1
|
Lalatović N, Ždralević M, Antunović T, Pantović S. Genetic polymorphisms in ABCB1 are correlated with the increased risk of atorvastatin-induced muscle side effects: a cross-sectional study. Sci Rep 2023; 13:17895. [PMID: 37857778 PMCID: PMC10587173 DOI: 10.1038/s41598-023-44792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Genetic factors are recognized as risk factors for statin-associated muscle symptoms (SAMS), which are the most common cause of statin intolerance. The aim of this study was to determine whether there is an association between polymorphisms 1236C > T, 2677G > T/A, and 3435C > T in the ABCB1 gene, encoding the efflux transporter of statins, and SAMS, as results on this topic are still controversial. A cross-sectional study was conducted on patients with or without SAMS using atorvastatin. The influence of non-genetic variables on SAMS was also evaluated. Our results show that patients with TT genotype in 1236C > T, 2677G > T/A, and 3435C > T polymorphisms had higher risk of developing SAMS, compared to wild type and heterozygous carriers together (OR 4.292 p = 0.0093, OR 5.897 p = 0.0023 and OR 3.547 p = 0.0122, respectively). Furthermore, TTT/TTT diplotype was also associated with a higher risk of SAMS, OR 9.234 (p = 0.0028). Only family history of cardiovascular disease was found to be a risk factor for SAMS, in addition to the known non-genetic variables. We believe that ABCB1 genotyping has great potential to be incorporated into clinical practice to identify high-risk patients in a timely manner.
Collapse
Affiliation(s)
- Ninoslava Lalatović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000, Podgorica, Montenegro.
| | - Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Cetinjska 2, 81000, Podgorica, Montenegro
| | - Tanja Antunović
- Center for Clinical Laboratory Diagnostic, Clinical Center of Montenegro, Ljubljanska bb, 81000, Podgorica, Montenegro
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000, Podgorica, Montenegro
| |
Collapse
|
2
|
Padmanabhan S, du Toit C, Dominiczak AF. Cardiovascular precision medicine - A pharmacogenomic perspective. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e28. [PMID: 38550953 PMCID: PMC10953758 DOI: 10.1017/pcm.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 05/16/2024]
Abstract
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Clea du Toit
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Jiang Z, Wu Z, Liu R, Du Q, Fu X, Li M, Kuang Y, Lin S, Wu J, Xie W, Shi G, Peng Y, Zheng F. Effect of polymorphisms in drug metabolism and transportation on plasma concentration of atorvastatin and its metabolites in patients with chronic kidney disease. Front Pharmacol 2023; 14:1102810. [PMID: 36923356 PMCID: PMC10010391 DOI: 10.3389/fphar.2023.1102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Dyslipidemia due to renal insufficiency is a common complication in patients with chronic kidney diseases (CKD), and a major risk factor for the development of cardiovascular events. Atorvastatin (AT) is mainly used in the treatment of dyslipidemia in patients with CKD. However, response to the atorvastatin varies inter-individually in clinical applications. We examined the association between polymorphisms in genes involved in drug metabolism and transport, and plasma concentrations of atorvastatin and its metabolites (2-hydroxy atorvastatin (2-AT), 2-hydroxy atorvastatin lactone (2-ATL), 4-hydroxy atorvastatin (4-AT), 4-hydroxy atorvastatin lactone (4-ATL), atorvastatin lactone (ATL)) in kidney diseases patients. Genotypes were determined using TaqMan real time PCR in 212 CKD patients, treated with 20 mg of atorvastatin daily for 6 weeks. The steady state plasma concentrations of atorvastatin and its metabolites were quantified using ultraperformance liquid chromatography in combination with triple quadrupole mass spectrometry (UPLC-MS/MS). Univariate and multivariate analyses showed the variant in ABCC4 (rs3742106) was associated with decreased concentrations of AT and its metabolites (2-AT+2-ATL: β = -0.162, p = 0.028 in the dominant model; AT+2-AT+4-AT: β = -0.212, p = 0.028 in the genotype model), while patients carrying the variant allele ABCC4-rs868853 (β = 0.177, p = 0.011) or NR1I2-rs6785049 (β = 0.123, p = 0.044) had higher concentrations of 2-AT+2-ATL in plasma compared with homozygous wildtype carriers. Luciferase activity was enhanced in HepG2 cells harboring a construct expressing the rs3742106-T allele or the rs868853-G allele (p < 0.05 for each) compared with a construct expressing the rs3742106G or the rs868853-A allele. These findings suggest that two functional polymorphisms in the ABCC4 gene may affect transcriptional activity, thereby directly or indirectly affecting release of AT and its metabolites from hepatocytes into the circulation.
Collapse
Affiliation(s)
- Zebin Jiang
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zemin Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ruixue Liu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Qin Du
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xian Fu
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Min Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongjun Kuang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shen Lin
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jiaxuan Wu
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weiji Xie
- Department of Nephrology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanqiang Peng
- Department of Nephrology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| | - Fuchun Zheng
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| |
Collapse
|
4
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
5
|
Bharath G, Vishnuprabu DP, Preethi L, Nagappan AS, Dhianeshwaran Isravanya RT, Bhaskar LV, Swaminathan N, Munirajan AK. SLCO1B1 and ABCB1 variants synergistically influence the atorvastatin treatment response in south Indian coronary artery disease patients. Pharmacogenomics 2022; 23:683-694. [PMID: 35968761 DOI: 10.2217/pgs-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Atorvastatin exhibits wide interindividual variability in treatment response, limiting the drug efficacy in coronary artery disease patients. Aim: To study the effect of genetic variants involved in atorvastatin transport/metabolism and correlate their lipid-lowering efficacy. Materials & methods: Genotyping was performed using 5'-hydrolysis probe method (n = 412), and the study evaluated the treatment response in 86 patients. Results: Significant reduction in total cholesterol and low-density lipoprotein cholesterol (LDL-C) were observed in SLCO1B1-rs4149056, rs4363657 and ABCB1-rs1045642 genotypes. The combined genotypes of ABCB1 and SLCO1B1 showed a strong synergistic effect in reducing the total cholesterol and LDL-C. Diabetes and smoking were observed to influence the LDL-C reduction. Conclusion: The genetic variants of SLCO1B1 and ABCB1 predict the lipid-lowering efficacy of atorvastatin, and this may be useful in genotype-guided statin therapy for coronary artery disease patients.
