1
|
Saito H, Tamari M, Motomura K, Ikutani M, Nakae S, Matsumoto K, Morita H. Omics in allergy and asthma. J Allergy Clin Immunol 2024:S0091-6749(24)01025-X. [PMID: 39384073 DOI: 10.1016/j.jaci.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
This review explores the transformative impact of omics technologies on allergy and asthma research in recent years, focusing on advancements in high-throughput technologies related to genomics and transcriptomics. In particular, the rapid spread of single-cell RNA sequencing has markedly advanced our understanding of the molecular pathology of allergic diseases. Furthermore, high-throughput genome sequencing has accelerated the discovery of monogenic disorders that were previously overlooked as ordinary intractable allergic diseases. We also introduce microbiomics, proteomics, lipidomics, and metabolomics, which are quickly growing areas of research interest, although many of their current findings remain inconclusive as solid evidence. By integrating these omics data, we will gain deeper insights into disease mechanisms, leading to the development of precision medicine approaches that promise to enhance treatment outcomes.
Collapse
Affiliation(s)
- Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Ikutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susumu Nakae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
2
|
Roe K. The epithelial cell types and their multi-phased defenses against fungi and other pathogens. Clin Chim Acta 2024; 563:119889. [PMID: 39117034 DOI: 10.1016/j.cca.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Mucus and its movements are essential to epithelial tissue immune defenses against pathogens, including fungal pathogens, which can infect respiratory, gastrointestinal or the genito-urinary tracts. Several epithelial cell types contribute to their immune defense. This review focuses on the respiratory tract because of its paramount importance, but the observations will apply to epithelial cell defenses of other mucosal tissue, including the gastrointestinal and genito-urinary tracts. Mucus and its movements can enhance or degrade the immune defenses of the respiratory tract, particularly the lungs. The enhancements include inhaled pathogen entrapments, including fungal pathogens, pollutants and particulates, for their removal. The detriments include smaller lung airway obstructions by mucus, impairing the physical removal of pathogens and impairing vital transfers of oxygen and carbon dioxide between the alveolar circulatory system and the pulmonary air. Inflammation, edema and/or alveolar cellular damage can also reduce vital transfers of oxygen and carbon dioxide between the lung alveolar circulatory system and the pulmonary air. Furthermore, respiratory tract defenses are affected by several fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, dendritic cells, various innate lymphoid cells including the natural killer cells, T cells, γδ T cells, mucosal-associated invariant T cells, NKT cells and mast cells. These mediators include the inflammatory and frequently immunosuppressive prostaglandins and leukotrienes, and the special pro-resolving mediators, which normally resolve inflammation and immunosuppression. The total effects on the various epithelial cell and immune cell types, after exposures to pathogens, pollutants or particulates, will determine respiratory tract health or disease.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, United States.
| |
Collapse
|
3
|
Yan B, Lan F, Li J, Wang C, Zhang L. The mucosal concept in chronic rhinosinusitis: Focus on the epithelial barrier. J Allergy Clin Immunol 2024; 153:1206-1214. [PMID: 38295881 DOI: 10.1016/j.jaci.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Chronic rhinosinusitis (CRS) is a common chronic nasal cavity and sinus disease affecting a growing number of individuals worldwide. Recent advances have shifted our understanding of CRS pathophysiology from a physical obstruction model of ventilation and drainage to a mucosal concept that recognizes the complexities of mucosal immunologic variations and cellular aberrations. A growing number of studies have demonstrated the alteration of the epithelial barrier during inflammatory states. Therefore, the current review has focused on the crucial role of epithelial cells within this mucosal framework in CRS, detailing the perturbed epithelial homeostasis, impaired epithelial cell barrier, dysregulated epithelial cell repair processes, and enhanced interactions between epithelial cells and immune cells. Notably, the utilization of novel technologies, such as single-cell transcriptomics, has revealed the novel functions of epithelial barriers, such as inflammatory memory and neuroendocrine functions. Therefore, this review also emphasizes the importance of epithelial inflammatory memory and the necessity of further investigations into neuroendocrine epithelial cells and neurogenic inflammation in CRS. We conclude by contemplating the prospective benefits of epithelial cell-oriented biological treatments, which are currently under investigation in rigorous randomized, double-blind clinical trials in patients with CRS with nasal polyps.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Lan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Kawakita K, Kouzaki H, Murao T, Kubo Y, Nishiguchi T, Nakamura K, Arai H, Matsumoto K, Tojima I, Shimizu S, Shimizu T. Role of basal cells in nasal polyp epithelium in the pathophysiology of eosinophilic chronic rhinosinusitis (eCRS). Allergol Int 2024:S1323-8930(24)00045-5. [PMID: 38670810 DOI: 10.1016/j.alit.