1
|
Jeremian R, Malinowski A, Oh ES, Gooderham M, Sibbald C, Yeung J, Asai Y, Piguet V, Jack CS. Epigenetic and biological age acceleration in children with atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100275. [PMID: 38826624 PMCID: PMC11141452 DOI: 10.1016/j.jacig.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 06/04/2024]
Abstract
Background Atopic dermatitis (AD) is a chronic inflammatory skin disease resulting from the complex interplay of genetic and environmental factors, meriting exploration using temporally dynamic biomarkers. DNA methylation-based algorithms have been trained to accurately estimate biological age, and deviation of predicted age from true age (epigenetic age acceleration) has been implicated in several inflammatory diseases, including asthma. Objective We sought to determine the role of epigenetic and biological aging, telomere length, and epigenetically inferred abundance of 7 inflammatory biomarkers in AD. Methods We performed DNA methylation-based analyses in a pediatric AD cohort (n = 24, mean ± standard deviation [SD] age 2.56 ± 0.28 years) and age-matched healthy subjects (n = 24, age 2.09 [0.15] years) derived from blood using 5 validated algorithms that assess epigenetic age (Horvath, Skin&Blood) and biological age (PhenoAge, GrimAge), telomere length (TelomereLength), and inflammatory biomarker levels. Results Epigenetic and biological age, but not telomere length, were accelerated in AD patients for 4 algorithms: Horvath (+0.88 years; 95% confidence interval [CI], 0.33 to 1.4; P = 2.3 × 10-3), Skin&Blood (+0.95 years; 95% CI, 0.67 to 1.2; P = 1.8 × 10-8), PhenoAge (+8.2 years; 95% CI, 3.4 to 13.0; P = 1.3 × 10-3), and GrimAge (+1.8 years 95% CI, 0.22 to 3.3; P = .026). Moreover, patients had increased levels of β2 microglobulin (+47,584.4 ng/mL; P = .029), plasminogen activation inhibitor 1 (+3,432.9 ng/mL; P = 1.1 × 10-5), and cystatin C (+31,691 ng/mL; P = 4.0 × 10-5), while levels of tissue inhibitor metalloproteinase 1 (-370.7 ng/mL; P = 7.5 × 10-4) were decreased compared to healthy subjects. Conclusion DNA methylation changes associated with epigenetic and biological aging, and inflammatory proteins appear early in life in pediatric AD and may be relevant clinical biomarkers of pathophysiology.
Collapse
Affiliation(s)
- Richie Jeremian
- Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre (MUHC) Center of Excellence for Atopic Dermatitis, Montreal, Quebec, Canada
| | - Alexandra Malinowski
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Edward S. Oh
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Melinda Gooderham
- SKiN Centre for Dermatology, Peterborough, Probity Medical Research, Waterloo; and Queen’s University, Kingston, Ontario, Canada
| | - Cathryn Sibbald
- Department of Paediatrics, Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jensen Yeung
- Department of Medicine, Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuka Asai
- Division of Dermatology, School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Vincent Piguet
- Department of Medicine, Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Dermatology, Women’s College Hospital, Toronto, Ontario, Canada
| | - Carolyn S. Jack
- Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre (MUHC) Center of Excellence for Atopic Dermatitis, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Leoni C, Bataclan M, Ito-Kureha T, Heissmeyer V, Monticelli S. The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells. Nat Commun 2023; 14:3862. [PMID: 37386028 PMCID: PMC10310798 DOI: 10.1038/s41467-023-39614-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Mast cells are central players in allergy and asthma, and their dysregulated responses lead to reduced quality of life and life-threatening conditions such as anaphylaxis. The RNA modification N6-methyladenosine (m6A) has a prominent impact on immune cell functions, but its role in mast cells remains unexplored. Here, by optimizing tools to genetically manipulate primary mast cells, we reveal that the m6A mRNA methyltransferase complex modulates mast cell proliferation and survival. Depletion of the catalytic component Mettl3 exacerbates effector functions in response to IgE and antigen complexes, both in vitro and in vivo. Mechanistically, deletion of Mettl3 or Mettl14, another component of the methyltransferase complex, lead to the enhanced expression of inflammatory cytokines. By focusing on one of the most affected mRNAs, namely the one encoding the cytokine IL-13, we find that it is methylated in activated mast cells, and that Mettl3 affects its transcript stability in an enzymatic activity-dependent manner, requiring consensus m6A sites in the Il13 3'-untranslated region. Overall, we reveal that the m6A machinery is essential in mast cells to sustain growth and to restrain inflammatory responses.
