1
|
Belot A, Tusseau M, Cognard J, Georgin‐Lavialle S, Boursier G, Hedrich CM. How (Ultra-)Rare Gene Variants Improve Our Understanding of More Common Autoimmune and Inflammatory Diseases. ACR Open Rheumatol 2025; 7:e70003. [PMID: 39964335 PMCID: PMC11834591 DOI: 10.1002/acr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to explore the impact of rare and ultra-rare genetic variants on the understanding and treatment of autoimmune and autoinflammatory diseases with a focus on systemic lupus erythematosus (SLE) and Behçet syndrome. This review summarizes current research on the monogenic causes of SLE and Behçet syndrome, highlighting the various pathways that can be responsible for these unique phenotypes. In monogenic SLE, the identification of complement and DNASE1L3 deficiencies has elucidated mechanisms of apoptotic body accumulation and extracellular nucleic acid sensing. Type I interferonopathies underline the specific role of DNA/RNA sensing and the interferon overexpression in the development of systemic autoimmunity. Other significant genetic defects include Toll-like receptor hypersignaling and JAK/STATopathies, which contribute to the breakdown of immune tolerance. To date, genetic defects directly affecting B and T cell biology only account for a minority of identified causes of monogenic lupus, highlighting the importance of a tight regulation of mechanistic target of rapamycin and RAS (Rat sarcoma GTPase)/MAPK (mitogen-activated protein kinase) signaling in lupus. In Behçet syndrome, rare variants in TNFAIP3, RELA, and NFKB1 genes have been identified, underscoring the importance of NF-κB overactivation. Additional monogenic diseases such as ELF4, WDR1 mutations and trisomy 8 further illustrate the genetic complexity of this condition. Observations from genetic studies in SLE and Behçet syndrome highlight the complexity of systemic inflammatory diseases in which distinct molecular defects caused by single-gene mutations can promote lupus or Behçet syndromes, often unrecognizable from their genetically complex "classical" forms. Insights gained from studying rare genetic variants enhance our understanding of immune function in health and disease, paving the way for targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Belot
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and Autoimmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisLyonFrance
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant and Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisParisFrance
| | - Jade Cognard
- American Memorial Hospital, Centre Hospitalier Universitaire Reims, Reims Champagne‐Ardenne UniversityReimsFrance
| | - Sophie Georgin‐Lavialle
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Sorbonne Université, Hôpital Tenon, DMU 3ID, AP‐HPParisFrance
| | - Guilaine Boursier
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellierFrance
| | - Christian M. Hedrich
- Institute of Life Course and Medical Sciences, University of Liverpool and Alder Hey Children's NHS Foundation TrustLiverpoolUnited Kingdom
| |
Collapse
|
2
|
Trojovsky K, Seidl M, Babor F, Ehl S, Lee-Kirsch MA, Friedt M, Laws HJ, Naami N, Oommen PT, Ghosh S. SOCS1 deficiency-crossroads of autoimmunity and autoinflammation-two case reports. Front Pediatr 2025; 12:1516017. [PMID: 39840313 PMCID: PMC11746893 DOI: 10.3389/fped.2024.1516017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Suppressors of cytokine signaling (SOCS) proteins play a critical role in regulating immune signaling pathways. Deficiency of SOCS1 leads to various autoimmune pathologies. We present two unrelated patients with distinct clinical manifestations. Patient 1, a 16-year-old male from Guinea, presented with Evans Syndrome, musculoskeletal pain and elevated liver enzymes. Patient 2, a 6-year-old German boy, developed recurrent oral aphthous ulcers, mild inflammatory bowel disease and chronic recurrent multifocal osteomyelitis. Both patients were diagnosed with SOCS1 deficiency by genetic testing. Treatment strategies included steroids, JAK inhibition and colchicine. These cases emphasize the importance of considering SOCS1 deficiency in patients with autoimmune or autoinflammatory diseases but also in patients with unexplained elevated IgE levels. They highlight the need for further research in ongoing multicenter registries to better understand this condition.
