1
|
Teng J, Li Y, Zhao Y, Zhang Y, Chen D, Liu J, Cui M, Ji X. Integrated analysis of proteome and transcriptome revealed changes in multiple signaling pathways involved in immunity in the northern snakehead ( Channa argus) during Nocardia seriolae infection. Front Cell Infect Microbiol 2024; 14:1482901. [PMID: 39717544 PMCID: PMC11663741 DOI: 10.3389/fcimb.2024.1482901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
The northern snakehead (Channa argus) is a valuable aquaculture species across certain Asian countries, contributing significantly to economic prosperity and dietary needs. However, its productivity faces significant challenges, particularly from diseases such as nocardiosis, caused by Nocardia seriolae. To date, the majority of research efforts have focused on describing the observed phenomena related to N. seriolae infection. However, there remains a notable gap in knowledge concerning the infectivity of N. seriolae and the immune response it elicits. To better understand the modulation of the immune responses to N. seriolae infection in snakeheads, we investigated the splenic proteome profiles. Specifically, we compared the profiles between uninfected northern snakehead specimens and those infected with N. seriolae at 96 h using the label-free data-independent acquisition methodology. A total of 700 differentially expressed proteins (DEPs) were obtained. Of these, 353 proteins exhibited upregulation, whereas 347 proteins displayed downregulation after the infection. The DEPs were mapped to the reference canonical pathways in Kyoto Encyclopedia of Genes and Genomes database, revealing several crucial pathways that were activated following N. seriolae infection. Noteworthy, among these were pathways such as ferroptosis, complement and coagulation cascades, chemokine signaling, tuberculosis, natural killer cell-mediated cytotoxicity, and Th17 cell differentiation. Furthermore, protein-protein interaction networks were constructed to elucidate the interplay between immune-related DEPs. These results revealed expression changes in multiple signaling pathways during the initial colonization phase of N. seriolae. This discovery offers novel insights into the infection mechanisms and host interaction dynamics associated with N. seriolae.
Collapse
Affiliation(s)
- Jian Teng
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Yu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Duanduan Chen
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, China
| | - Jianru Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, China
| | - Mengyao Cui
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiangshan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Huang Y, Xu Z, Holtappels G, Shen Y, Van Zele T, Wen W, Zhang L, Zhang N, Bachert C. MZB1-expressing cells are essential for local immunoglobulin production in chronic rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol 2024; 132:198-207.e14. [PMID: 37852603 DOI: 10.1016/j.anai.2023.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The expression of MZB1 genes is significantly elevated in patients who have chronic rhinosinusitis with nasal polyp (CRSwNP) disease compared with healthy controls. OBJECTIVE To characterize MZB1-positive B cells in CRSwNP and to estimate the contribution of distinct subsets of B cells to the local overproduction of immunoglobulins. METHODS Single-cell RNA-sequencing with Cellular Indexing of Transcriptomes and Epitopes by Sequencing technology, Switching Mechanism At the 5' end of RNA Template sequencing, flow cytometry, immunohistochemistry and immunofluorescence staining, Western blot, QuantiGene Plex assay, B-cell ImmunoSpot assay, Luminex assay, and enzyme-linked immunosorbent assay were performed. RESULTS Significantly higher mRNA expression of MZB1 and HSP90B1 was found in type 2 CRSwNP compared with controls. In CRSwNP, MZB1 expression correlated with the local production of IgE. MZB1 could be colocalized with plasma and mature B cells, especially marginal zone (MZ) B cells. Single-cell transcriptome and epitope studies revealed prominent populations of B cells in type 2 CRSwNP with unexpectedly high MZB1 gene expression. The MZ B-cell population was significantly increased in CRSwNP compared with healthy controls in both peripheral blood mononuclear cells and nasal tissue single-cell suspensions. When those single cells were cultured overnight, the MZ B-cell numbers were positively correlated with local IgE production but negatively correlated with local IgM production. In vitro, MZB1 stimulation up-regulated the mRNA expression of IgE. CONCLUSION MZB1 was primarily expressed by plasma and mature B cells in nasal mucosa. MZB1 expression level was increased in CRSwNP compared with controls. MZB1 contributed to the local IgE production in type 2 CRSwNP.