Collapse
Affiliation(s)
- Govindaswamy Bharath
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - Durairaj Pandian Vishnuprabu
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India.,Center for Vascular and Inflammatory Disease, University of Maryland Baltimore, School of Medicine, Baltimore, MD 21201, USA
| | - Loganathan Preethi
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India.,Department of Health Research Multi-Disciplinary Research Unit, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | - Arumugam Suriyam Nagappan
- Department of Health Research Multi-Disciplinary Research Unit, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| | | | - Lakkakula Vks Bhaskar
- Department of Life Sciences, Guru Ghasidas University, Bilaspur, Chhattisgarh, 495009, India
| | - Nagarajan Swaminathan
- Institute of Cardiology, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, 600003, India
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India.,Department of Health Research Multi-Disciplinary Research Unit, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113, India
| |
Collapse
|
6
|
Murphy WA, Lin N, Damask A, Schwartz GG, Steg PG, Szarek M, Banerjee P, Fazio S, Manvelian G, Pordy R, Shuldiner AR, Paulding C. Pharmacogenomic Study of Statin-Associated Muscle Symptoms in the ODYSSEY OUTCOMES Trial. Circ Genom Precis Med 2022; 15:e003503. [PMID: 35543701 PMCID: PMC9213083 DOI: 10.1161/circgen.121.003503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Statin-associated muscle symptoms (SAMS) are the most frequently reported adverse events for statin therapies. Previous studies have reported an association between the p.Val174Ala missense variant in SLCO1B1 and SAMS in simvastatin-treated subjects; however, evidence for genetic predictors of SAMS in atorvastatin- or rosuvastatin-treated subjects is currently lacking.
Collapse
Affiliation(s)
- William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill‚ Chapel Hill‚ NC (W.A.M.)
| | - Nan Lin
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Amy Damask
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill‚ Chapel Hill‚ NC (W.A.M.)
| | | | - P. Gabriel Steg
- Université de Paris, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris‚ INSERM U1148, France (P.G.S.)
| | - Michael Szarek
- University of Colorado School of Medicine, Aurora‚ CO (G.G.S., M.S.)
- Department of Biostatistics and Epidemiology, SUNY Downstate School of Public Health, Brooklyn, NY (M.S.)
- CPC Clinical Research, Aurora, CO (M.S.)
| | - Poulabi Banerjee
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Sergio Fazio
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Garen Manvelian
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Robert Pordy
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Alan R. Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Charles Paulding
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| |
Collapse
|
7
|
Dagli-Hernandez C, Borges JB, Marçal EDSR, de Freitas RCC, Mori AA, Gonçalves RM, Faludi AA, de Oliveira VF, Ferreira GM, Bastos GM, Zhou Y, Lauschke VM, Cerda A, Hirata MH, Hirata RDC. Genetic Variant ABCC1 rs45511401 Is Associated with Increased Response to Statins in Patients with Familial Hypercholesterolemia. Pharmaceutics 2022; 14:944. [PMID: 35631530 PMCID: PMC9144204 DOI: 10.3390/pharmaceutics14050944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods. Low-density lipoprotein cholesterol (LDL-c) response to statins (reduction ≥ 50%) and statin-related adverse event (SRAE) risk were assessed in carriers of deleterious variants in PK-related genes using multivariate linear regression analyses. Fifty-eight (50.8%) FH patients responded to statins, and 24 (21.0%) had SRAE. Results of the multivariate regression analysis revealed that ABCC1 rs45511401 significantly increased LDL-c reduction after statin treatment (p < 0.05). In silico analysis of the amino-acid change using molecular docking showed that ABCC1 rs45511401 possibly impairs statin efflux. Deleterious variants in PK genes were not associated with an increased risk of SRAE. In conclusion, the deleterious variant ABCC1 rs45511401 enhanced LDL-c response in Brazilian FH patients. As such, this variant might be a promising candidate for the individualization of statin therapy.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Augusto Akira Mori
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Rodrigo Marques Gonçalves
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; (R.M.G.); (A.A.F.)
| | - Andre Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; (R.M.G.); (A.A.F.)
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
- Department of Teaching and Research, Real e Benemerita Associação Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Alvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN & Department of Basic Sciences, Universidad de La Frontera, Av. Alemania 0458, Temuco 4810296, Chile;
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| |
Collapse
|
8
|
Fracowiak J, Huebner T, Heß S, Roethlein C, Langner D, Schneider U, Falkenberg F, Scholl C, Linder R, Stingl J, Haenisch B, Steffens M. Evaluation of the EMPAR study population on the basis of metabolic phenotypes of selected pharmacogenes. THE PHARMACOGENOMICS JOURNAL 2022; 22:136-144. [PMID: 35102241 PMCID: PMC8975744 DOI: 10.1038/s41397-022-00268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The impact of genetic variability of pharmacogenes as a possible risk factor for adverse drug reactions is elucidated in the EMPAR (Einfluss metabolischer Profile auf die Arzneimitteltherapiesicherheit in der Routineversorgung/English: influence of metabolic profiles on the safety of drug therapy in routine care) study. EMPAR evaluates possible associations of pharmacogenetically predicted metabolic profiles relevant for the metabolism of frequently prescribed cardiovascular drugs. Based on a German study population of 10,748 participants providing access to healthcare claims data and DNA samples for pharmacogenetic assessment, first analyses were performed and evaluated. The aim of this first evaluation was the characterization of the study population with regard to general parameters such as age, gender, comorbidity, and polypharmacy at baseline (baseline year) as well as important combinations of cardiovascular drugs with relevant genetic variants and predicted metabolic phenotypes. The study was registered in the German Clinical Trials Register (DRKS) on July 6, 2018 (DRKS00013909).