Collapse
Affiliation(s)
- Kajetan Trojovsky
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Maximilian Seidl
- Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Friedt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Division of Pediatric Gastroenterology, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Hans-Juergen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Nibras Naami
- Department of Pediatric Oncology and Hematology Herdecke, University Hospital Witten/Herdecke, Herdecke, Germany
| | - Prasad Thomas Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University and University Hospital, Duesseldorf, Germany
| |
Collapse
|
3
|
Eigemann J, Janda A, Schuetz C, Lee-Kirsch MA, Schulz A, Hoenig M, Furlan I, Jacobsen EM, Zinngrebe J, Peters S, Drewes C, Siebert R, Rump EM, Führer M, Lorenz M, Pannicke U, Kölsch U, Debatin KM, von Bernuth H, Schwarz K, Felgentreff K. Non-Skewed X-inactivation Results in NF-κB Essential Modulator (NEMO) Δ-exon 5-autoinflammatory Syndrome (NEMO-NDAS) in a Female with Incontinentia Pigmenti. J Clin Immunol 2024; 45:1. [PMID: 39264518 PMCID: PMC11393190 DOI: 10.1007/s10875-024-01799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Genetic hypomorphic defects in X chromosomal IKBKG coding for the NF-κB essential modulator (NEMO) lead to ectodermal dysplasia and immunodeficiency in males and the skin disorder incontinentia pigmenti (IP) in females, respectively. NF-κB essential modulator (NEMO) Δ-exon 5-autoinflammatory syndrome (NEMO-NDAS) is a systemic autoinflammatory disease caused by alternative splicing and increased proportion of NEMO-Δex5. We investigated a female carrier presenting with IP and NEMO-NDAS due to non-skewed X-inactivation. METHODS IKBKG transcripts were quantified in peripheral blood mononuclear cells isolated from the patient, her mother, and healthy controls using RT-PCR and nanopore sequencing. Corresponding proteins were analyzed by western blotting and flow cytometry. Besides toll-like receptor (TLR) and tumor necrosis factor (TNF) signaling, the interferon signature, cytokine production and X-inactivation status were investigated. RESULTS IP and autoinflammation with recurrent fever, oral ulcers, hepatitis, and neutropenia, but no immunodeficiency was observed in a female patient. Besides moderately reduced NEMO signaling function, type I interferonopathy, and elevated IL-18 and CXCL10 were found. She and her mother both carried the heterozygous variant c.613 C > T p.(Gln205*) in exon 5 of IKBKG previously reported in NEMO-deficient patients. However, X-inactivation was skewed in the mother, but not in the patient. Alternative splicing led to increased ratios of NEMO-Dex5 over full-length protein in peripheral blood cell subsets causing autoinflammation. Clinical symptoms partially resolved under treatment with TNF inhibitors. CONCLUSION Non-skewed X-inactivation can lead to NEMO-NDAS in females with IP carrying hypomorphic IKBKG variants due to alternative splicing and increased proportions of NEMO-∆ex5.
Collapse
Affiliation(s)
- Jessica Eigemann
- Master's Program of Molecular Medicine, Medical Faculty of Ulm University, Ulm, Germany
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Sarah Peters
- Department of Clinical Chemistry, Ulm University Medical Center, Ulm, Germany
| | - Cosima Drewes
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Rump
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
| | - Horst von Bernuth
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Nember of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Klaus Schwarz
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg - Hessen, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Ulm, Ulm, Germany.
| |
Collapse
|
4
|
Menzel K, Novotna K, Jeyakumar N, Wolf C, Lee-Kirsch MA. Monogenic lupus - from gene to targeted therapy. Mol Cell Pediatr 2024; 11:8. [PMID: 39264482 PMCID: PMC11393215 DOI: 10.1186/s40348-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by loss of tolerance to nuclear antigens. The formation of autoantibodies and the deposition of immune complexes trigger inflammatory tissue damage that can affect any part of the body. In most cases, SLE is a complex disease involving multiple genetic and environmental factors. Despite advances in the treatment of SLE, there is currently no cure for SLE and patients are treated with immunosuppressive drugs with significant side effects. The elucidation of rare monogenic forms of SLE has provided invaluable insights into the molecular mechanisms underlying systemic autoimmunity. Harnessing this knowledge will facilitate the development of more refined and reliable biomarker profiles for diagnosis, therapeutic monitoring, and outcome prediction, and guide the development of novel targeted therapies not only for monogenic lupus, but also for complex SLE.