Collapse
Affiliation(s)
- Yanran Huang
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, People's Republic of China; Departments of Allergy and Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People's Republic of China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, People's Republic of China
| | - Zhaofeng Xu
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, People's Republic of China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Yang Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Thibaut Van Zele
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, People's Republic of China; Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Luo Zhang
- Departments of Allergy and Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, People's Republic of China.
| | - Nan Zhang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium.
| | - Claus Bachert
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, People's Republic of China; Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden; Clinic for ENT diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
3
|
Gu H, Fu Y, Yu B, Luo L, Kang D, Xie M, Jing Y, Chen Q, Zhang X, Lai J, Guan F, Forsman H, Shi J, Yang L, Lei J, Du X, Zhang X, Liu C. Ultra-high static magnetic fields cause immunosuppression through disrupting B-cell peripheral differentiation and negatively regulating BCR signaling. MedComm (Beijing) 2023; 4:e379. [PMID: 37789963 PMCID: PMC10542999 DOI: 10.1002/mco2.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023] Open
Abstract
To increase the imaging resolution and detection capability, the field strength of static magnetic fields (SMFs) in magnetic resonance imaging (MRI) has significantly increased in the past few decades. However, research on the side effects of high magnetic field is still very inadequate and the effects of SMF above 1 T (Tesla) on B cells have never been reported. Here, we show that 33.0 T ultra-high SMF exposure causes immunosuppression and disrupts B cell differentiation and signaling. 33.0 T SMF treatment resulted in disturbance of B cell peripheral differentiation and antibody secretion and reduced the expression of IgM on B cell membrane, and these might be intensity dependent. In addition, mice exposed to 33.0 T SMF showed inhibition on early activation of B cells, including B cell spreading, B cell receptor clustering and signalosome recruitment, and depression of both positive and negative molecules in the proximal BCR signaling, as well as impaired actin reorganization. Sequencing and gene enrichment analysis showed that SMF stimulation also affects splenic B cells' transcriptome and metabolic pathways. Therefore, in the clinical application of MRI, we should consider the influence of SMF on the immune system and choose the optimal intensity for treatment.
Collapse
Affiliation(s)
- Heng Gu
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Yufan Fu
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Biao Yu
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiChina
| | - Li Luo
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Danqing Kang
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Miaomiao Xie
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Yukai Jing
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Qiuyue Chen
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Xin Zhang
- GeneMind Biosciences Company LimitedShenzhenChina
| | - Juan Lai
- GeneMind Biosciences Company LimitedShenzhenChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGoteborgSweden
| | - Junming Shi
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Jiahui Lei
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| | - Xingrong Du
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Xin Zhang
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiChina
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefeiAnhuiChina
| | - Chaohong Liu
- Department of Pathogen BiologySchool of Basic MedicineTongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious DiseaseHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Zhao X, Zheng T, Gao T, Song N. Whole-genome resequencing reveals genetic diversity and selection signals in warm temperate and subtropical Sillago sinica populations. BMC Genomics 2023; 24:547. [PMID: 37715145 PMCID: PMC10503073 DOI: 10.1186/s12864-023-09652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Genetic diversity and heterogeneous genomic signatures in marine fish populations may result from selection pressures driven by the strong effects of environmental change. Nearshore fishes are often exposed to complex environments and human activities, especially those with small ranges. However, studies on genetic diversity and population selection signals in these species have mostly been based on a relatively small number of genetic markers. As a newly recorded species of Sillaginidae, the population genetics and genomic selection signals of Sillago sinica are fragmented or even absent. RESULTS To address this theoretical gap, we performed whole-genome resequencing of 43 S. sinica individuals from Dongying (DY), Qingdao (QD) and Wenzhou (WZ) populations and obtained 4,878,771 high-quality SNPs. Population genetic analysis showed that the genetic diversity of S. sinica populations was low, but the genetic diversity of the WZ population was higher than that of the other two populations. Interestingly, the three populations were not strictly clustered within the group defined by their sampling location but showed an obvious geographic structure signal from the warm temperate to the subtropics. With further analysis, warm-temperate populations exhibited strong selection signals in genomic regions related to nervous system development, sensory function and immune function. However, subtropical populations showed more selective signalling for environmental tolerance and stress signal transduction. CONCLUSIONS Genome-wide SNPs provide high-quality data to support genetic studies and localization of selection signals in S. sinica populations. The reduction in genetic diversity may be related to the bottleneck effect. Considering that low genetic diversity leads to reduced environmental adaptability, conservation efforts and genetic diversity monitoring of this species should be increased in the future. Differences in genomic selection signals between warm temperate and subtropical populations may be related to human activities and changes in environmental complexity. This study deepened the understanding of population genetics and genomic selection signatures in nearshore fishes and provided a theoretical basis for exploring the potential mechanisms of genomic variation in marine fishes driven by environmental selection pressures.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China
| | - Tianlun Zheng
- Zhejiang Fisheries Technical Extension Center, Hangzhou, 310023, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Na Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, Shandong, China.
