1
|
Conroy ER, Peterson R, Phipatanakul W, Sheehan WJ. Increasing awareness regarding the relationship between environmental exposures and allergic disease. J Allergy Clin Immunol 2024; 154:874-881. [PMID: 39173719 DOI: 10.1016/j.jaci.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
This review highlights studies from the past 3 years that add to the understanding of the impact of environmental exposures on allergic disease. These include aeroallergens, air quality, prenatal or early-life exposures, and occupational exposures. Recent studies have focused on the relationship between the environment, the microbiome, and allergic disease, and new therapeutic options have also been reviewed. Lastly, there has been significant recent research improving our knowledge of the link between health disparities and environmental exposures. These scientific advances have resulted in a better understanding that sets the foundation for current and future research dedicated to improving health outcomes by modifying environmental exposures.
Collapse
Affiliation(s)
- Ellen R Conroy
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - William J Sheehan
- Division of Allergy and Immunology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
2
|
Zhu Y, Yan L, Cheng N, Xiao Y, Fan D, Cao W, Yang J. Pre-pubertal sublingual immunotherapy is more effective than immunotherapy during puberty in allergic rhinitis and asthma. Am J Otolaryngol 2024; 45:104393. [PMID: 39059165 DOI: 10.1016/j.amjoto.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND To evaluate the clinical efficacy of sublingual-specific immunotherapy (SLIT) and pulmonary function in children with allergic rhinitis and asthma before and after puberty. METHODS This retrospective analysis included 136 patients aged 4-18 years with allergic asthma and rhinitis who received two years of SLIT treatment. Patients were divided into two groups based on age: the prepubertal group (4-10 years old) and the pubertal group (11-18 years old). After half a year, one year, and two years of SLIT, the total nasal symptom score (TNSS), total rhinitis medication score (TRMS), daytime asthma symptom score (DASS), nighttime asthma symptom score (NASS), total asthma medication score (TAMS), asthma control test (ACT), and peak expiratory flow rate (PEF%) were evaluated and compared with the baseline before treatment. RESULTS In both groups, TNSS, TRMS, DASS, NASS, TAMS, ACT, and PEF% improved significantly after half a year, one year, and two years of SLIT treatment. After half a year of treatment, prepubertal patients showed better therapy for TNSS, DASS, NASS, and TAMS compared to the pubertal group. The TAMS of the pubertal group was higher than that of the prepubertal group after one year of treatment. Finally, the PEF% showed better therapy compared to the pubertal group. CONCLUSION SLIT treatment with Dermatophagoides farinae drops can effectively control the symptoms of rhinitis and asthma in children with allergic rhinitis and asthma before and after puberty, reduce the use of symptomatic drugs, significantly improve the pulmonary function of patients, and have better effects on asthma in prepubertal children than in adolescents.
Collapse
Affiliation(s)
- Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dachuan Fan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Romero-Tapia SDJ, García-Marcos L. Global burden of pediatric asthma and rhinitis - what we have recently learned from epidemiology. Curr Opin Allergy Clin Immunol 2024; 24:177-181. [PMID: 38386768 DOI: 10.1097/aci.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW To analyze and present recently published information on the factors that modify the burden of asthma and rhinitis in pediatric ages, such as ecological determinants; highlighting access and adherence to medications, exposure to pollutants and climate change. In addition to individual determinants such as obesity, protective & risk factors and comorbidities. RECENT FINDINGS Asthma and rhinitis continue to have a significant impact worldwide on the health of affected patients, primarily children. The burden of asthma is greatest in developing countries and vulnerable populations, resulting in increased morbidity, potentially preventable asthma deaths and socioeconomic consequences. SUMMARY A better understanding and representation of the burden of asthma and rhinitis in children can contribute to prevention strategies and improvements in the care of pediatric patients.
Collapse
Affiliation(s)
- Sergio de Jesús Romero-Tapia
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Mexico
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children's Hospital, University of Murcia and IMIB Bio-health Research Institute, Murcia, Spain
| |
Collapse
|
4
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Bácsi A, Ágics B, Pázmándi K, Kocsis B, Sándor V, Bertók L, Bruckner G, Sipka S. Radiation-Detoxified Form of Endotoxin Effectively Activates Th 1 Responses and Attenuates Ragweed-Induced Th 2-Type Airway Inflammation in Mice. Int J Mol Sci 2024; 25:1581. [PMID: 38338861 PMCID: PMC10855154 DOI: 10.3390/ijms25031581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Urbanization with reduced microbial exposure is associated with an increased burden of asthma and atopic symptoms. Conversely, environmental exposure to endotoxins in childhood can protect against the development of allergies. Our study aimed to investigate whether the renaturation of the indoor environment with aerosolized radiation-detoxified lipopolysaccharide (RD-LPS) has a preventative effect against the development of ragweed-induced Th2-type airway inflammation. To explore this, cages of six-week-old BALB/c mice were treated daily with aerosolized native LPS (N-LPS) or RD-LPS. After a 10-week treatment period, mice were sensitized and challenged with ragweed pollen extract, and inflammatory cell infiltration into the airways was observed. As dendritic cells (DCs) play a crucial role in the polarization of T-cell responses, in our in vitro experiments, the effects of N-LPS and RD-LPS were compared on human monocyte-derived DCs (moDCs). Mice in RD-LPS-rich milieu developed significantly less allergic airway inflammation than mice in N-LPS-rich or common environments. The results of our in vitro experiments demonstrate that RD-LPS-exposed moDCs have a higher Th1-polarizing capacity than moDCs exposed to N-LPS. Consequently, we suppose that the aerosolized, non-toxic RD-LPS applied in early life for the renaturation of urban indoors may be suitable for the prevention of Th2-mediated allergies in childhood.