Collapse
Affiliation(s)
- Jochen Fracowiak
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, North Rhine-Westphalia, Germany
| | - Tatjana Huebner
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, North Rhine-Westphalia, Germany.
| | - Steffen Heß
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, North Rhine-Westphalia, Germany
| | - Christoph Roethlein
- German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| | | | | | | | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, North Rhine-Westphalia, Germany
| | | | - Julia Stingl
- Institute for Clinical Pharmacology, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Britta Haenisch
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, North Rhine-Westphalia, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, North Rhine-Westphalia, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
9
|
Sivkov A, Chernus N, Gorenkov R, Sivkov S, Sivkova S, Savina T. Relationship between genetic polymorphism of drug transporters and the efficacy of Rosuvastatin, atorvastatin and simvastatin in patients with hyperlipidemia. Lipids Health Dis 2021; 20:157. [PMID: 34749751 PMCID: PMC8573942 DOI: 10.1186/s12944-021-01586-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background To determine the effect of genetic polymorphism of drug transporters on the efficacy of treatment with Rosuvastatin, Atorvastatin and Simvastatin in patients with hyperlipidemia. Methods The study consists of 180 patients, aged 40–75 years, with hyperlipidemia. All patients were divided into two equal groups: patients with different SLCO1B1 (521CC, 521CT and 521TT) and MDR1 (3435CC, 3435TC and 3435TT) genotypes. Each group was divided into rosuvastatin-treated, atorvastatin-treated and simvastatin-treated subgroups. The lipid-lowering effect of statins was assessed by tracing changes in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels. Results The use of statins over a 4-month period led to substantial reductions in TC and LDL-C levels. The hypolipidemic effect of studied agents was seen in both groups. However, it was less pronounced in patients with 521CC genotype. No statistically significantly differences were found between carriers of 3435TT, 3435CT and 3435CC genotypes. Conclusions The lipid-lowering efficacy of rosuvastatin was higher compared to other two statins. Patients with SLCO1B1 521CC genotype are more likely to encounter a decrease in the hypolipidemic effect of statins. Such a risk should be considered when treating this category of patients. MDR1 polymorphism had no significant effect on statin efficacy.
Collapse
Affiliation(s)
- Andrey Sivkov
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
| | - Natalya Chernus
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinical Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Roman Gorenkov
- Institute of Leadership and Health Management, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Federal State Budget Scientific Institution, «The N. A. Semashko National Research Institute of Public Health», Moscow, Russian Federation
| | - Sergey Sivkov
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Svetlana Sivkova
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinical Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Tamara Savina
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinical Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
10
|
Melhem AL, Chourasia MK, Bigossi M, Maroteau C, Taylor A, Pola R, Dawed AY, Tornio A, Palmer CNA, Siddiqui MK. Common Statin Intolerance Variants in ABCB1 and LILRB5 Show Synergistic Effects on Statin Response: An Observational Study Using Electronic Health Records. Front Genet 2021; 12:713181. [PMID: 34659336 PMCID: PMC8517257 DOI: 10.3389/fgene.2021.713181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Statin intolerance impacts approximately 10% of statin users, with side effects ranging from mild myalgia to extreme intolerance resulting in myopathy and rhabdomyolysis. Statin intolerance results in poor adherence to therapy and can impact statin efficacy. Many genetic variants are associated with statin intolerance. The effect of these variants on statin efficacy has not been systematically explored. Methods: Using longitudinal electronic health records and genetic biobank data from Tayside, Scotland, we examined the effect of seven genetic variants with previously reported associations with simvastatin or atorvastatin intolerance on the outcome of statin response. Statin response was measured by the reduction achieved when comparing pre- and post-statin non-high-density lipoprotein-cholesterol (non-HDL-C). Post-treatment statin response was limited to non-HDL-C measured within 6months of therapy initiation. Univariate and multivariable linear regression models were used to assess the main and adjusted effect of the variants on statin efficacy. Results: Around 9,401 statin users met study inclusion criteria, of whom 8,843 were first prescribed simvastatin or atorvastatin. The average difference in post-treatment compared to pre-treatment non-HDL-cholesterol was 1.45 (±1.04) mmol/L. In adjusted analyses, only two variants, one in the gene ATP-binding cassette transporter B1 (ABCB1; rs1045642), and one in leukocyte immunoglobulin like receptor B5 (LILRB5; rs12975366), were associated with statin efficacy. In ABCB1, homozygous carriers of the C allele at rs1045642 had 0.06mmol/L better absolute reduction in non-HDL-cholesterol than carriers of the T allele (95% CI: 0.01, 0.1). In LILRB5 (rs12975366), carriers of the C allele had 0.04mmol/L better absolute reduction compared to those homozygous for the T allele (95% CI: 0.004, 0.08). When combined into a two-variant risk score, individuals with both the rs1045642-CC genotype and the rs12975366-TC or CC genotype had a 0.11mmol/L greater absolute reduction in non-HDL-cholesterol compared to those with rs1045642-TC or TT genotype and the rs12975366-TT genotype (95% CI: 0.05, 0.16; p<0.001). Conclusion: We report two genetic variants for statin adverse drug reactions (ADRs) that are associated with statin efficacy. While the ABCB1 variant has been shown to have an association with statin pharmacokinetics, no similar evidence for LILRB5 has been reported. These findings highlight the value of genetic testing to deliver precision therapeutics to statin users.