| |
Collapse
|
5
|
Li W, Sun Y, Yu L, Chen R, Gan R, Qiu L, Sun G, Chen J, Zhou L, Ding Y, Du H, Shu Z, Zhang Z, Tang X, Chen Y, Zhao X, Zhao Q, An Y. Multiple Immune Defects in Two Patients with Novel DOCK2 Mutations Result in Recurrent Multiple Infection Including Live Attenuated Virus Vaccine. J Clin Immunol 2023:10.1007/s10875-023-01466-y. [PMID: 36947335 PMCID: PMC10032263 DOI: 10.1007/s10875-023-01466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
The dedicator of cytokinesis 2(DOCK2) protein, an atypical guanine nucleotide exchange factor (GEFs), is a member of the DOCKA protein subfamily. DOCK2 protein deficiency is characterized by early-onset lymphopenia, recurrent infections, and lymphocyte dysfunction, which was classified as combined immune deficiency with neutrophil abnormalities as well. The only cure is hematopoietic stem cell transplantation. Here, we report two patients harboring four novel DOCK2 mutations associated with recurrent infections including live attenuated vaccine-related infections. The patient's condition was partially alleviated by symptomatic treatment or intravenous immunoglobulin. We also confirmed defects in thymic T cell output and T cell proliferation, as well as aberrant skewing of T/B cell subset TCR-Vβ repertoires. In addition, we noted neutrophil defects, the weakening of actin polymerization, and BCR internalization under TCR/BCR activation. Finally, we found that the DOCK2 protein affected antibody affinity although with normal total serum immunoglobulin. The results reported herein expand the clinical phenotype, the pathogenic DOCK2 mutation database, and the immune characteristics of DOCK2-deficient patients.
Collapse
Affiliation(s)
- Wenhui Li
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuting Sun
- School of Medicine, Chongqing University, Chongqing, China
| | - Lang Yu
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Chen
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Gan
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Luyao Qiu
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Gan Sun
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongqiang Du
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Shu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400014, People's Republic of China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Kunimura K, Akiyoshi S, Uruno T, Matsubara K, Sakata D, Morino K, Hirotani K, Fukui Y. DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug-induced anaphylaxis. J Allergy Clin Immunol 2023:S0091-6749(23)00209-9. [PMID: 36804596 DOI: 10.1016/j.jaci.2023.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Sayaka Akiyoshi
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Matsubara
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Morino
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Hirotani
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fukui
- Department of Immunobiology and Neuroscience, Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|
8
|
Yang M, Huang X, Shen F, Yi J, Meng Y, Chen Y. Lef1 is transcriptionally activated by Klf4 and suppresses hyperoxia-induced alveolar epithelial cell injury. Exp Lung Res 2022; 48:213-223. [PMID: 35950640 DOI: 10.1080/01902148.2022.2108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is a long-term respiratory condition. More than a quarter of extremely premature newborns are harmed by BPD. At present, there are no apparent effective drugs or treatments for the condition. In this study, we aimed to investigate the functional role and mechanism of lymphoid enhancer-binding factor 1 (Lef1) in BPD in vitro. MATERIALS AND METHODS Blood samples from BPD patients and healthy volunteers were gathered, and an in vitro model of BPD was developed in alveolar epithelial cells (AECs) MLE-12 induced by hyperoxia. Then expression of krüppel-like factor 4 (KLF4/Klf4) and LEF1/Lef1 were evaluated. After Lef1 overexpressing plasmid and the vector were transfected into hyperoxia-induced MLE-12 cells, cell proliferation assays were carried out. Cell apoptosis was investigated by a flow cytometry assay, and apoptosis related proteins Bcl-2, cleaved-caspase 3 and 9 were analyzed by a western blot assay. The binding between Klf4 and Lef1 promoter predicted on the JASPAR website was verified using luciferase and ChIP assays. For further study of the mechanism of Klf4 and Lef1 in BPD, gain-of-function experiments were performed. RESULTS The mRNA levels of KLF4/Klf4 and LEF1/Lef1 were diminished in clinical BPD serum samples and hyperoxia-induced MLE-12 cells. Overexpression of Lef1 stimulated AEC proliferation and suppressed AEC apoptosis induced by hyperoxia. Mechanically, Klf4 bound to Lef1's promoter region and aids transcription. Moreover, the results of gain-of-function experiments supported that Klf4 could impede AEC damage induced by hyperoxia via stimulating Lef1. CONCLUSION Klf4 and Lef1 expression levels were declined in hyperoxia-induced AECs, and Lef1 could be transcriptionally activated by Klf4 and protect against hyperoxia-induced AEC injury in BPD. As a result, Lef1 might become a prospective therapeutic target for BPD.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory, Hunan Children's Hospital, Changsha, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, China
