion is an important ambient pollutant. PM2.5 can cause asthma attacks and exacerbations of chronic obstructive pulmonary disease in the short term. Further, it not only carries a risk of lung cancer and death, but also hinders the development of lung function in children in the long term. It has recently been suggested that air pollution, such as PM2.5, is a risk factor for severe coronavirus disease (COVID-19). Asbestos, which causes asbestosis, lung cancer, and malignant mesothelioma, and crystalline silica, which cause silicosis, are well-known traditional occupational pollutants leading to pneumoconiosis. While work-related asthma (WRA) is the most common occupational lung disease in recent years, many different agents cause WRA, including natural and synthetic chemicals and irritant gases. Primary preventive interventions that increase awareness of pollutants and reduce the development and exacerbation of diseases caused by air pollutants are paramount to addressing ambient and occupational pollution.
Collapse
Affiliation(s)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan;
| |
Collapse
|
5
|
Tian Y, Wu Q, Li H, Wu Q, Xie Y, Li L, Chen H. Distinct Symptoms and Underlying Comorbidities with Latitude and Longitude in COVID-19: A Systematic Review and Meta-Analysis. Can Respir J 2022; 2022:6163735. [PMID: 35096211 PMCID: PMC8793347 DOI: 10.1155/2022/6163735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is straining global health resources, and the prevalence of severe disease appears to vary across countries. In accordance with PRISMA guidelines, we performed a systematic review and meta-analysis of clinical features and underlying medical conditions of COVID-19. Eighty-seven studies, involving 1,434,931 COVID-19 patients from the Americas, Asia, Europe, and Oceania, were included. Geographically, the rate of severity was highest in Asia (95% confidence interval (CI) 0.23‒0.30). The rates of comorbidities of COVID-19 patients in the Americas were significantly higher than those in Asia. Most Asian patients had fever (95%CI 0.70‒0.81), and most Oceanian patients had cough (95%CI 0.68‒0.70) as their prevalent symptom. Dyspnea was common in the Americas (95%CI 0.33‒0.64), Europe (95%CI 0.29‒0.64), and high latitude regions (95%CI 0.53‒0.82). European patients exhibited significantly high rates of loss of smell and taste (95%CI 0.60-0.97). In low-latitude regions, cancer (95%CI 14.50‒4.89) had the strongest correlation with illness severity. Comorbid diseases and clinical manifestations of severe COVID-19 patients vary substantially between latitudes and longitudes. Region-specific care should be considered to treat and improve the prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Yong Tian
- 1Department of Rehabilitation Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Qian Wu
- 2Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Hongwei Li
- 2Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Qi Wu
- 2Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Yi Xie
- 3Department of Prevention, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Li Li
- 2Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- 4Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Huaiyong Chen
- 4Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- 5Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- 6Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- 7Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
6
|
Deciphering Exhaled Aerosol Fingerprints for Early Diagnosis and Personalized Therapeutics of Obstructive Respiratory Diseases in Small Airways. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Respiratory diseases often show no apparent symptoms at their early stages and are usually diagnosed when permanent damages have been made to the lungs. A major site of lung pathogenesis is the small airways, which make it highly challenging to detect using current techniques due to the diseases’ location (inaccessibility to biopsy) and size (below normal CT/MRI resolution). In this review, we present a new method for lung disease detection and treatment in small airways based on exhaled aerosols, whose patterns are uniquely related to the health of the lungs. Proof-of-concept studies are first presented in idealized lung geometries. We subsequently describe the recent developments in feature extraction and classification of the exhaled aerosol images to establish the relationship between the images and the underlying airway remodeling. Different feature extraction algorithms (aerosol density, fractal dimension, principal mode analysis, and dynamic mode decomposition) and machine learning approaches (support vector machine, random forest, and convolutional neural network) are elaborated upon. Finally, future studies and frequent questions related to clinical applications of the proposed aerosol breath testing are discussed from the authors’ perspective. The proposed breath testing has clinical advantages over conventional approaches, such as easy-to-perform, non-invasive, providing real-time feedback, and is promising in detecting symptomless lung diseases at early stages.