Collapse
Affiliation(s)
- Alaa' Lutfi Melhem
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Mehul Kumar Chourasia
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Margherita Bigossi
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom.,Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cyrielle Maroteau
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Alasdair Taylor
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Adem Y Dawed
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Aleksi Tornio
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom.,Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Colin N A Palmer
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Moneeza K Siddiqui
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
11
|
Wang T, Sun L, Xu L, Zhao T, Feng J, Yu L, Wu J, Li H. Prevalence of dyslipidemia and gene polymorphisms of ABCB1 and SLCO1B1 in Han, Uygur, Kazak, Hui, Tatar, Kirgiz, and Sibe populations with coronary heart disease in Xinjiang, China. Lipids Health Dis 2021; 20:116. [PMID: 34563206 PMCID: PMC8466639 DOI: 10.1186/s12944-021-01544-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Dyslipidemia is a predisposing factor for coronary heart disease (CHD). High-intensity statin therapy is recommended as secondary prevention. ABCB1 and SLCO1B1 genes influence the efficacy and safety of statins. Xinjiang is a multi-ethnic area; however, little is known about the prevalence of dyslipidemia and gene polymorphisms of ABCB1 and SLCO1B1 in minority groups with CHD. Objective To measure levels of lipid and apolipoprotein and the prevalence of dyslipidemia and gene polymorphisms of ABCB1, SLCO1B1 in Han, Uygur, Kazak, Hui, Tatar, Kirgiz, and Sibe populations with CHD in Xinjiang. Methods This descriptive retrospective study compares lipid levels in ethnic groups using Kruskal-Wallis test or analysis of variance. The study compared gene polymorphisms and the prevalence of dyslipidemia among different ethnic groups using the chi-square test. The lipid profiles in plasma were measured before lipid-lowering therapy using commercially available kits. Genotyping of SLCO1B1 and ABCB1 variants was performed using sequencing by hybridization. Results A total of 2218 patients were successfully screened, including 1044 Han, 828 Uygur, 113 Kazak, 138 Hui, 39 Tatar, 36 Kirgiz, and 20 Sibe patients. The overall mean age was 61.8 ± 10.8 years, and 72.5% of participants were male. Dyslipidemia prevalence in these ethnic groups was 42.1, 49.8, 52.2, 40.6, 48.7, 41.7, and 45.0%, respectively. The prevalence of dyslipidemia, high total cholesterol (TC), high triglycerides (TG), and high low density lipoprotein cholesterol (LDL-C) differed significantly among the groups (P = 0.024; P < 0.001; P < 0.001; P < 0.001, respectively). For the Han group, high LDL-C, high TC, and high TG prevalence differed significantly by gender (P = 0.001, P = 0.022, P = 0.037, respectively). The prevalence of high TC, high TG, and low high density lipoprotein cholesterol (HDL-C) differed significantly by gender in the Uygur group (P = 0.006, P = 0.004, P < 0.001, respectively). The prevalence of high TC in Hui patients significantly differed by gender (P = 0.043). These findings suggest that polymorphisms in ABCB1 and C3435T differ significantly across ethnicities (P < 0.001). Conclusions The prevalences of dyslipidemia, high TC, high TG, and high LDL-C in Han, Uygur, Kazak, Hui, Tatar, Kirgiz, and Sibe CHD patients in Xinjiang differed concerning ethnicity. Ethnic, gender, and lifestyle were the key factors that affected the lipid levels of the population. The prevalence of polymorphisms of ABCB1 and C3435T significantly differed across ethnicities. These findings will aid the selection of precision lipid-lowering medications and prevention and treatment of CHD according to ethnicity in Xinjiang. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01544-3.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.,Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Li Sun
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.,Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Li Xu
- Internal Medicine-Cardiovascular Department, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Ting Zhao
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jie Feng
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Luhai Yu
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jianhua Wu
- Department of Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China. .,Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.
| | - Hongjian Li
- Institute of Clinical Pharmacy, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
12
|
Abstract
Over the past decade, pharmacogenetic testing has emerged in clinical practice to guide selected cardiovascular therapies. The most common implementation in practice is CYP2C19 genotyping to predict clopidogrel response and assist in selecting antiplatelet therapy after percutaneous coronary intervention. Additional examples include genotyping to guide warfarin dosing and statin prescribing. Increasing evidence exists on outcomes with genotype-guided cardiovascular therapies from multiple randomized controlled trials and observational studies. Pharmacogenetic evidence is accumulating for additional cardiovascular medications. However, data for many of these medications are not yet sufficient to support the use of genotyping for drug prescribing. Ultimately, pharmacogenetics might provide a means to individualize drug regimens for complex diseases such as heart failure, in which the treatment armamentarium includes a growing list of medications shown to reduce morbidity and mortality. However, sophisticated analytical approaches are likely to be necessary to dissect the genetic underpinnings of responses to drug combinations. In this Review, we examine the evidence supporting pharmacogenetic testing in cardiovascular medicine, including that available from several clinical trials. In addition, we describe guidelines that support the use of cardiovascular pharmacogenetics, provide examples of clinical implementation of genotype-guided cardiovascular therapies and discuss opportunities for future growth of the field.
Collapse
Affiliation(s)
- Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA.
| |
Collapse
|
13
|
Pharmacogenomics of statins: lipid response and other outcomes in Brazilian cohorts. Pharmacol Rep 2021; 74:47-66. [PMID: 34403130 DOI: 10.1007/s43440-021-00319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023]
Abstract
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in cholesterol biosynthesis, that are highly effective in reducing plasma low-density lipoprotein (LDL) cholesterol and decreasing the risk of cardiovascular events. In recent years, a multitude of variants in genes involved in pharmacokinetics (PK) and pharmacodynamics (PD) have been suggested to influence the cholesterol-lowering response. However, the vast majority of studies have analyzed the pharmacogenetic associations in populations in Europe and the USA, whereas data in other populations, including Brazil, are mostly lacking. This narrative review provides an update of clinical studies on statin pharmacogenomics in Brazilian cohorts exploring lipid-lowering response, adverse events and pleiotropic effects. We find that variants in drug transporter genes (SLCO1B1 and ABCB1) positively impacted atorvastatin and simvastatin response, whereas variants in genes of drug metabolizing enzymes (CYP3A5) decreased response. Furthermore, multiple associations of variants in PD genes (HMGCR, LDLR and APOB) with statin response were identified. Few studies have explored statin-related adverse events, and only ABCB1 but not SLCO1B1 variants were robustly associated with increased risk in Brazil. Statin-related pleiotropic effects were shown to be influenced by variants in PD (LDLR, NR1H2) and antioxidant enzyme (NOS3, SOD2, MTHFR, SELENOP) genes. The findings of these studies indicate that statin pharmacogenomic associations are distinctly different in Brazil compared to other populations. This review also discusses the clinical implications of pharmacogenetic studies and the rising importance of investigating rare variants to explore their association with statin response.
Collapse
|
14
|
Xiang Q, Zhang XD, Mu GY, Wang Z, Liu ZY, Xie QF, Hu K, Zhang Z, Ma LY, Jiang J, Cui YM. Correlation between single-nucleotide polymorphisms and statin-induced myopathy: a mixed-effects model meta-analysis. Eur J Clin Pharmacol 2020; 77:569-581. [PMID: 33150478 DOI: 10.1007/s00228-020-03029-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE A meta-analysis was performed to evaluate the correlation between single-nucleotide polymorphisms (SNPs) and risk of statin-induced myopathy (SIM). METHODS We retrieved the studies published on SIM until April 2019 from the PubMed, Embase, and Cochrane Library databases. We collected data from 32 studies that analyzed 10 SNPs in five genes and included 21,692 individuals and nine statins. RESULTS The analysis of the heterozygous (p = 0.017), homozygous (p = 0.002), dominant (p = 0.005), and recessive models (p = 0.009) of SLCO1B1 rs4149056 showed that this SNP increases the risk of SIM. Conversely, heterozygous (p = 0.048) and dominant models (p = 0.030) of SLCO1B1 rs4363657 demonstrated that this SNP is associated with a reduced risk of SIM. Moreover, an increased risk of SIM was predicted for carriers of the rs4149056 C allele among simvastatin-treated patients, whereas carriers of the GATM rs9806699 A allele among rosuvastatin-treated patients had a lower risk of SIM. CONCLUSION The meta-analysis revealed that the rs4149056 and rs4363657 SNPs in SLCO1B1 and the rs9806699 SNP in GATM are correlated with the risk of SIM.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Dan Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Guang-Yan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhi-Yan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Qiu-Fen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China. .,, Beijing, China.