| | - Juanjuan Yi
- Department of Neonate, Hunan Children's Hospital, Changsha, China
| | - Yanni Meng
- Department of Respiratory, Hunan Children's Hospital, Changsha, China
| | - Yanping Chen
- Department of Respiratory, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
9
|
Zhu Y, Gu H, Yang L, Li N, Chen Q, Kang D, Lin S, Jing Y, Jiang P, Chen Q, Luo L, Liu J, Chang J, Li Z, Wang Y, Dai X, Miller H, Westerberg LS, Park C, Kubo M, Gong Q, Dong L, Liu C. Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clin Transl Med 2022; 12:e887. [PMID: 35875970 PMCID: PMC9309749 DOI: 10.1002/ctm2.887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CCR2 is involved in maintaining immune homeostasis and regulating immune function. This study aims to elucidate the mechanism by which CCR2 regulates B-cell signalling. METHODS In Ccr2-knockout mice, the development and differentiation of B cells, BCR proximal signals, actin movement and B-cell immune response were determined. Besides, the level of CCR2 in PBMC of SLE patients was analysed by bioinformatics. RESULTS CCR2 deficiency reduces the proportion and number of follicular B cells, upregulates BCR proximal signalling and enhances the oxidative phosphorylation of B cells. Meanwhile, increased actin filaments aggregation and its associated early-activation events of B cells are also induced by CCR2 deficiency. The MST1/mTORC1/STAT1 axis in B cells is responsible for the regulation of actin remodelling, metabolic activities and transcriptional signalling, specific MST1, mTORC1 or STAT1 inhibitor can rescue the upregulated BCR signalling. Glomerular IgG deposition is obvious in CCR2-deficient mice, accompanied by increased anti-dsDNA IgG level. Additionally, the CCR2 expression in peripheral B cells of SLE patients is decreased than that of healthy controls. CONCLUSIONS CCR2 can utilise MST1/mTORC1/STAT1 axis to regulate BCR signalling. The interaction between CCR2 and BCR may contribute to exploring the mechanism of autoimmune diseases.
Collapse
Affiliation(s)
- Yingzi Zhu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Gu
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Na Li
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Qiuyue Chen
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengyan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yukai Jing
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qianglin Chen
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Li Luo
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenzhen Li
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yi Wang
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heather Miller
- Department of Research and DevelopmentBD BiosciencesSan JoseCaliforniaUnited States
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Chan‐Sik Park
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐guSeoulKorea
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS)RIKEN Yokohama InstituteKanagawaJapan
| | - Quan Gong
- Department of Immunology, School of MedicineYangtze UniversityJingzhouChina
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
Guo X, Adeyanju O, Sunil C, Mandlem V, Olajuyin A, Huang S, Chen SY, Idell S, Tucker TA, Qian G. DOCK2 contributes to pulmonary fibrosis by promoting lung fibroblast to myofibroblast transition. Am J Physiol Cell Physiol 2022; 323:C133-C144. [PMID: 35584329 PMCID: PMC9273279 DOI: 10.1152/ajpcell.00067.