Collapse
|
7
|
Demain JG, Choi YJ, Oh JW. The Impact of Climate Change on the Pollen Allergy and Sporulation of Allergic Fungi. CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-020-00277-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Plaza MP, Alcázar P, Oteros J, Galán C. Atmospheric pollutants and their association with olive and grass aeroallergen concentrations in Córdoba (Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45447-45459. [PMID: 32789634 PMCID: PMC8197725 DOI: 10.1007/s11356-020-10422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Cumulative data indicate that pollen grains and air pollution reciprocally interact. Climate changes seem also to influence pollen allergenicity. Depending on the plant species and on the pollutant type and concentration, this interaction may modify the features and metabolism of the pollen grain. Previous results revealed a significant positive correlation between pollen and aeroallergen, even using two different samplers. However, some discrepancy days have been also detected with low pollen but high aeroallergen concentrations. The main aim of the present paper is to find how the environmental factors, and specially pollutants, could affect the amount of allergens from olive and grass airborne pollen. Pollen grains were collected by a Hirst-type volumetric spore trap. Aeroallergen was simultaneously sampled by a low-volume Cyclone Burkard sampler. Phl p 5 and Ole e 1 aeroallergen were quantified by double-sandwich ELISA test. The data related to air pollutants, pollen grains, and aeroallergens were analyzed with descriptive statistic. Spearman's correlation test was used to identify potential correlations between these variables. There is a significant positive correlation between aeroallergens and airborne pollen concentrations, in both studied pollen types, so allergen concentrations could be explained with the pollen concentration. The days with unlinked events coincide between olive and grass allergens. Nevertheless, concerning to our results, pollutants do not affect the amount of allergens per pollen. Even if diverse pollutants show an unclear relationship with the allergen concentration, this association seems to be a casual effect of the leading role of some meteorological parameters.
Collapse
Affiliation(s)
- Maria Pilar Plaza
- Chair and Institute of Environmental Medicine, UNIKA-T, University of Augsburg - Technical University of Munich (TUM) and Helmholtz Zentrum München, Neusässer Str. 47, 86156, Augsburg, Germany.
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain.
| | - Purificación Alcázar
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain
| | - José Oteros
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
9
|
Abstract
Atopy and fungi have a long associative history. Fungal spores were among the first substances to which humans were noted to be sensitized. Humans contact fungal spores in the outdoor, indoor, and occupational environments. As organisms, fungi have their own kingdom and are found in all environmental niches on earth. Currently, fungal exposure in the indoor environment especially related to wet housing conditions is of particular concern. Sensitization rates to fungi typically exceed 5% of the general public with higher rates among the atopic population. Alternaria is the best studied of the allergic fungi; however, cross sensitization to multiple fungi is well documented. Recent advances in understanding mechanisms of the innate immune system are beginning to explain why the fungal atopy relationship is unique and why fungal sensitivity seems to extend to many non-atopic individuals. Evidence has been accumulated that indicates fungal allergen exposure can be via intact spores as well as spore and mycelial fragments. Germinating spores produce a different and often increased allergen picture. Much evidence has been developed through animal studies that extends the mechanisms surrounding long-term low-level fungal exposure. However, it should be emphasized that the presence of fungi in the air does not necessarily equate with illness. Indeed, in the absence of an atopic individual and/or a significant immune response against fungi, there is little evidence suggesting pathology. Allergists frequently deal with patients who have concerns about indoor fungal exposure and respiratory disease in those patients with an allergic response.
Collapse
|
10
|
Preventing the development of asthma: stopping the allergic march. Curr Opin Allergy Clin Immunol 2020; 19:161-168. [PMID: 30507718 DOI: 10.1097/aci.0000000000000501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To describe important precipitants of asthma and allergic disease, to highlight the links between these triggers and modifications within the immune system, and to examine innovative research regarding asthma prevention with focus on attenuating the atopic march. RECENT FINDINGS Allergen avoidance, allergen immunotherapy, IgE antagonists, prevention and treatment of respiratory infections, as well as management of gastrointestinal and respiratory dysbiosis have been considered as strategies in asthma prevention. Antenatal vitamin D supplementation in expectant mothers and aggressive control of atopic dermatitis to prevent the development of other allergic conditions were carefully studied as well. SUMMARY Asthma is a major cause of morbidity and lost productivity. Despite the tremendous burden of this disease, the scientific community is still struggling to find an effective means of prevention. The contribution of genetics to the development of atopy cannot be altered, but environmental changes as well as pharmacotherapy have been studied as modifiable risk factors. Many trials to date have been effective only for subjects with certain characteristics. This is likely because asthma is a heterogenous condition, with a variety of triggers and clinical phenotypes. Thus far, a universally effective prevention strategy has eluded us. However, if an intervention can be found to prevent asthma and the allergic march, it will greatly improve quality of life for millions of sufferers and decrease healthcare expenditures.