Collapse
Affiliation(s)
- Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| | - Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Taku Ito-Kureha
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
3
|
Kozik AJ, Begley LA, Lugogo N, Baptist A, Erb-Downward J, Opron K, Huang YJ. Airway microbiota and immune mediator relationships differ in obesity and asthma. J Allergy Clin Immunol 2023; 151:931-942. [PMID: 36572355 PMCID: PMC10566565 DOI: 10.1016/j.jaci.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Asthma and obesity are both complex conditions characterized by chronic inflammation, and obesity-related severe asthma has been associated with differences in the microbiome. However, whether the airway microbiome and microbiota-immune response relationships differ between obese persons with or without nonsevere asthma is unestablished. OBJECTIVE We compared the airway microbiome and microbiota-immune mediator relationships between obese and nonobese subjects, with and without mild-moderate asthma. METHODS We performed cross-sectional analyses of the airway (induced sputum) microbiome and cytokine profiles from blood and sputum using 16S ribosomal RNA gene and internal transcribed spacer region sequencing to profile bacteria and fungi, and multiplex immunoassays. Analysis tools included QIIME 2, linear discriminant analysis effect size (aka LEfSe), Piphillin, and Sparse inverse covariance estimation for ecological association inference (aka SPIEC-EASI). RESULTS Obesity, irrespective of asthma status, was associated with significant differences in sputum bacterial community structure and composition (unweighted UniFrac permutational analysis of variance, P = .02), including a higher relative abundance of Prevotella, Gemella, and Streptococcus species. Among subjects with asthma, additional differences in sputum bacterial composition and fungal richness were identified between obese and nonobese individuals. Correlation network analyses demonstrated differences between obese and nonobese asthma in relationships between cytokine mediators, and these together with specific airway bacteria involving blood PAI-1, sputum IL-1β, GM-CSF, IL-8, TNF-α, and several Prevotella species. CONCLUSION Obesity itself is associated with an altered sputum microbiome, which further differs in those with mild-moderate asthma. The distinct differences in airway microbiota and immune marker relationships in obese asthma suggest potential involvement of airway microbes that may affect mechanisms or outcomes of obese asthma.
Collapse
Affiliation(s)
- Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich.
| | - Lesa A Begley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Alan Baptist
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Ann Arbor, Mich
| | - John Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Kristopher Opron
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
4
|
Jo A, Choi TG, Han JY, Tabor MH, Kolliputi N, Lockey RF, Cho SH. Age-Related Increase of Collagen/Fibrin Deposition and High PAI-1 Production in Human Nasal Polyps. Front Pharmacol 2022; 13:845324. [PMID: 35712705 PMCID: PMC9193225 DOI: 10.3389/fphar.2022.845324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Our previous studies showed an age-related increased prevalence of nasal polyps (NP) and reduced production of S100A8/9 in elderly patients with chronic rhinosinusitis with NP (CRSwNP). In this study, we investigated an unbiased age-related gene expression profile in CRSwNP subjects and healthy controls, and further identified the differences in their tissue remodeling. Methods: Microarrays using NP and uncinate tissues from health controls (elderly, age ≥65 vs. non-elderly, age 18-49) were performed, and differentially regulated genes were analyzed. Quantitative real-time PCR (qPCR), Immunostaining, Periodic acid-Schiff (PAS), trichrome staining, Western blot, and ELISA were performed for further investigation. Results: Microarrays identified differentially expressed genes according to disease and age; 278 in NP vs. controls, 75 in non-elderly NP vs. non-elderly controls, and 32 in elderly NP vs. elderly controls. qPCR confirmed that the PLAT gene was downregulated and the SERPINB2 gene upregulated in NP vs. controls. The serous glandular cell-derived antimicrobial protein/peptide-related genes such as BPIFB3, BPIFB2, LPO, and MUC7 were remarkably reduced in NP, regardless of age. SERPINE1 gene (plasminogen activator inhibitor-1, PAI-1) expression was significantly increased in elderly NP versus elderly controls. IHC and western blot confirmed significantly decreased production of MUC7 and LPO in NP versus controls. There was a trend of age-related reduction of submucosal gland cells in normal controls. Trichrome and immunofluorescence staining demonstrated an age-related increase of collagen and fibrin deposition in NP, consistent with increased PAI-1 production. Conclusion: This study demonstrated age-related differential glandular remodeling patterns and fibrosis in NP and normal controls. PAI-1 expression was significantly increased in elderly NP versus elderly controls, suggesting PAI-1 as a potential treatment target in elderly NP.