Collapse
Affiliation(s)
- Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Kateryna Novotna
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Nivya Jeyakumar
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Leipzig/Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Triaille C, Rao NM, Rice GI, Seabra L, Sutherland FJH, Bondet V, Duffy D, Gennery AR, Fournier B, Bader-Meunier B, Troedson C, Cleary G, Buso H, Dalby-Payne J, Ranade P, Jansen K, De Somer L, Frémond ML, Chavan PP, Wong M, Dale RC, Wouters C, Quartier P, Khubchandani R, Crow YJ. Hereditary C1q Deficiency is Associated with Type 1 Interferon-Pathway Activation and a High Risk of Central Nervous System Inflammation. J Clin Immunol 2024; 44:185. [PMID: 39196411 PMCID: PMC11358312 DOI: 10.1007/s10875-024-01788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Hereditary C1q deficiency (C1QDef) is a rare monogenic disorder leading to defective complement pathway activation and systemic lupus erythematosus (SLE)-like manifestations. The link between impairment of the complement cascade and autoimmunity remains incompletely understood. Here, we assessed type 1 interferon pathway activation in patients with C1QDef. Twelve patients with genetically confirmed C1QDef were recruited through an international collaboration. Clinical, biological and radiological data were collected retrospectively. The expression of a standardized panel of interferon stimulated genes (ISGs) in peripheral blood was measured, and the level of interferon alpha (IFNα) protein in cerebrospinal fluid (CSF) determined using SIMOA technology. Central nervous system (encompassing basal ganglia calcification, encephalitis, vasculitis, chronic pachymeningitis), mucocutaneous and renal involvement were present, respectively, in 10, 11 and 2 of 12 patients, and severe infections recorded in 2/12 patients. Elevated ISG expression was observed in all patients tested (n = 10/10), and serum and CSF IFNα elevated in 2/2 patients. Three patients were treated with Janus-kinase inhibitors (JAKi), with variable outcome; one displaying an apparently favourable response in respect of cutaneous and neurological features, and two others experiencing persistent disease despite JAKi therapy. To our knowledge, we report the largest original series of genetically confirmed C1QDef yet described. Additionally, we present a review of all previously described genetically confirmed cases of C1QDef. Overall, individuals with C1QDef demonstrate many characteristics of recognized monogenic interferonopathies: particularly, cutaneous involvement (malar rash, acral vasculitic/papular rash, chilblains), SLE-like disease, basal ganglia calcification, increased expression of ISGs in peripheral blood, and elevated levels of CSF IFNα.
Collapse
Affiliation(s)
- Clément Triaille
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
- Pôle de Pathologies Rhumatismales Systémiques Et Inflammatoires, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Neha Mohan Rao
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Fraser J H Sutherland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Benjamin Fournier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Brigitte Bader-Meunier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Christopher Troedson
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Gavin Cleary
- Paediatric Rheumatology, Alder Hey Children's Hospital, Liverpool, UK
| | - Helena Buso
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
- Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Jacqueline Dalby-Payne
- Specialty of Child and Adolescent Health, Faculty of Medicine, The University of Sydney, Camperdown, Australia
- Department of General Medicine, The Children's Hospital at Westmead, Westmead, Australia
| | - Prajakta Ranade
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Katrien Jansen
- Division of Pediatric Neurology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lien De Somer
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | | | - Melanie Wong
- Department of Allergy and Immunology, Children's Hospital at Westmead, Westmead, Australia
| | - Russell C Dale
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Carine Wouters
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Pierre Quartier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Raju Khubchandani
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Wolf C, Lim EL, Mokhtari M, Kind B, Odainic A, Lara-Villacanas E, Koss S, Mages S, Menzel K, Engel K, Dückers G, Bernbeck B, Schneider DT, Siepermann K, Niehues T, Goetzke CC, Durek P, Minden K, Dörner T, Stittrich A, Szelinski F, Guerra GM, Massoud M, Bieringer M, de Oliveira Mann CC, Beltrán E, Kallinich T, Mashreghi MF, Schmidt SV, Latz E, Klughammer J, Majer O, Lee-Kirsch MA. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol 2024; 9:eadi9769. [PMID: 38207055 DOI: 10.1126/sciimmunol.adi9769] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Mohammad Mokhtari
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Barbara Kind
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eusebia Lara-Villacanas