Collapse
|
11
|
Valiulis A, Bousquet J, Veryga A, Suprun U, Sergeenko D, Cebotari S, Borelli D, Pietikainen S, Banys J, Agache I, Billo NE, Bush A, Chkhaidze I, Dubey L, Fokkens WJ, Grigg J, Haahtela T, Julge K, Katilov O, Khaltaev N, Odemyr M, Palkonen S, Savli R, Utkus A, Vilc V, Alasevicius T, Bedbrook A, Bewick M, Chorostowska-Wynimko J, Danila E, Hadjipanayis A, Karseladze R, Kvedariene V, Lesinskas E, Münter L, Samolinski B, Sargsyan S, Sitkauskiene B, Somekh D, Vaideliene L, Valiulis A, Hellings PW. Vilnius Declaration on chronic respiratory diseases: multisectoral care pathways embedding guided self-management, mHealth and air pollution in chronic respiratory diseases. Clin Transl Allergy 2019; 9:7. [PMID: 30705747 PMCID: PMC6348633 DOI: 10.1186/s13601-019-0242-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/04/2019] [Indexed: 01/18/2023] Open
Abstract
Background Over 1 billion people suffer from chronic respiratory diseases such as asthma, COPD, rhinitis and rhinosinusitis. They cause an enormous burden and are considered as major non-communicable diseases. Many patients are still uncontrolled and the cost of inaction is unacceptable. A meeting was held in Vilnius, Lithuania (March 23, 2018) under the patronage of the Ministry of Health and several scientific societies to propose multisectoral care pathways embedding guided self-management, mHealth and air pollution in selected chronic respiratory diseases (rhinitis, chronic rhinosinusitis, asthma and COPD). The meeting resulted in the Vilnius Declaration that was developed by the participants of the EU Summit on chronic respiratory diseases under the leadership of Euforea. Conclusion The Vilnius Declaration represents an important step for the fight against air pollution in chronic respiratory diseases globally and has a clear strategic relevance with regard to the EU Health Strategy as it will bring added value to the existing public health knowledge.
Collapse
Affiliation(s)
- A Valiulis
- 1Department of Public Health, Clinic of Children's Diseases, and Institute of Health Sciences, Vilnius University Institute of Clinical Medicine, Vilnius, Lithuania.,European Academy of Paediatrics (EAP/UEMS-SP), Brussels, Belgium
| | - J Bousquet
- 3MACVIA-France, Fondation partenariale FMC VIA-LR, CHU Montpellier, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France.,INSERM U 1168, VIMA : Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France.,5UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Euforea, Brussels, Belgium.,7Charité, Berlin, Germany
| | - A Veryga
- Minister of Health, Vilnius, Lithuania
| | - U Suprun
- Minister of Health, Kiev, Ukraine
| | - D Sergeenko
- Minister of Labour, Health and Social Affairs, Tbilisi, Georgia
| | - S Cebotari
- Minister of Health, Labour and Social Protection, Chișinău, Moldova
| | | | | | - J Banys
- Lithuianian Academy of Sciences, Vilnius, Lithuania
| | - I Agache
- 15Faculty of Medicine, Transylvania University, Brasov, Romania
| | - N E Billo
- Global Alliance Against Chronic Respiratory Diseases (GARD), Joensuu, Finland
| | - A Bush
- 17Imperial College and Royal Brompton Hospital, London, UK
| | - I Chkhaidze
- 18Department of Pediatrics, and Iashvili Central Children's Hospital, Tbilisi State Medical University, Tbilisi, Georgia
| | - L Dubey
- 19Faculty of Postgraduate Education, Lviv National Medical University by Danylo Halytsky, Lviv, Ukraine
| | - W J Fokkens
- 20Department of Otorhinolaryngology, Amsterdam University Medical Centres, AMC, Amsterdam, The Netherlands
| | - J Grigg
- 21Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - T Haahtela
- 22Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - K Julge
- 23Children's Clinic, Tartu University Institute of Clinical Medicine, Tartu, Estonia
| | - O Katilov
- Vinnytsa National Medical University by Mykola Pyrogov, Vinnytsa, Ukraine
| | - N Khaltaev
- Global Alliance Against Chronic Respiratory Diseases (GARD-WHO), Geneva, Switzerland
| | - M Odemyr
- 26European Federation of Allergy and Airways Diseases Patients' Associations (EFA), Brussels, Belgium
| | - S Palkonen
- 26European Federation of Allergy and Airways Diseases Patients' Associations (EFA), Brussels, Belgium
| | - R Savli
- 26European Federation of Allergy and Airways Diseases Patients' Associations (EFA), Brussels, Belgium
| | - A Utkus