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common chronic interstitial lung disease and is characterized by progressive scarring of the lung. Transforming growth factor-β (TGF-β) signaling plays an essential role in IPF and drives fibroblast to myofibroblast transition (FMT). Dedicator of cytokinesis 2 (DOCK2) is known to regulate diverse immune functions by activating Rac and has been recently implicated in pleural fibrosis. We now report a novel role of DOCK2 in pulmonary fibrosis development by mediating FMT. In primary normal and IPF human lung fibroblasts (HLFs), TGF-β induced DOCK2 expression concurrent with FMT markers, smooth muscle α-actin (α-SMA), collagen-1, and fibronectin. Knockdown of DOCK2 significantly attenuated TGF-β-induced expression of these FMT markers. In addition, we found that the upregulation of DOCK2 by TGF-β is dependent on both Smad3 and ERK pathways as their respective inhibitors blocked TGF-β-mediated induction. TGF-β also stabilized DOCK2 protein, which contributes to increased DOCK2 expression. In addition, DOCK2 was also dramatically induced in the lungs of patients with IPF and in bleomycin, and TGF-β induced pulmonary fibrosis in C57BL/6 mice. Furthermore, increased lung DOCK2 expression colocalized with the FMT marker α-SMA in the bleomycin-induced pulmonary fibrosis model, implicating DOCK2 in the regulation of lung fibroblast phenotypic changes. Importantly, DOCK2 deficiency also attenuated bleomycin-induced pulmonary fibrosis and α-SMA expression. Taken together, our study demonstrates a novel role of DOCK2 in pulmonary fibrosis by modulating FMT and suggests that targeting DOCK2 may present a potential therapeutic strategy for the prevention or treatment of IPF.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Oluwaseun Adeyanju
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Venkatakirankumar Mandlem
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ayobami Olajuyin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The University of Michigan-Ann Arbor, Ann Arbor, Michigan
| | - Shi-You Chen
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, Missouri
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
- The Texas Lung Injury Institute, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
- The Texas Lung Injury Institute, Tyler, Texas
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
11
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Li W, Li J, He N, Dai X, Wang Z, Wang Y, Ni X, Zeng D, Zhang D, Zeng Y, Pan K. Molecular mechanism of enhancing the immune effect of the Newcastle disease virus vaccine in broilers fed with Bacillus cereus PAS38. Food Funct 2021; 12:10903-10916. [PMID: 34647113 DOI: 10.1039/d1fo01777b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.
Collapse
Affiliation(s)
- Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Chengdu Agricultural College, Chengdu, 611130, China
| | - Nianjia He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Zhenhua Wang
- Chengdu Agricultural College, Chengdu, 611130, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Huang T, Yan T, Chen G, Zhang C. Development and Validation of a Gene Mutation-Associated Nomogram for Hepatocellular Carcinoma Patients From Four Countries. Front Genet 2021; 12:714639. [PMID: 34621291 PMCID: PMC8490742 DOI: 10.3389/fgene.2021.714639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Genomic alteration is the basis of occurrence and development of carcinoma. Specific gene mutation may be associated with the prognosis of hepatocellular carcinoma (HCC) patients without distant or lymphatic metastases. Hence, we developed a nomogram based on prognostic gene mutations that could predict the overall survival of HCC patients at early stage and provide reference for immunotherapy. Methods: HCC cohorts were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The total patient was randomly assigned to training and validation sets. Univariate and multivariate cox analysis were used to select significant variables for construction of nomogram. The support vector machine (SVM) and principal component analysis (PCA) were used to assess the distinguished effect of significant genes. Besides, the nomogram model was evaluated by concordance index, time-dependent receiver operating characteristics (ROC) curve, calibration curve and decision curve analysis (DCA). Gene Set Enrichment Analysis (GSEA), CIBERSORT, Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenoscore (IPS) were utilized to explore the potential mechanism of immune-related process and immunotherapy. Results: A total of 695 HCC patients were selected in the process including 495 training patients and 200 validation patients. Nomogram was constructed based on T stage, age, country, mutation status of DOCK2, EYS, MACF1 and TP53. The assessment showed the nomogram has good discrimination and high consistence between predicted and actual data. Furthermore, we found T cell exclusion was the potential mechanism of malignant progression in high-risk group. Meanwhile, low-risk group might be sensitive to immunotherapy and benefit from CTLA-4 blocker treatment. Conclusion: Our research established a nomogram based on mutant genes and clinical parameters, and revealed the underlying association between these risk factors and immune-related process.