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Simon Mages
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Kerstin Engel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Gregor Dückers
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Benedikt Bernbeck
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Dominik T Schneider
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | | | - Tim Niehues
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Carl Christoph Goetzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Kirsten Minden
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Anna Stittrich
- Labor Berlin Charité-Vivantes GmbH, Department of Human Genetics, Berlin 13353, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Mona Massoud
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin 13125, Germany
| | | | - Eduardo Beltrán
- Institute for Clinical Neuroimmunology, BioMedizinisches Zentrum, Ludwig-Maximilians-Universität Munich, Munich 82152, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Johanna Klughammer
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
7
|
Achleitner M, Mair NK, Dänhardt J, Kardashi R, Puhan MA, Abela IA, Toepfner N, de With K, Kanczkowski W, Jarzebska N, Rodionov RN, Wolf C, Lee-Kirsch MA, Steenblock C, Hale BG, Bornstein SR. Absence of Type I Interferon Autoantibodies or Significant Interferon Signature Alterations in Adults With Post-COVID-19 Syndrome. Open Forum Infect Dis 2024; 11:ofad641. [PMID: 38179103 PMCID: PMC10766412 DOI: 10.1093/ofid/ofad641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-β, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS.
Collapse
Affiliation(s)
- Martin Achleitner
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nina K Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Juliane Dänhardt
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Romina Kardashi
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Toepfner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja de With
- Division of Infectious Diseases, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Kapp FG, Kretschmer S, Beckmann CCA, Wäsch L, Molitor A, Carapito R, Schubert M, Lucas N, Conrad S, Poignant S, Isidor B, Rohlfs M, Kisaarslan AP, Schanze D, Zenker M, Schmitt-Graeff A, Strahm B, Peters A, Yoshimi A, Driever W, Zillinger T, Günther C, Maharana S, Guan K, Klein C, Ehl S, Niemeyer CM, Unal E, Bahram S, Hauck F, Lee-Kirsch MA, Speckmann C. C-terminal variants in CDC42 drive type I interferon-dependent autoinflammation in NOCARH syndrome reversible by ruxolitinib. Clin Immunol 2023; 256:109777. [PMID: 37741518 DOI: 10.1016/j.clim.2023.109777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.
Collapse
Affiliation(s)
- Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cora C A Beckmann
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Lena Wäsch
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Raphaël Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | | | | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ayşenur Paç Kisaarslan
- Erciyes University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Rheumatology, 38039 Melikgazi, Kayseri, Türkiye
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Anke Peters
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute of Biology 1, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Shovamayee Maharana
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ekrem Unal
- Erciyes University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology-Oncology, 38039 Melikgazi, Kayseri, Turkey
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carsten Speckmann
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany; Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Wolf C, Fischer H, Kühl JS, Koss S, Jamra RA, Starke S, Schultz J, Ehl S, Neumann K, Schuetz C, Huber R, Hornung V, Lee-Kirsch MA. Hemophagocytic lymphohistiocytosis-like hyperinflammation due to a de novo mutation in DPP9. J Allergy Clin Immunol 2023; 152:1336-1344.e5. [PMID: 37544411 PMCID: PMC7615848 DOI: 10.1016/j.jaci.2023.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1β and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Hannah Fischer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology and Hemostaseology, University Hospital Leipzig, University of Leipzig, Leipzig
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig
| | - Sven Starke
- Department of Pediatric Oncology, Hematology and Hemostaseology, University Hospital Leipzig, University of Leipzig, Leipzig
| | - Jurek Schultz
- Department of Pediatric Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Katrin Neumann
- Stem Cell Engineering Facility, Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden; University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - Robert Huber
- Max-Planck-Institut für Biochemie, Emeritusgruppe Strukturforschung, Martinsried; Technische Universität München, TUM Emeritus of Excellence, Garching; Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Essen
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich.