- 27Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania.,Association of Medical Schools in Europe, Berlin, Germany
| | - V Vilc
- State Institute of Phtysiopulmonology by Chiril Draganiuk, Chisinau, Moldova
| | - T Alasevicius
- 1Department of Public Health, Clinic of Children's Diseases, and Institute of Health Sciences, Vilnius University Institute of Clinical Medicine, Vilnius, Lithuania.,European Academy of Paediatrics (EAP/UEMS-SP), Brussels, Belgium
| | - A Bedbrook
- 3MACVIA-France, Fondation partenariale FMC VIA-LR, CHU Montpellier, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - M Bewick
- iQ4U Consultants Ltd, London, UK
| | - J Chorostowska-Wynimko
- 31Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - E Danila
- 32Clinic of Chest Diseases, Immunology and Allergology, Centre of Pulmonology and Allergology, Institute of Clinical Medicine, Vilnius University Medical Faculty, Vilnius, Lithuania
| | - A Hadjipanayis
- 33Medical School, European University of Cyprus, Nicosia, Cyprus
| | - R Karseladze
- 34Tbilisi State University Faculty of Medicine, Tbilisi, Georgia
| | - V Kvedariene
- 35Clinic of Infectious Chest Diseases, Dermatology and Allergology, Institute of Biomedical Sciences, Institute of Clinical Medicine, Vilnius University Faculty of Medicine, Vilnius, Lithuania
| | - E Lesinskas
- 36Clinic of ENT and Eye Diseases, Institute of Clinical Medicine, Vilnius University Medical Faculty, Vilnius, Lithuania
| | - L Münter
- Danish Commitee for Health Education, Copenhagen East, Denmark
| | - B Samolinski
- 38Department of Prevention of Envinronmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - S Sargsyan
- 39Institute of Child and Adolescent Health at Arabkir Medical Centre, Yerevan State Medical University, Yerevan, Armenia
| | - B Sitkauskiene
- 40Department of Immunology and Allergology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - D Somekh
- European Health Futures Forum (EHFF), Dromahair, Ireland
| | - L Vaideliene
- 42Clinic of Children's Diseases, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - A Valiulis
- 43Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Vilnius University Medical Faculty, Vilnius, Lithuania
| | - P W Hellings
- Euforea, Brussels, Belgium.,44Department of Otorhinolaryngology, University Hospital Leuven, Leuven, Belgium.,45Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Demain JG. Climate Change and the Impact on Respiratory and Allergic Disease: 2018. Curr Allergy Asthma Rep 2018; 18:22. [PMID: 29574605 DOI: 10.1007/s11882-018-0777-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review allergic respiratory disease related to indoor and outdoor exposures and to examine the impact of known and projected changes in climate. The global burden of disease directly attributed to climate change is very difficult to measure and becomes more challenging when the capacity of humans to adapt to these changes is taken into consideration. Allergic respiratory disease, such as asthma, is quite heterogenous, though closely associated with environmental and consequently immunologic interaction. Where is the tipping point? RECENT FINDINGS Our climate has been measurably changing for the past 100 years. It may indeed be the most significant health threat of the twenty-first century, and consequently tackling climate change may be the greatest health opportunity. The impacts of climate change on human health are varied and coming more into focus. Direct effects, such as heatwaves, severe weather, drought, and flooding, are apparent and frequently in the news. Indirect or secondary effects, such as changes in ecosystems and the impact on health, are less obvious. It is these changes in ecosystems that may have the greatest impact on allergic and respiratory diseases. This review will explore some ways that climate change, current and predicted, influences respiratory disease. Discussion will focus on changing pollen patterns, damp buildings with increased mold exposure, air pollution, and heat stress.
Collapse
Affiliation(s)
- Jeffrey G Demain
- Allergy, Asthma and Immunology Center of Alaska, 3841 Piper Street, Suite T4-054, Anchorage, AK, 99508, USA. .,Department of Pediatrics, University of Washington, 3841 Piper Street, Suite T4-054, Anchorage, AK, 99508, USA. .,WWAMI School of Medical Education, University of Alaska, 3841 Piper Street, Suite T4-054, Anchorage, AK, 99508, USA.
| |
Collapse
|