| |
Collapse
|
15
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
16
|
León-Cachón RBR, Bamford AD, Meester I, Barrera-Saldaña HA, Gómez-Silva M, Bustos MFG. The atorvastatin metabolic phenotype shift is influenced by interaction of drug-transporter polymorphisms in Mexican population: results of a randomized trial. Sci Rep 2020; 10:8900. [PMID: 32483134 PMCID: PMC7264171 DOI: 10.1038/s41598-020-65843-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide. As pharmacokinetics, metabolism and response vary among individuals, we wanted to determine the most reliable metabolic ATV phenotypes and identify novel and preponderant genetic markers that affect ATV plasma levels. A controlled, randomized, crossover, single-blind, three-treatment, three-period, and six-sequence clinical study of ATV (single 80-mg oral dose) was conducted among 60 healthy Mexican men. ATV plasma levels were measured using high-performance liquid chromatography mass spectrometry. Genotyping was performed by real-time PCR with TaqMan probes. Four ATV metabolizer phenotypes were found: slow, intermediate, normal and fast. Six gene polymorphisms, SLCO1B1-rs4149056, ABCB1-rs1045642, CYP2D6-rs1135840, CYP2B6-rs3745274, NAT2-rs1208, and COMT- rs4680, had a significant effect on ATV pharmacokinetics (P < 0.05). The polymorphisms in SLCO1B1 and ABCB1 seemed to have a greater effect and were especially important for the shift from an intermediate to a normal metabolizer. This is the first study that demonstrates how the interaction of genetic variants affect metabolic phenotyping and improves understanding of how SLCO1B1 and ABCB1 variants that affect statin metabolism may partially explain the variability in drug response. Notwithstanding, the influence of other genetic and non-genetic factors is not ruled out.
Collapse
Affiliation(s)
- Rafael B R León-Cachón
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico.
| | - Aileen-Diane Bamford
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Irene Meester
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | | | - Magdalena Gómez-Silva
- Forensic Medicine Service, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico.,Analytical Department of the Research Institute for Clinical and Experimental Pharmacology, Ipharma S.A., Monterrey, Nuevo Leon, Mexico
| | - María F García Bustos
- Institute of Experimental Pathology (CONICET), Faculty of Health Sciences, National University of Salta, Salta, Argentina.,University School in Health Sciences, Catholic University of Salta, Salta, Argentina
| |
Collapse
|
17
|
Zhang L, Lv H, Zhang Q, Wang D, Kang X, Zhang G, Li X. Association of SLCO1B1 and ABCB1 Genetic Variants with Atorvastatin-induced Myopathy in Patients with Acute Ischemic Stroke. Curr Pharm Des 2020; 25:1663-1670. [PMID: 31298164 DOI: 10.2174/1381612825666190705204614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Certain patients experience muscle-related adverse effects after taking atorvastatin. Genetic factors play an important role in the occurrence of statin-induced myopathy. AIM We aimed to identify genetic variants associated with statin-induced myotoxicity. METHODS We prospectively enrolled 1,102 acute ischemic stroke patients who underwent atorvastatin treatment for the first time after admission. Patients were separated into case and control groups after a follow-up of 3 months. We used a biochemical definition of myopathy consisting of serum creatine kinase values more than ten times the upper limit of normal for the reference laboratory (150 U/L). Fifty single nucleotide polymorphisms (SNPs) from seven genes of ABCB1, CoQ2, HTR3B, RYR2, CYP3A5, HTR7 and SLCO1B1 were selected and genotyped. The effects of genetic polymorphisms on myopathy were observed. RESULTS 61 cases and 110 controls were recruited in the study. Compared with the controls, the cases had a significant higher mutant frequency of the allele A (ABCB1, rs2373588) (OR = 2.01, 95%CI = 1.10-3.67, P = 0.001) and a significant lower mutant frequency of the allele A (SLCO1B1, rs976754) (OR = 1.85, 95%CI = 1.12-3.03, P = 0.042). Genotypes or alleles of the other SNPs had no significant difference between the two groups (P > 0.05). CONCLUSION Our findings reveal that SLCO1B1 and ABCB1 genetic variants are associated with statin-induced myopathy. These are valuable biomarkers for the evaluation of atorvastatin safety.
Collapse
Affiliation(s)
- Limin Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Hong Lv
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Qian Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dongzhi Wang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing 100070, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
18
|
Bermúdez de León M, León-Cachón RBR, Silva-Ramírez B, González-Ríos RN, Escobedo-Guajardo B, Leyva-Parra R, Tovar-Cisneros B, González-González E, Alvarado-Díaz A, Vázquez-Monsiváis O, Mata-Tijerina V, Puente-Lugo L, Álvarez-Galván E, Currás-Tuala MJ, Aguado-Barrera M, Castorena-Torres F, Alcocer-González JM, Elizondo G, Salinas-Martínez AM. Association study of genetic polymorphisms in proteins involved in oseltamivir transport, metabolism, and interactions with adverse reactions in Mexican patients with acute respiratory diseases. THE PHARMACOGENOMICS JOURNAL 2020; 20:613-620. [PMID: 32015454 PMCID: PMC7223759 DOI: 10.1038/s41397-020-0151-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
Oseltamivir, a pro-drug, is the best option for treatment and chemoprophylaxis for influenza outbreaks. However, many patients treated with oseltamivir developed adverse reactions, including hypersensitivity, gastritis, and neurological symptoms. The aim of this study was to determine the adverse drug reactions (ADRs) in Mexican patients treated with oseltamivir and whether these ADRs are associated with SNPs of the genes involved in the metabolism, transport, and interactions of oseltamivir. This study recruited 310 Mexican patients with acute respiratory diseases and treated them with oseltamivir (75 mg/day for 5 days) because they were suspected to have influenza A/H1N1 virus infection. Clinical data were obtained from medical records and interviews. Genotyping was performed using real-time polymerase chain reaction and TaqMan probes. The association was assessed under genetic models with contingency tables and logistic regression analysis. Out of 310 patients, only 38 (12.25%) presented ADRs to oseltamivir: hypersensitivity (1.9%), gastritis (10%), and depression and anxiety (0.9%). The polymorphism ABCB1-rs1045642 was associated with adverse drug reactions under the recessive model (P = 0.017); allele C was associated with no adverse drug reactions, while allele T was associated with adverse drug reactions. The polymorphisms SLC15A1-rs2297322, ABCB1-rs2032582, and CES1-rs2307243 were not consistent with Hardy-Weinberg equilibrium, and no other associations were found for the remaining polymorphisms. In conclusion, the polymorphism rs1045642 in the transporter encoded by the ABCB1 gene is a potential predictive biomarker of ADRs in oseltamivir treatment.