Collapse
Affiliation(s)
- Ara Jo
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jung Yeon Han
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mark H. Tabor
- Department of Otolaryngology-Head and Neck Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard F. Lockey
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Seong H. Cho
- Division of Allergy-Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy-Immunology, James A. Haley Veterans’ Hospital, Tampa, FL, United States
| |
Collapse
|
5
|
Zhang L, Devanathadesikan Seshadri V, Abdel Aziz Ibrahim I, Han X, Ou L. Tilianin alleviates airway inflammation in ovalbumin-induced allergic asthma in mice through the regulation of Th2 cytokines and TGF–β1/Smad markers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Lad N, Murphy A, Parenti C, Nelson C, Williams N, Sharpe G, McTernan P. Asthma and obesity: endotoxin another insult to add to injury? Clin Sci (Lond) 2021; 135:2729-2748. [PMID: 34918742 PMCID: PMC8689194 DOI: 10.1042/cs20210790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response. Furthermore, it is increasingly believed that diet and an altered gut microbiota may play an important role in the pathology of such diverse diseases. More specifically, the inflammatory mediator endotoxin, which is a complex lipopolysaccharide (LPS) derived from the outer membrane cell wall of Gram-negative bacteria and is abundant within the gut microbiota, and may play a direct role alongside inhaled allergens in eliciting an inflammatory response in asthma. Endotoxin has immunogenic effects and is sufficiently microscopic to traverse the gut mucosa and enter the systemic circulation to act as a mediator of chronic low-grade inflammation in disease. Whilst the role of endotoxin has been considered in conditions of obesity, cardiovascular disease and T2DM, endotoxin as an inflammatory trigger in asthma is less well understood. This review has sought to examine the current evidence for the role of endotoxin in asthma, and whether the gut microbiota could be a dietary target to improve disease management. This may expand our understanding of endotoxin as a mediator of further low-grade inflammatory diseases, and how endotoxin may represent yet another insult to add to injury.
Collapse
Affiliation(s)
- Nikita Lad
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Alice M. Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Cristina Parenti
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Carl P. Nelson
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Neil C. Williams
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Graham R. Sharpe
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Philip G. McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| |
Collapse
|
7
|
Yao Z, Fu Y. Glycyrrhizic acid restrains airway inflammation and remodeling in asthma via the TGF-β1/Smad signaling pathway. Exp Ther Med 2021; 21:461. [PMID: 33747193 PMCID: PMC7967847 DOI: 10.3892/etm.2021.9892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
The anti-inflammatory effects of glycyrrhizic acid (GA) against asthma have previously been reported; however, the underlying molecular mechanism of GA in asthma has not yet been elucidated. Thus, the present study aimed to determine the function and potential molecular mechanism of GA for modulating the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in asthma-associated airway inflammation and remodeling. In order to study the mechanism of GA on airway inflammation and airway remodeling in asthmatic mice, a mouse model of chronic asthma was constructed. A total of 50 female mice were randomly assigned into five groups (10 mice/group), as follows: Blank group, asthma group, GA group, dexamethasone group and GA + TGF-β1 group. Hematoxylin and eosin, and Masson staining were performed to assess the airway inflammation and remodeling in mice with ovalbumin (OVA)-induced asthma. The serum levels of interleukin (IL)-4, IL-5, IL-13 and IL-17 in mice were assessed via the enzyme-linked immunosorbent assay. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the levels of TGF-β1 and Smads in lung tissues of each group of mice. The results demonstrated that GA and dexamethasone treatment mitigated airway inflammation, inflammatory cell infiltration and airway remolding, with a concomitant decrease in the expression levels of IL-4, IL-5, IL-13 and IL-17, in mice with OVA-induced asthma. In addition, the levels of TGF-β1 and Smad2 notably decreased, while Smad7 expression increased in the GA and dexamethasone groups compared with the asthma group. Furthermore, histopathological morphometry exhibited significantly elevated inflammatory cell infiltration, airway wall and smooth muscle, collagen secretion and inflammatory cytokines in the serum of mice in the GA + TGF-β1 group compared with the GA group. Taken together, the results of the present study suggest that GA ameliorates airway inflammation and remodeling via the TGF-β1/Smad signaling pathway in mice with asthma.