Collapse
Affiliation(s)
- Tingping Huang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Yan
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gonghai Chen
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Yang L, Li N, Yang D, Chen A, Tang J, Jing Y, Kang D, Jiang P, Dai X, Luo L, Chen Q, Chang J, Liu J, Gu H, Huang Y, Chen Q, Li Z, Zhu Y, Miller H, Chen Y, Qiu L, Mei H, Hu Y, Gong Q, Liu C. CCL2 regulation of MST1-mTOR-STAT1 signaling axis controls BCR signaling and B-cell differentiation. Cell Death Differ 2021; 28:2616-2633. [PMID: 33879857 PMCID: PMC8408168 DOI: 10.1038/s41418-021-00775-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Chemokines are important regulators of the immune system, inducing specific cellular responses by binding to receptors on immune cells. In SLE patients, decreased expression of CCL2 on mesenchymal stem cells (MSC) prevents inhibition of B-cell proliferation, causing the characteristic autoimmune phenotype. Nevertheless, the intrinsic role of CCL2 on B-cell autoimmunity is unknown. In this study using Ccl2 KO mice, we found that CCL2 deficiency enhanced BCR signaling by upregulating the phosphorylation of the MST1-mTORC1-STAT1 axis, which led to reduced marginal zone (MZ) B cells and increased germinal center (GC) B cells. The abnormal differentiation of MZ and GC B cells were rescued by in vivo inhibition of mTORC1. Additionally, the inhibition of MST1-mTORC1-STAT1 with specific inhibitors in vitro also rescued the BCR signaling upon antigenic stimulation. The deficiency of CCL2 also enhanced the early activation of B cells including B-cell spreading, clustering and signalosome recruitment by upregulating the DOCK8-WASP-actin axis. Our study has revealed the intrinsic role and underlying molecular mechanism of CCL2 in BCR signaling, B-cell differentiation, and humoral response.
Collapse
Affiliation(s)
- Lu Yang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Di Yang
- grid.488412.3Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Ministry of Education Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Anwei Chen
- grid.488412.3Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Ministry of Education Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China ,grid.488412.3Department of Dermatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlong Tang
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiang Chang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Gu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Huang
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianglin Chen
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Zhenzhen Li
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Zhu
- grid.33199.310000 0004 0368 7223Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- grid.94365.3d0000 0001 2297 5165Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Yan Chen
- grid.413390.cThe Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liru Qiu
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- grid.33199.310000 0004 0368 7223Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- grid.33199.310000 0004 0368 7223Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- grid.33199.310000 0004 0368 7223Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Li Z, Zhang W, Luo F, Li J, Yang W, Zhu B, Wu Q, Wang X, Sun C, Xie Y, Xu B, Wang Z, Qian F, Chen J, Wan Y, Hu W. Allergen-Specific Treg Cells Upregulated by Lung-Stage S. japonicum Infection Alleviates Allergic Airway Inflammation. Front Cell Dev Biol 2021; 9:678377. [PMID: 34169075 PMCID: PMC8217774 DOI: 10.3389/fcell.2021.678377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.
Collapse
Affiliation(s)
- Zhidan Li
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Hu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Du Z, Chen A, Huang L, Dai X, Chen Q, Yang D, Li L, Miller H, Westerberg L, Ding Y, Tang X, Kubo M, Jiang L, Zhao X, Wang H, Liu C. STAT3 couples with 14-3-3σ to regulate BCR signaling, B-cell differentiation, and IgE production. J Allergy Clin Immunol 2021; 147:1907-1923.e6. [PMID: 33045280 DOI: 10.1016/j.jaci.2020.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND STAT3 or dedicator of cytokinesis protein 8 (Dock8) loss-of-function (LOF) mutations cause hyper-IgE syndrome. The role of abnormal T-cell function has been extensively investigated; however, the contribution of B-cell-intrinsic dysfunction to elevated IgE levels is unclear. OBJECTIVE We sought to determine the underlying molecular mechanism of how STAT3 regulates B-cell receptor (BCR) signaling, B-cell differentiation, and IgE production. METHODS We used samples from patients with STAT3 LOF mutation and samples from the STAT3 B-cell-specific knockout (KO) mice Mb1CreStat3flox/flox mice (B-STAT3 KO) to investigate the mechanism of hyper-IgE syndrome. RESULTS We found that the peripheral B-cell homeostasis in B-STAT3 KO mice mimicked the phenotype of patients with STAT3 LOF mutation, having decreased levels of follicular and germinal center B cells but increased levels of marginal zone and IgE+ B cells. Furthermore, B-STAT3 KO B cells had reduced BCR signaling following antigenic stimulation owing to reduced BCR clustering and decreased accumulation of Wiskott-Aldrich syndrome protein and F-actin. Excitingly, a central hub protein, 14-3-3σ, which is essential for the increase in IgE production, was enhanced in the B cells of B-STAT3 KO mice and patients with STAT3 LOF mutation. The increase of 14-3-3σ was associated with increased expression of the upstream mediator, microRNA146A. Inhibition of 14-3-3σ with R18 peptide in B-STAT3 KO mice rescued the BCR signaling, follicular, germinal center, and IgE+ B-cell differentiation to the degree seen in wild-type mice. CONCLUSIONS Altogether, our study has established a novel regulatory pathway of STAT3-miRNA146A-14-3-3σ to regulate BCR signaling, peripheral B-cell differentiation, and IgE production.