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden; University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden.
| |
Collapse
|
10
|
Günther C, Wolf C, Fennen L, Rösing S, Beissert S, Aringer M, Lee-Kirsch MA. Case Report: Response of cutaneous lupus lesions in SLE to interferon receptor blockade parallels reduction of interferon score in blood. Front Immunol 2023; 14:1253279. [PMID: 37809086 PMCID: PMC10551165 DOI: 10.3389/fimmu.2023.1253279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Cutaneous lupus erythematosus (CLE), the main manifestation of systemic lupus erythematosus (SLE), is driven by type I interferons (IFNs) and often only partially responds to conventional therapies. Treatment of seven SLE patients with the monoclonal antibody anifrolumab induced fast and sustained remission of previously refractory CLE lesions, beginning within the first weeks of treatment. Decline in CLASI-A score was paralleled by a reduction in IFN score determined by mRNA expression of seven IFN-stimulated genes (ISGs) in blood. These data suggest that a subset of ISGs could be a valuable biomarker in CLE.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Dermatology, University Hospital, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Louisa Fennen
- Department of Dermatology, University Hospital, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Rösing
- Department of Dermatology, University Hospital, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Aringer
- Division of Rheumatology, Department of Medicine III, University Medical Center Hospital TU Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
11
|
Günther C. Rapid response of cutaneous lupus erythematosus to treatment with the type 1 interferon receptor antagonist anifrolumab. Br J Dermatol 2023; 189:151-153. [PMID: 37002783 DOI: 10.1093/bjd/ljad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 07/20/2023]
Affiliation(s)
- Claudia Günther
- Department of Dermatology, University Medical Center Hospital TU Dresden, Dresden, Germany
| |
Collapse
|
12
|
Wan R, Fänder J, Zakaraia I, Lee-Kirsch MA, Wolf C, Lucas N, Olfe LI, Hendrich C, Jonigk D, Holzinger D, Steindor M, Schmidt G, Davenport C, Klemann C, Schwerk N, Griese M, Schlegelberger B, Stehling F, Happle C, Auber B, Steinemann D, Wetzke M, von Hardenberg S. Phenotypic spectrum in recessive STING-associated vasculopathy with onset in infancy: Four novel cases and analysis of previously reported cases. Front Immunol 2022; 13:1029423. [PMID: 36275728 PMCID: PMC9583393 DOI: 10.3389/fimmu.2022.1029423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.
Collapse
Affiliation(s)
- Rensheng Wan
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ia Zakaraia
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Isabel Olfe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Corinna Hendrich
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease, Hannover, Germany
| | - Dirk Holzinger
- Department of Pediatric Haemato-Oncology, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, German Center for Lung Research, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| |
Collapse
|
13
|
Sullivan KE. The yin and the yang of early classical pathway complement disorders. Clin Exp Immunol 2022; 209:151-160. [PMID: 35648651 PMCID: PMC9390844 DOI: 10.1093/cei/uxac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
The classical pathway of the complement cascade has been recognized as a key activation arm, partnering with the lectin activation arm and the alternative pathway to cleave C3 and initiate the assembly of the terminal components. While deficiencies of classical pathway components have been recognized since 1966, only recently have gain-of-function variants been described for some of these proteins. Loss-of-function variants in C1, C4, and C2 are most often associated with lupus and systemic infections with encapsulated bacteria. C3 deficiency varies slightly from this phenotypic class with membranoproliferative glomerulonephritis and infection as the dominant phenotypes. The gain-of-function variants recently described for C1r and C1s lead to periodontal Ehlers Danlos syndrome, a surprisingly structural phenotype. Gain-of-function in C3 and C2 are associated with endothelial manifestations including hemolytic uremic syndrome and vasculitis with C2 gain-of-function variants thus far having been reported in patients with a C3 glomerulopathy. This review will discuss the loss-of-function and gain-of-function phenotypes and place them within the larger context of complement deficiencies.