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/10/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Basal cell hyperplasia is commonly observed in nasal polyp epithelium of eosinophilic chronic rhinosinusitis (eCRS). We examined the function and mechanisms of basal cell hyperplasia in the pathophysiology of eCRS. METHODS We found that normal human bronchial epithelial (NHBE) cells obtained basal cell characteristics when cultured with PneumaCult™-Ex Plus Medium. Most of the cells passaged three times expressed basal cell surface markers CD49f and CD271 by flow cytometry, and basal cell nuclear marker p63 by immunohistochemical staining. We named these NHBE cells with basal cell characteristics cultured Basal-like cells (cBC), and NHBE cells cultured with BEGM™ cultured Epithelial cells (cEC). The characteristics of cBC and cEC were examined and compared by RNA sequencing, RT-PCR, ELISA, and cell proliferation studies. RESULTS RNA sequencing revealed that cBC showed higher gene expression of thymic stromal lymphopoietin (TSLP), IL-8, TLR3, and TLR4, and lower expression of PAR-2 compared with cEC. The mRNA expression of TSLP, IL-8, TLR3, and TLR4 was significantly increased in cBC, and that of PAR-2 was significantly increased in cEC by RT-PCR. Poly(I:C)-induced TSLP production and LPS-induced IL-8 production were significantly increased in cBC. IL-4 and IL-13 stimulated the proliferation of cBC. Finally, the frequency of p63-positive basal cells was increased in nasal polyp epithelium of eCRS, and Ki67-positive proliferating cells were increased in p63-positive basal cells. CONCLUSIONS Type 2 cytokines IL-4 and IL-13 induce basal cell hyperplasia, and basal cells exacerbate type 2 inflammation by producing TSLP in nasal polyp of eCRS.
Collapse
Affiliation(s)
- Kento Kawakita
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan.
| | - Takuya Murao
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihito Kubo
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Tatsuji Nishiguchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Keigo Nakamura
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Arai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Koji Matsumoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Ichiro Tojima
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Shino Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
5
|
Liu Y, Lv W, Wang W. Uncovering the Cellular Microenvironment in Chronic Rhinosinusitis via Single-Cell RNA Sequencing: Application and Future Directions. Clin Rev Allergy Immunol 2024; 66:210-222. [PMID: 38687404 DOI: 10.1007/s12016-024-08992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Chronic rhinosinusitis (CRS) is a heterogenic disease characterized by persistent mucosal inflammation of the upper airway. Researches of CRS have progressed from phenotype-based to endotype-based, looking more deeply into molecular biomarkers, signaling pathways, and immune microenvironment. Single-cell RNA sequencing is an effective tool in analyzing composition, function, and interaction of cells in disease microenvironment at transcriptome level, showing great advantage in analyzing potential biomarkers, pathogenesis, and heterogeneity of chronic airway inflammation in an unbiased manner. In this article, we will review the latest advances in scRNA-seq studies of CRS to provide new perspectives for the diagnosis and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Yuzhuo Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Wei Lv
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Weiqing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Huang GX, Mandanas MV, Djeddi S, Fernandez-Salinas D, Gutierrez-Arcelus M, Barrett NA. Increased glycolysis and cellular crosstalk in eosinophilic chronic rhinosinusitis with nasal polyps. Front Immunol 2024; 15:1321560. [PMID: 38444858 PMCID: PMC10912276 DOI: 10.3389/fimmu.2024.1321560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa with distinct endotypes including type 2 (T2) high eosinophilic CRS with nasal polyps (eCRSwNP), T2 low non-eosinophilic CRS with nasal polyps (neCRSwNP), and CRS without nasal polyps (CRSsNP). Methods Given the heterogeneity of disease, we hypothesized that assessment of single cell RNA sequencing (scRNA-seq) across this spectrum of disease would reveal connections between infiltrating and activated immune cells and the epithelial and stromal populations that reside in sinonasal tissue. Results Here we find increased expression of genes encoding glycolytic enzymes in epithelial cells (EpCs), stromal cells, and memory T-cell subsets from patients with eCRSwNP, as compared to healthy controls. In basal EpCs, this is associated with a program of cell motility and Rho GTPase effector expression. Across both stromal and immune subsets, glycolytic programming was associated with extracellular matrix interactions, proteoglycan generation, and collagen formation. Furthermore, we report increased cell-cell interactions between EpCs and stromal/immune cells in eCRSwNP compared to healthy control tissue, and we nominate candidate receptor-ligand pairs that may drive tissue remodeling. Discussion These findings support a role for glycolytic reprograming in T2-elicited tissue remodeling and implicate increased cellular crosstalk in eCRSwNP.