Collapse
Affiliation(s)
- Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Beatrix Ágics
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktor Sándor
- Institute of Bioanalysis, Medical School and Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Lóránd Bertók
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, H-1221 Budapest, Hungary
| | - Geza Bruckner
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY 40536, USA;
| | - Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
León B. A model of Th2 differentiation based on polarizing cytokine repression. Trends Immunol 2023; 44:399-407. [PMID: 37100645 PMCID: PMC10219849 DOI: 10.1016/j.it.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Jackson CM, Kaplan AN, Järvinen KM. Environmental Exposures may Hold the Key; Impact of Air Pollution, Greenness, and Rural/Farm Lifestyle on Allergic Outcomes. Curr Allergy Asthma Rep 2023; 23:77-91. [PMID: 36609951 PMCID: PMC9932951 DOI: 10.1007/s11882-022-01061-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW There has been an increased prevalence of allergy. Due to this relatively rapid rise, changes in environmental exposures are likely the main contributor. In this review, we highlight literature from the last 3 years pertaining to the role of air pollution, greenness, and the rural/farm lifestyle and their association with the development of allergic sensitization, atopic dermatitis, food allergy, and allergic rhinitis in infancy and childhood. Because asthma has a more complex pathophysiology, it was excluded from this review. RECENT FINDINGS Recent studies support a role for air pollution, greenness, and rural/farming lifestyle influencing atopic outcomes that continue to be defined. While many studies have examined singular environmental exposures, the interconnectedness of these exposures and others points to a need for future work to consider an individual's whole exposure. Environmental exposures' influence on atopic disease development remains an ongoing and important area of study.
Collapse
Affiliation(s)
- Courtney M Jackson
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Golisano Children's Hospital, 601 Elmwood Ave. Box 777, Rochester, NY, 14642, USA
| | - Alexandra N Kaplan
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Golisano Children's Hospital, 601 Elmwood Ave. Box 777, Rochester, NY, 14642, USA
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Golisano Children's Hospital, 601 Elmwood Ave. Box 777, Rochester, NY, 14642, USA.
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave. Box 777, Rochester, NY, 14642, USA.
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave. Box 777, Rochester, NY, 14642, USA.
| |
Collapse
|
8
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Liu C, Makrinioti H, Saglani S, Bowman M, Lin LL, Camargo CA, Hasegawa K, Zhu Z. Microbial dysbiosis and childhood asthma development: Integrated role of the airway and gut microbiome, environmental exposures, and host metabolic and immune response. Front Immunol 2022; 13:1028209. [PMID: 36248891 PMCID: PMC9561420 DOI: 10.3389/fimmu.2022.1028209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic and heterogeneous respiratory disease with many risk factors that typically originate during early childhood. A complex interplay between environmental factors and genetic predisposition is considered to shape the lung and gut microbiome in early life. The growing literature has identified that changes in the relative abundance of microbes (microbial dysbiosis) and reduced microbial diversity, as triggers of the airway-gut axis crosstalk dysregulation, are associated with asthma development. There are several mechanisms underlying microbial dysbiosis to childhood asthma development pathways. For example, a bacterial infection in the airway of infants can lead to the activation and/or dysregulation of inflammatory pathways that contribute to bronchoconstriction and bronchial hyperresponsiveness. In addition, gut microbial dysbiosis in infancy can affect immune development and differentiation, resulting in a suboptimal balance between innate and adaptive immunity. This evolving dysregulation of secretion of pro-inflammatory mediators has been associated with persistent airway inflammation and subsequent asthma development. In this review, we examine current evidence around associations between the airway and gut microbial dysbiosis with childhood asthma development. More specifically, this review focuses on discussing the integrated roles of environmental exposures, host metabolic and immune responses, airway and gut microbial dysbiosis in driving childhood asthma development.
Collapse
Affiliation(s)
- Conglin Liu
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
- *Correspondence: Conglin Liu, ; Zhaozhong Zhu,
| | | | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College, London, United Kingdom
| | - Michael Bowman
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
| | - Lih-Ling Lin
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Conglin Liu, ; Zhaozhong Zhu,
| |
Collapse
|