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy Immunology, The Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Broser P, von Mengershausen U, Heldt K, Bartholdi D, Braun D, Wolf C, Lee-Kirsch MA. Precision treatment of Singleton Merten syndrome with ruxolitinib: a case report. Pediatr Rheumatol Online J 2022; 20:24. [PMID: 35410415 PMCID: PMC8995680 DOI: 10.1186/s12969-022-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Singleton-Merten syndrome 1 (SGMRT1) is a rare type I interferonopathy caused by heterozygous mutations in the IFIH1 gene. IFIH1 encodes the pattern recognition receptor MDA5 which senses viral dsRNA and activates antiviral type I interferon (IFN) signaling. In SGMRT1, IFIH1 mutations confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation. CASE PRESENTATION We report the case of a nine year old child who initially presented with a slowly progressive decline of gross motor skill development and muscular weakness. At the age of five years, he developed osteoporosis, acro-osteolysis, alveolar bone loss and severe psoriasis. Whole exome sequencing revealed a pathogenic de novo IFIH1 mutation, confirming the diagnosis of SGMRT1. Consistent with constitutive type I interferon activation, patient blood cells exhibited a strong IFN signature as shown by marked up-regulation of IFN-stimulated genes. The patient was started on the Janus kinase (JAK) inhibitor, ruxolitinib, which inhibits signaling at the IFN-α/β receptor. Within days of treatment, psoriatic skin lesions resolved completely and the IFN signature normalized. Therapeutic efficacy was sustained and over the course muscular weakness, osteopenia and growth also improved. CONCLUSIONS JAK inhibition represents a valuable therapeutic option for patients with SGMRT1. Our findings also highlight the potential of a patient-tailored therapeutic approach based on pathogenetic insight.
Collapse
Affiliation(s)
- Philip Broser
- Department of Pediatric Neurology, Children's Hospital of Eastern Switzerland, Sankt Gallen, Switzerland.
| | - Ursula von Mengershausen
- grid.414079.f0000 0004 0568 6320Department of Pediatric Neurology, Children’s Hospital of Eastern Switzerland, Sankt Gallen, Switzerland
| | - Katrin Heldt
- grid.414079.f0000 0004 0568 6320Department of Pediatric Endocrinology, Children’s Hospital of Eastern Switzerland, Sankt Gallen, Switzerland
| | - Deborah Bartholdi
- grid.411656.10000 0004 0479 0855Department of Human Genetics, University Hospital Bern, Bern, Switzerland
| | - Dominique Braun
- grid.411656.10000 0004 0479 0855Department of Human Genetics, University Hospital Bern, Bern, Switzerland
| | - Christine Wolf
- grid.4488.00000 0001 2111 7257Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- grid.4488.00000 0001 2111 7257Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Willemsen M, Van Nieuwenhove E, Seyed Tabib NS, Staels F, Schrijvers R, De Somer L, Liston A, Humblet-Baron S, Wouters C. Primary Sjögren's syndrome and high type I interferon signalling in a kindred with C2 deficiency. Rheumatol Adv Pract 2022; 6:rkac018. [PMID: 35368972 PMCID: PMC8969662 DOI: 10.1093/rap/rkac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mathijs Willemsen
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- VIB-KU Leuven Center for Brain and Disease Research
| | - Erika Van Nieuwenhove
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- VIB-KU Leuven Center for Brain and Disease Research
- Division Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven
| | | | - Frederik Staels
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- VIB-KU Leuven Center for Brain and Disease Research
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation
| | - Lien De Somer
- Division Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- VIB-KU Leuven Center for Brain and Disease Research
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Stephanie Humblet-Baron
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven
- VIB-KU Leuven Center for Brain and Disease Research
| | - Carine Wouters
- Division Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Körholz J, Gabrielyan A, Sowerby JM, Boschann F, Chen LS, Paul D, Brandt D, Kleymann J, Kolditz M, Toepfner N, Knöfler R, Jacobsen EM, Wolf C, Conrad K, Röber N, Lee-Kirsch MA, Smith KGC, Mundlos S, Berner R, Dalpke AH, Schuetz C, Rae W. One Gene, Many Facets: Multiple Immune Pathway Dysregulation in SOCS1 Haploinsufficiency. Front Immunol 2021; 12:680334. [PMID: 34421895 PMCID: PMC8375263 DOI: 10.3389/fimmu.2021.680334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023] Open
Abstract