Collapse
Affiliation(s)
- Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico. .,Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, 66238, San Pedro Garza García, Nuevo León, Mexico.
| | - Rafael B R León-Cachón
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Rosa Nelly González-Ríos
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Brenda Escobedo-Guajardo
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Roberto Leyva-Parra
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Benjamín Tovar-Cisneros
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Everardo González-González
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Abdiel Alvarado-Díaz
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Ofelia Vázquez-Monsiváis
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Viviana Mata-Tijerina
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Lorena Puente-Lugo
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Erick Álvarez-Galván
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - María José Currás-Tuala
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Miguel Aguado-Barrera
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | | | - Juan Manuel Alcocer-González
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, 07360, Ciudad de México, Mexico
| | - Ana María Salinas-Martínez
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Instituto Mexicano del Seguro Social, 64360, Monterrey, Nuevo León, Mexico
| |
Collapse
|
19
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
20
|
Guan ZW, Wu KR, Li R, Yin Y, Li XL, Zhang SF, Li Y. Pharmacogenetics of statins treatment: Efficacy and safety. J Clin Pharm Ther 2019; 44:858-867. [PMID: 31436349 DOI: 10.1111/jcpt.13025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/02/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Statins are widely used worldwide in the prevention and treatment of coronary atherosclerotic heart disease and ischaemic stroke. However, in clinical application, statins have shown great individual differences in terms of the efficacy and safety, some of which are related to genetic factors. The purpose of this article was to summarize the recent advances about the correlation between gene polymorphisms and the efficacy/safety of statins. METHODS We searched the databases including PharmGKB and PubMed (published before June 2019) using the keywords such as 'statin', 'gene polymorphism' and 'SNP' and obtained more than 100 articles. In this review, we described the clinical studies of genetic variants associated with both the efficacy and adverse reactions of statins. We also clarified the importance of taking pharmacogenetic variation into account to improve the clinical application of statins. RESULTS AND DISCUSSION The available data were collected and analysed to present the polymorphisms of candidate genes encoding the most promising proteins including SLCO1B1 (encoding uptake transporters); ABCB1, ABCC2, ABCG2 (encoding effluent transporter); APOE, APOA5 (encoding apolipoprotein); genes encoding cytochrome P450 enzyme system; KIF6, HMGCR, LDLR, LPA, PCSK9, COQ2, CETP, etc These genes were proved to be related to the pharmacodynamics and pharmacokinetics of statins, thus affecting the efficacy and safety. WHAT IS NEW AND CONCLUSION In this paper, the correlation between gene polymorphisms and the efficacy/safety of statins was summarized. The authors reached a consensus that the variants of the genes encoding uptake and effluent transporters have the most effect on the efficacy/safety of statins. It pointed out that it is desirable to do genetic testing of these transporter genes to reduce the incidence of myopathy or to achieve better outcomes before patients use statins, especially in the regions with high frequency of risk allele.
Collapse
Affiliation(s)
- Zi-Wan Guan
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Kun-Rong Wu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Rui Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.,Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Yin
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Xiao-Li Li
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Shu-Fang Zhang
- School of Pharmacy, Shandong First Medical University, Taian, China
| | - Yan Li
- Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The cardiovascular (CV) risk related to lipid disorders is well established and is based on a robust body of evidence from well-designed randomized clinical trials, as well as prospective observational studies. In the last two decades, significant advances have been made in understanding the genetic basis of dyslipidemias. The present review is intended as a comprehensive discussion of current knowledge about the genetics and pathophysiology of disorders that predispose to dyslipidemia. We also focus on issues related to statins and the proprotein convertase subtilisin/kexin type 9 (PCSK9) and some of its polymorphisms, as well as new cholesterol-lowering medications, including PCSK9 inhibitors. RECENT FINDING Cholesterol is essential for the proper functioning of several body systems. However, dyslipidemia-especially elevated low-density lipoprotein (LDL-c) and triglyceride levels, as well as reduced lipoprotein lipase activity-is associated with an increased risk of coronary artery disease (CAD). High-density lipoprotein (HDL-c), however, seems to play a role as a risk marker rather than as a causal factor of the disease, as suggested by Mendelian randomization studies. Several polymorphisms in the lipoprotein lipase locus have been described and are associated with variations in the activity of this enzyme, producing high concentrations of triglycerides and increased risk of CAD. Dyslipidemia, especially increased LDL-c and triglyceride levels, continues to play a significant role in CV risk. The combination of genetic testing and counseling is important in the management of patients with dyslipidemia of genetic etiology. Strategies focused on primary prevention can offer an opportunity to reduce CV events.