Collapse
Affiliation(s)
- Zuochen Du
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Anwei Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liling Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Mont
| | - Lisa Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yuan Ding
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science, RIKEN Yokohama Institute, Kanagawa, Japan
| | - Liping Jiang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China; International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Hua Wang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Ji L, Chen Y, Xie L, Liu Z. The role of Dock2 on macrophage migration and functions during Citrobacter rodentium infection. Clin Exp Immunol 2021; 204:361-372. [PMID: 33662140 DOI: 10.1111/cei.13590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Dedicator of cytokinesis 2 (Dock2), an atypical guanine exchange factor, is specifically expressed on immune cells and mediates cell adhesion and migration by activating Rac and regulates actin cytoskeleton remodeling. It plays a crucial role in the migration, formation of immune synapses, cell proliferation, activation of T and B lymphocytes and chemotaxis of pDCs and neutrophils. However, in-vivo physiological functions of Dock2 have been relatively seldom studied. Our previous studies showed that Dock2-/- mice were highly susceptible to colitis induced by Citrobacter rodentium infection, and in early infection, Dock2-/- mice had defects in macrophage migration. However, the specific roles of Dock2 in the migration and functions of macrophages are not clear. In this study, we found that the expression of chemokines such as chemokine (C-C motif) ligand (CCL)4 and CCL5 and chemokine receptors such as chemokine (C-C motif) receptor (CCR)4 and CCR5 in bone marrow-derived macrophages (BMDM) of Dock2-/- mice decreased after infection, which were supported by the in-vivo infection experimental results; the Transwell experiment results showed that Dock2-/- BMDM had a defect in chemotaxis. The bacterial phagocytic and bactericidal experiment results also showed that Dock2-/- BMDM had the defects of bacterial phagocytosis and killing. Furthermore, the adoptive transfer of wild-type BMDM alleviated the susceptibility of Dock2-/- mice to C. rodentium infection. Our results show that Dock2 affects migration and phagocytic and bactericidal ability of macrophages by regulating the expression of chemokines, chemokine receptors and their responses to chemokine stimulation, thus playing an essential role in the host defense against enteric bacterial infection.
Collapse
Affiliation(s)
- L Ji
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Y Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - L Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Z Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.,Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
18
|
Xu X, Su Y, Wu K, Pan F, Wang A. DOCK2 contributes to endotoxemia-induced acute lung injury in mice by activating proinflammatory macrophages. Biochem Pharmacol 2021; 184:114399. [PMID: 33382969 DOI: 10.1016/j.bcp.2020.114399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Dedicator of cytokinesis 2 (DOCK2), an atypical Rac activator, has important anti-inflammatory properties in blepharitis, enteric bacterial infection and colitis. However, the roles of DOCK2 in macrophage activation and acute lung injury (ALI) are still poorly elucidated. In vitro studies demonstrated that DOCK2 was essential for the nucleotide-sensing Toll-like receptor (TLR) 4-mediated inflammatory response in macrophages. We also confirmed that exposure of macrophages to LPS induced Rac activation through a TLR4-independent, DOCK2-dependent mechanism. Phosphorylation of IκB kinase (IKK) β and nuclear translocation of transcription factor nuclear factor kappa B (NF-κB) were impaired in Ad-shDOCK2-expressing macrophages, resulting in a decreased inflammatory response. Similar results were obtained when EHop-016 (a Rac inhibitor) was used to treat uninfected macrophages. In summary, these data indicate that the DOCK2-Rac signaling pathway acts in parallel with TLR4 engagement to control IKKβ activation for inflammatory cytokine release. Next, we investigated whether pharmacological inhibition of DOCK2 protects against endotoxemia-induced lung injury in mice. Treatment with 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP), a small-molecule inhibitor of DOCK2, reduced the severity of lung injury, as indicated by decreases in the lung injury score and myeloperoxidase (MPO) activity. Moreover, CPYPP attenuated LPS-induced proinflammatory cytokine release in mice. Our studies suggest that inhibition of DOCK2 may suppress LPS-induced macrophage activation and that DOCK2 may be a novel target for treating endotoxemia-related ALI.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yang Su
- Department of Anesthesiology, Kaifeng People's Hospital, Kaifeng 475000, China
| | - Kaixuan Wu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Fan Pan
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Aizhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
19
|
Yang L, Jing Y, Wang W, Ying W, Lin L, Chang J, Luo L, Kang D, Jiang P, Liu J, Chen Q, Miller H, Herrada AA, Kubo M, Sun J, Liu C. DOCK2 couples with LEF-1 to regulate B cell metabolism and memory response. Biochem Biophys Res Commun 2020; 529:296-302. [PMID: 32703426 DOI: 10.1016/j.bbrc.2020.05.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022]
Abstract