Background Inborn errors of immunity (IEI) present with a large phenotypic spectrum of disease, which can pose diagnostic and therapeutic challenges. Suppressor of cytokine signaling 1 (SOCS1) is a key negative regulator of cytokine signaling, and has recently been associated with a novel IEI. Of patients described to date, it is apparent that SOCS1 haploinsufficiency has a pleiotropic effect in humans. Objective We sought to investigate whether dysregulation of immune pathways, in addition to STAT1, play a role in the broad clinical manifestations of SOCS1 haploinsufficiency. Methods We assessed impacts of reduced SOCS1 expression across multiple immune cell pathways utilizing patient cells and CRISPR/Cas9 edited primary human T cells. Results SOCS1 haploinsufficiency phenotypes straddled across the International Union of Immunological Societies classifications of IEI. We found that reduced SOCS1 expression led to dysregulation of multiple intracellular pathways in immune cells. STAT1 phosphorylation is enhanced, comparably with STAT1 gain-of-function mutations, and STAT3 phosphorylation is similarly reduced with concurrent reduction of Th17 cells. Furthermore, reduced SOCS1 E3 ligase function was associated with increased FAK1 in immune cells, and increased AKT and p70 ribosomal protein S6 kinase phosphorylation. We also found Toll-like receptor responses are increased in SOCS1 haploinsufficiency patients. Conclusions SOCS1 haploinsufficiency is a pleiotropic monogenic IEI. Dysregulation of multiple immune cell pathways may explain the variable clinical phenotype associated with this new condition. Knowledge of these additional dysregulated immune pathways is important when considering the optimum management for SOCS1 haploinsufficient patients.
Collapse
Affiliation(s)
- Julia Körholz
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Anastasia Gabrielyan
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - John M Sowerby
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lan-Sun Chen
- Institute of Medical Microbiology and Virology, Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Diana Paul
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - David Brandt
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Kleymann
- Department of Internal Medicine, Pneumology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Kolditz
- Department of Internal Medicine, Pneumology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Ralf Knöfler
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Christine Wolf
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Conrad
- Institute of Immunology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Röber
- Institute of Immunology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Mundlos
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Research Group (RG) Development and Disease, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Meinhardt A, Ramos PC, Dohmen RJ, Lucas N, Lee-Kirsch MA, Becker B, de Laffolie J, Cunha T, Niehues T, Salzer U, Yoshimi A, Erlacher M, Peters AMJ, Ehl S, Strahm B, Speckmann C. Curative Treatment of POMP-Related Autoinflammation and Immune Dysregulation (PRAID) by Hematopoietic Stem Cell Transplantation. J Clin Immunol 2021; 41:1664-1667. [PMID: 34131834 PMCID: PMC8452576 DOI: 10.1007/s10875-021-01067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Paula C Ramos
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - R Jürgen Dohmen
- Institute for Genetics, Center of Molecular Biosciences, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nadja Lucas
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Benjamin Becker
- Center for Pediatrics and Adolescent Medicine, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Jan de Laffolie
- Center for Pediatrics and Adolescent Medicine, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Tomás Cunha
- Center for Dermatology and Allergology, Medical Center, University Hospital Marburg, Marburg, Germany
| | - Tim Niehues
- Center for Pediatrics and Adolescent Medicine, Helios Hospital Krefeld, Krefeld, Germany
| | - Ulrich Salzer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anke M J Peters
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Heinen A, Schnabel A, Brück N, Smitka M, Wolf C, Lucas N, Dollinger S, Hahn G, Günther C, Berner R, Lee-Kirsch M, Schuetz C. Interferon signature guiding therapeutic decision making: ruxolitinib as first-line therapy for severe juvenile dermatomyositis? Rheumatology (Oxford) 2020; 60:e136-e138. [DOI: 10.1093/rheumatology/keaa657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- André Heinen
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Anja Schnabel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Normi Brück
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Martin Smitka
- Department of Neuropediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Stefanie Dollinger
- Deutsches Zentrum für Kinder- und Jugendrheumatologie, Garmisch-Partenkirchen, Germany
| | - Gabriele Hahn
- Department of Radiology, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Reinhard Berner
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Dresden, Germany
| |
Collapse
|