Collapse
Affiliation(s)
- Ziping Yao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yanling Fu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
- Correspondence to: Dr Yanling Fu, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 11 North Third Ring East Road, Chaoyang, Beijing 100029, P.R. China
| |
Collapse
|
8
|
The Role of CD40 in Allergic Rhinitis and Airway Remodelling. Mediators Inflamm 2021; 2021:6694109. [PMID: 33976586 PMCID: PMC8087476 DOI: 10.1155/2021/6694109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/07/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Allergic rhinitis (AR) affects millions of people and is lack of effective treatment. CD40 is an important costimulatory molecule in immunity. However, few studies have focused on the role of CD40 in AR. Methods In this study, we built mouse model of chronic AR. The mice were divided into the AR, control, intravenous CD40 siRNA, and nasal CD40 siRNA groups (n = 6 each). We detected OVA-sIgE, IL-4, IL-5, IL-13, IL-10, IFN-γ, and TGF-β levels in serum and supernatant by ELISA, CD40+ splenic DCs, and Foxp3+ Tregs by flow cytometry and CD40 mRNA by RT2-PCR. We also used PAS and MT stains to assess tissue remodelling. Results (1) The OVA-sIgE, IL-4, IL-5, and IL-13 levels in the serum or supernatant of nasal septal membrane of AR mice were significantly higher than control. After treated with CD40 siRNA, those indicators were significantly decreased. The IFN-γ, IL-10, and TGF-β levels in AR mice were significantly lower than that in control and were increased by administration of CD40 siRNA. (2) AR mice had significantly fewer Foxp3+ Tregs in the spleen than control mice. After treated with CD40 siRNA, AR mice had significantly more Foxp3+ Tregs. (3) AR mice exhibited a significantly higher CD40 mRNA levels than control. Administration of CD40 siRNA significantly reduced the CD40 mRNA level. (4) The AR mice showed significantly greater collagen deposition than the control in MT staining. Applications of CD40 siRNA significantly reduced the collagen deposition in AR mice. Conclusion CD40 siRNA therapy shows promise for chronic AR as it significantly attenuated allergic symptoms and Th2-related inflammation and upregulated Foxp3+ Tregs. CD40 plays a role in tissue remodelling in AR, which can be inhibited by CD40 siRNA application.
Collapse
|
9
|
Grayson MH, Feldman S, Prince BT, Patel PJ, Matsui EC, Apter AJ. Advances in asthma in 2017: Mechanisms, biologics, and genetics. J Allergy Clin Immunol 2018; 142:1423-1436. [PMID: 30213625 DOI: 10.1016/j.jaci.2018.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
This review summarizes some of the most significant advances in asthma research over the past year. We first focus on novel discoveries in the mechanism of asthma development and exacerbation. This is followed by a discussion of potential new biomarkers, including the use of radiographic markers of disease. Several new biologics have become available to the clinician in the past year, and we summarize these advances and how they can influence the clinical delivery of asthma care. After this, important findings in the genetics of asthma and heterogeneity in phenotypes of the disease are explored, as is the role the environment plays in shaping the development and exacerbation of asthma. Finally, we conclude with a discussion of advances in health literacy and how they will affect asthma care.
Collapse
Affiliation(s)
- Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio.
| | - Scott Feldman
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio
| | - Priya J Patel
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School, University of Texas-Austin, Austin, Tex
| | - Andrea J Apter
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| |
Collapse
|