Dedicator of cytokinesis 2 (DOCK2) is essential for the B cell differentiation, BCR signaling and humoral immune response. However, the role of DOCK2 in the memory response of B cell is unknown. By using two DOCK2 deficient patients, we found that the memory B cells were decreased and the early activation of DOCK2 deficient memory B cells was abolished to the degree of naïve B cells due to the decreased expression of CD19 and CD21 mechanistically. Interestingly the expression of LEF-1, a negative regulator of CD21, was increased in DOCK2 deficient B cells. This was linked to the increased expression of HIF-1α and cell metabolism, which in turn affected the ER structure. Finally, the reduction of memory B cells in DOCK2 patients was due to the increased apoptosis, which might be related with the increased metabolism.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Lin
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jiang Chang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Luo
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Kanagawa, Japan
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Chen Y, Chen Y, Yin W, Han H, Miller H, Li J, Herrada AA, Kubo M, Sui Z, Gong Q, Liu C. The regulation of DOCK family proteins on T and B cells. J Leukoc Biol 2020; 109:383-394. [PMID: 32542827 DOI: 10.1002/jlb.1mr0520-221rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023] Open
Abstract
The dedicator of cytokinesis (DOCK) family proteins consist of 11 members, each of which contains 2 domains, DOCK homology region (DHR)-1 and DHR-2, and as guanine nucleotide exchange factors, they mediate activation of small GTPases. Both DOCK2 and DOCK8 deficiencies in humans can cause severe combined immunodeficiency, but they have different characteristics. DOCK8 defect mainly causes high IgE, allergic disease, refractory skin virus infection, and increased incidence of malignant tumor, whereas DOCK2 defect mainly causes early-onset, invasive infection with less atopy and increased IgE. However, the underlying molecular mechanisms causing the disease remain unclear. This paper discusses the role of DOCK family proteins in regulating B and T cells, including development, survival, migration, activation, immune tolerance, and immune functions. Moreover, related signal pathways or molecule mechanisms are also described in this review. A greater understanding of DOCK family proteins and their regulation of lymphocyte functions may facilitate the development of new therapeutics for immunodeficient patients and improve their prognosis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi, Zunyi, Guizhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Han
- Department of Hematology of Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jianrong Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andres A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, Beijing, China
| | - Quan Gong
- Department of immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Du Z, Yang D, Zhang Y, Xuan X, Li H, Hu L, Ruan C, Li L, Chen A, Deng L, Chen Y, Xie J, Westerberg LS, Huang L, Liu C. AKT2 deficiency impairs formation of the BCR signalosome. Cell Commun Signal 2020; 18:56. [PMID: 32252758 PMCID: PMC7133013 DOI: 10.1186/s12964-020-00534-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AKT2 is one of the key molecules that involves in the insulin-induced signaling and the development of cancer. In B cells, the function of AKT2 is unclear. METHODS In this study, we used AKT2 knockout mice model to study the role of AKT2 in BCR signaling and B cell differentiation. RESULTS AKT2 promotes the early activation of B cells by enhancing the BCR signaling and actin remodeling. B cells from AKT2 KO mice exhibited defective spreading and BCR clustering upon stimulation in vitro. Disruption of Btk-mediated signaling caused the impaired differentiation of germinal center B cells, and the serum levels of both sepecific IgM and IgG were decreased in the immunized AKT2 KO mice. In addition, the actin remodeling was affected due to the decreased level of the activation of WASP, the actin polymerization regulator, in AKT2 KO mice as well. As a crucial regulator of both BCR signaling and actin remodeling during early activation of B cells, the phosphorylation of CD19 was decreased in the AKT2 absent B cells, while the transcription level was normal. CONCLUSIONS AKT2 involves in the humoral responses, and promotes the BCR signaling and actin remodeling to enhance the activation of B cells via regulating CD19 phosphorylation. Video Abstract.
Collapse
Affiliation(s)
- Zuochen Du
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Di Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjie Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of hematology and oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xingtian Xuan
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of hematology and oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Leling Hu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Changshun Ruan
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liling Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Anwei Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China.,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, GuiZhou Province, China
| | - Jingwen Xie
- Clinical laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China. .,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Chaohong Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China. .,International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|