Collapse
Affiliation(s)
- Ricardo Stein
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Exercise Cardiology Research Group (CardioEx), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,School of Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Serviço de Fisiatria e Reabilitação, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| | - Filipe Ferrari
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Exercise Cardiology Research Group (CardioEx), Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Scolari
- Graduate Program in Cardiology and Cardiovascular Sciences, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Awad ME, Padela MT, Sayeed Z, El-Othmani MM, Zekaj M, Darwiche HF, Saleh KJ. Pharmacogenomic Testing for Postoperative Pain Optimization Before Total Joint Arthroplasty: A Focus on Drug-Drug-Gene Interaction with Commonly Prescribed Drugs and Prior Opioid Use. JBJS Rev 2019; 7:e2. [PMID: 31094889 DOI: 10.2106/jbjs.rvw.18.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mohamed E Awad
- Resident Research Partnership, Detroit, Michigan.,FAJR Scientific, Detroit, Michigan.,Michigan State University College of Osteopathic Medicine, Detroit, Michigan.,John D. Dingell VA Medical Center, Detroit, Michigan
| | - Muhammad Talha Padela
- Resident Research Partnership, Detroit, Michigan.,FAJR Scientific, Detroit, Michigan.,John D. Dingell VA Medical Center, Detroit, Michigan.,Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, Michigan.,Department of Orthopaedic Surgery, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois
| | - Zain Sayeed
- Resident Research Partnership, Detroit, Michigan.,John D. Dingell VA Medical Center, Detroit, Michigan.,Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, Michigan.,Department of Orthopaedic Surgery, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois
| | - Mouhanad M El-Othmani
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, Michigan
| | - Mark Zekaj
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, Michigan
| | - Hussein F Darwiche
- Department of Orthopaedic Surgery and Sports Medicine, Detroit Medical Center, Detroit, Michigan
| | - Khaled J Saleh
- FAJR Scientific, Detroit, Michigan.,Michigan State University College of Osteopathic Medicine, Detroit, Michigan.,John D. Dingell VA Medical Center, Detroit, Michigan
| |
Collapse
|
23
|
Streja E, Streja DA, Soohoo M, Kleine CE, Hsiung JT, Park C, Moradi H. Precision Medicine and Personalized Management of Lipoprotein and Lipid Disorders in Chronic and End-Stage Kidney Disease. Semin Nephrol 2019; 38:369-382. [PMID: 30082057 DOI: 10.1016/j.semnephrol.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Precision medicine is an emerging field that calls for individualization of treatment strategies based on characteristics unique to each patient. In lipid management, current guidelines are driven mainly by clinical trial results that presently indicate that patients with non-dialysis-dependent chronic kidney disease (CKD) should be treated with a β-hydroxy β-methylglutaryl-CoA reductase inhibitor, also known as statin therapy. For patients with end-stage kidney disease (ESKD) being treated with hemodialysis, statin therapy has not been shown to successfully reduce poor outcomes in trials and therefore is not recommended. The two major guidelines dissent on whether statin therapy should be of moderate or high intensity in non-dialysis-dependent CKD patients, but often leave the prescribing clinician to make that decision. These decisions often are complicated by the increased concerns for adverse events such as myopathies in patients with advanced kidney disease and ESKD. In the future, there may be an opportunity to further identify CKD and ESKD patients who are more likely to benefit from lipid-modifying therapy as opposed to those who likely will suffer from its side effects using precision medicine tools. For now, data from genetics studies and subgroup analyses may provide insight for future research directions in this field and we review some of the work that has been published in this regard.
Collapse
Affiliation(s)
- Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA..
| | - Dan A Streja
- Division of Endocrinology, Diabetes and Metabolism, West Los Angeles VA Medical Center, Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Melissa Soohoo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Carola-Ellen Kleine
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Jui-Ting Hsiung
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Christina Park
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| | - Hamid Moradi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA.; Nephrology Section, Tibor Rubin Veterans Affairs Medical Center, Long Beach, CA
| |
Collapse
|
24
|
Lam YWF. Principles of Pharmacogenomics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
25
|
Tryggvadottir H, Huzell L, Gustbée E, Simonsson M, Markkula A, Jirström K, Rose C, Ingvar C, Borgquist S, Jernström H. Interactions Between ABCB1 Genotype and Preoperative Statin Use Impact Clinical Outcomes Among Breast Cancer Patients. Front Oncol 2018; 8:428. [PMID: 30370250 PMCID: PMC6194198 DOI: 10.3389/fonc.2018.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple clinical trials investigate statins' effects in breast cancer. The ABCB1 genotype appears to influence statin response and toxicity in the cardiovascular setting. This exploratory study aimed to investigate the interplay between preoperative statin use, ABCB1 genotype, and tumor-specific expression of the statin target 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in breast cancer. Preoperative statin use, ABCB1 C3435T genotype, and HMGCR expression in relation to outcome were analyzed in 985 primary breast cancer patients from a population-based prospective cohort in Sweden from 2002 to 2012. Preoperative statin use (n = 80) was not associated with ABCB1 C3435T genotype (n = 576), HMGCR expression (n = 848), or clinical outcomes. ABCB1 C3435T TT-carriers had lower risk of breast cancer events than any C-carriers (adjusted hazard ratio (HRadj) 0.74; 95%CI 0.49, 1.12), but only in non-statin users (Pinteraction = 0.042). Statin users with TT genotype had higher risk of distant metastasis (HRadj 4.37; 95%CI 1.20, 15.91; Pinteraction = 0.009) and shorter overall survival than other patients (HRadj 3.77; 95%CI 1.37, 10.39; Pinteraction = 0.019). In conclusion, there were nominally significant interactions between ABCB1 genotype and preoperative statin use on clinical outcomes, while preoperative statin use was not associated with outcomes. Since this is an exploratory study of the impact of the ABCB1 genotype in relation to statin use and clinical outcomes in the breast cancer setting, the results should be interpreted with caution and warrant replication in an independent cohort, preferably in a randomized setting. Since statin use is common in breast cancer patients, it would be of interest to further elucidate the clinical impact of the ABCB1 genotype in breast cancer.
Collapse
Affiliation(s)
- Helga Tryggvadottir
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden.,Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Louise Huzell
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Emma Gustbée
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Maria Simonsson
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Andrea Markkula
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Carsten Rose
- CREATE Health and Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christian Ingvar
- Clinical Sciences in Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| | - Helena Jernström
- Clinical Sciences in Lund, Oncology and Pathology, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Hubacek JA, Adamkova V, Zlatohlavek L, Steiner-Mrazova L, Vrablik M. COQ2 polymorphisms are not associated with increased risk of statin-induced myalgia/myopathy in the Czech population. Drug Metab Pers Ther 2018; 32:177-182. [PMID: 29257754 DOI: 10.1515/dmpt-2017-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The gene COQ2, encoding 4-hydroxybenzoate-polyprenyltransferase (coenzyme Q2), belongs to the candidates potentially influencing statin treatment tolerability. This enzyme is involved in the biosynthesis of coenzyme Q10 (CoQ10), in which depletion induced by statin treatment is implicated in the development of statin-associated muscle symptoms (SAMS). Thus, polymorphisms in the COQ2 gene might explain susceptibility to SAMS. METHODS Adult patients with SAMS (on low doses of atorvastatin and simvastatin)-induced myalgia/myopathy (n=278), patients on statins but without SAMS (n=293) and population (part of the post-MONICA [Multinational MONItoring of trends and determinants in CArdiovascular disease] study) controls (n=561) were genotyped (polymerase chain reaction-restriction fragment length polymorphism [PCR-RFLP] assay) for rs6535454 and rs4693075 polymorphisms within the COQ2 gene loci. RESULTS Distribution of rs6535454 in patients with SAMS (GG=51.1%, GA=40.0%, AA=8.9%) did not significantly differ (p=0.33; respectively 0.32 for codominant models of the analysis) from that in the population controls (GG=48.1%, GA=45.0%, AA=6.9%) or the SAMS-unaffected patients (GG=49.8%, GA=40.3%, AA=9.7%). Similarly, neither rs4693075 was associated with SAMS (CC=36.8%, CG=48.2%, GG=15.0% in patients suffering SAMS vs. CC=36.6%, CG=47.5%, GG=15.9 in controls and CC=35.8%, CG=48.2%, GG=15.9% in symptom-free patients, p=0.94 and 0.95 for codominant models of the analysis). Also, the haplotype distributions were not significantly different between the groups analyzed. CONCLUSIONS The polymorphisms of the COQ2 gene do not associate with SAMS in the Czech patients treated with low doses of statins. This is another clue that the coenzyme Q10 pathway is not the most important for the development of SAMS.