Collapse
Affiliation(s)
- George X. Huang
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Michael V. Mandanas
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Ualiyeva S, Lemire E, Wong C, Perniss A, Boyd A, Avilés EC, Minichetti DG, Maxfield A, Roditi R, Matsumoto I, Wang X, Deng W, Barrett NA, Buchheit KM, Laidlaw TM, Boyce JA, Bankova LG, Haber AL. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci Immunol 2024; 9:eabq4341. [PMID: 38306414 PMCID: PMC11127180 DOI: 10.1126/sciimmunol.abq4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evan Lemire
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alexander Perniss
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Amelia Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evelyn C. Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA; currently at Faculty of Biological Sciences, Pontificia Universidad Católica de Chile
| | - Dante G. Minichetti
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alice Maxfield
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | - Rachel Roditi
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | | | - Xin Wang
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Wenjiang Deng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M. Buchheit
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Tanya M. Laidlaw
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Lora G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
8
|
Kageyama T, Ito T, Tanaka S, Nakajima H. Physiological and immunological barriers in the lung. Semin Immunopathol 2024; 45:533-547. [PMID: 38451292 PMCID: PMC11136722 DOI: 10.1007/s00281-024-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
The lungs serve as the primary organ for respiration, facilitating the vital exchange of gases with the bloodstream. Given their perpetual exposure to external particulates and pathogens, they possess intricate protective barriers. Cellular adhesion in the lungs is robustly maintained through tight junctions, adherens junctions, and desmosomes. Furthermore, the pulmonary system features a mucociliary clearance mechanism that synthesizes mucus and transports it to the outside. This mucus is enriched with chemical barriers like antimicrobial proteins and immunoglobulin A (IgA). Additionally, a complex immunological network comprising epithelial cells, neural cells, and immune cells plays a pivotal role in pulmonary defense. A comprehensive understanding of these protective systems offers valuable insights into potential pathologies and their therapeutic interventions.
Collapse
Affiliation(s)
- Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba, 260-8670, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| |
Collapse
|
9
|
Kan X, Guan R, Hao J, Zhao C, Sun Y. Integrative analysis of immune-related signature profiles in eosinophilic chronic rhinosinusitis with nasal polyposis. FEBS Open Bio 2023; 13:2273-2289. [PMID: 37867480 PMCID: PMC10699107 DOI: 10.1002/2211-5463.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is a subtype of chronic rhinosinusitis (CRS) that is associated with the nasal cavity and sinus polyps, elevated levels of eosinophils, and dysregulated immune responses to environmental triggers. The underlying cause of ECRSwNP is not well understood, and few studies have focused on the unique features of this subtype of CRS. Our study integrated proteomic and transcriptomic data with multi-omic bioinformatics analyses. We collected nasal polyps from three ECRSwNP patients and three control patients and identified 360 differentially expressed (DE) proteins, including 119 upregulated and 241 downregulated proteins. Functional analyses revealed several significant associations with ECRSwNP, including focal adhesion, hypertrophic cardiomyopathy, and extracellular matrix (ECM)-receptor interactions. Additionally, a protein-protein interaction (PPI) network revealed seven hub proteins that may play crucial roles in the development of ECRSwNP. We also compared the proteomic data with publicly available transcriptomic data and identified a total of 1077 DE genes. Pathways enriched by the DE genes involved angiogenesis, positive regulation of cell motility, and immune responses. Furthermore, we investigated immune cell infiltration and identified biomarkers associated with eosinophil and M2 macrophage infiltration using CIBERSORT and Weighted Gene Correlation Network Analysis (WGCNA). Our results provide a more complete picture of the immune-related mechanisms underlying ECRSwNP, which could contribute to the development of more precise treatment strategies for this condition.
Collapse
Affiliation(s)
- Xuan Kan
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Ruidi Guan
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Jianwei Hao
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Chunyuan Zhao
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck SurgeryThe Second Affiliated Hospital, Harbin Medical UniversityChina
| |
Collapse
|
10
|
Huang GX, Hallen NR, Lee M, Zheng K, Wang X, Mandanas MV, Djeddi S, Fernandez D, Hacker J, Ryan T, Bergmark RW, Bhattacharyya N, Lee S, Maxfield AZ, Roditi RE, Buchheit KM, Laidlaw TM, Gern JE, Hallstrand TS, Ray A, Wenzel SE, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Increased epithelial mTORC1 activity in chronic rhinosinusitis with nasal polyps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562288. [PMID: 37904989 PMCID: PMC10614789 DOI: 10.1101/2023.10.13.562288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.
Collapse
Affiliation(s)
- George X. Huang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Nils R. Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Kelly Zheng
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | | | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital; Boston, MA
| | | | - Jonathan Hacker
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Regan W. Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary; Boston, MA
| | - Stella Lee
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Alice Z. Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Rachel E. Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - James E. Gern
- Division of Allergy, Immunology, and Rheumatology, University of Wisconsin School of Medicine and Public Health; Madison, WI
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center; Seattle, WA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh; Pittsburgh, PA
| | - Sally E. Wenzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center; Pittsburgh, PA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital; Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| |
Collapse
|