Collapse
Affiliation(s)
- Jaroslav A Hubacek
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, IKEM-CEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic, Phone: +420 261 363 379, Fax: +420 241 721 574
| | - Vera Adamkova
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lukas Zlatohlavek
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Steiner-Mrazova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Vrablik
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
27
|
Rocha KCE, Pereira BMV, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2018; 14:613-624. [PMID: 29842801 DOI: 10.1080/17425255.2018.1482276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Statins are used in the treatment of dyslipidemia promoting primary and secondary prevention against detrimental cardiovascular events. ATP-binding cassette (ABC) and solute carrier (SLC) membrane transporters transport statins across the cell membrane. Differences in drug transporter tissue expression and activity contribute to variability in statin pharmacokinetics (PK) and response. Areas covered: The purpose of this review is to discuss factors impacting transporter expression and the effect this has on statin efficacy and safety. Previous studies have demonstrated that genetic polymorphisms, drug-drug interactions (DDI), nuclear receptors, and microRNAs affect statin PK and pharmacodynamics. Expert opinion: Genetic variants of ABCG2 and SLCO1B1 transporters affect statin PK and, as a result, the intended lipid-lowering response. However, the effect size is small, limiting its applicability in clinical practice. Furthermore, genetic variants do not totally explain the observed intervariability in statin response. Thus, it is likely that transcriptional and post-transcriptional regulation of drug transporters are also highly involved. Further studies are required to understand the contribution of each of these new factors in statin disposition and toxicity.
Collapse
Affiliation(s)
- Karina Cunha E Rocha
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Beatriz Maria Veloso Pereira
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Alice Cristina Rodrigues
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
28
|
Berinstein E, Levy A. Recent developments and future directions for the use of pharmacogenomics in cardiovascular disease treatments. Expert Opin Drug Metab Toxicol 2017; 13:973-983. [PMID: 28792790 DOI: 10.1080/17425255.2017.1363887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cardiovascular disease is still the leading cause of death worldwide. There are many environmental and genetic factors that play a role in the development of cardiovascular disease. The treatment of cardiovascular disease is beginning to move in the direction of personalized medicine by using biomarkers from the patient's genome to design more effective treatment plans. Pharmacogenomics have already uncovered many links between genetic variation and response of many different drugs. Areas covered: This article will focus on the main polymorphisms that impact the risk of adverse effects and response efficacy of statins, clopidogrel, aspirin, β-blockers, warfarin dalcetrapib and vitamin E. The genes discussed include SLCO1B1, ABCB1, CYP3A4, CYP3A5, CYP2C19, PTGS1, PTGS2, ADRB1, ADCY9, CYP2C19, PON1, CES1, PEAR1, GPIIIa, CYP2D6, CKORC1, CYP2C9 and Hp. Expert opinion: Although there are some convincing results that have already been incorporated in the labelling treatment guidelines, most gene-drug relationships have been inconsistent. A better understanding of the relationships between genetic factors and drug response will provide more opportunities for personalized diagnosis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Elliot Berinstein
- a Technion Faculty of Medicine , Technion Israel Institute of Technology , Haifa , Israel
| | - Andrew Levy
- a Technion Faculty of Medicine , Technion Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
29
|
Elam MB, Majumdar G, Mozhui K, Gerling IC, Vera SR, Fish-Trotter H, Williams RW, Childress RD, Raghow R. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge. PLoS One 2017; 12:e0181308. [PMID: 28771594 PMCID: PMC5542661 DOI: 10.1371/journal.pone.0181308] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myalgia and myositis were observed with increased frequency among patients with statin myalgia.
Collapse
Affiliation(s)
- Marshall B. Elam
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- * E-mail: (MBE); (RR)
| | - Gipsy Majumdar
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Ivan C. Gerling
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Santiago R. Vera
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Hannah Fish-Trotter
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard D. Childress
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Rajendra Raghow
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- * E-mail: (MBE); (RR)
| |
Collapse
|
30
|
|
31
|
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic Foundations of Therapeutic Efficacy and Adverse Events of Statins. Int J Mol Sci 2017; 18:ijms18010104. [PMID: 28067828 PMCID: PMC5297738 DOI: 10.3390/ijms18010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In the era of precision medicine, more attention is paid to the search for predictive markers of treatment efficacy and tolerability. Statins are one of the classes of drugs that could benefit from this approach because of their wide use and their incidence of adverse events. Methods: Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such as statins, pharmacogenetics, epigenetics, toxicity and drug–drug interaction, among others. The search was performed until 1 October 2016 for articles published in English language. Results: Several technical and methodological approaches have been adopted, including candidate gene and next generation sequencing (NGS) analyses, the latter being more robust and reliable. Among genes identified as possible predictive factors associated with statins toxicity, cytochrome P450 isoforms, transmembrane transporters and mitochondrial enzymes are the best characterized. Finally, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) transporter seems to be the best target for future studies. Moreover, drug–drug interactions need to be considered for the best approach to personalized treatment. Conclusions: Pharmacogenetics of statins includes several possible genes and their polymorphisms, but muscular toxicities seem better related to SLCO1B1 variant alleles. Their analysis in the general population of patients taking statins could improve treatment adherence and efficacy; however, the cost–efficacy ratio should be carefully evaluated.
Collapse
Affiliation(s)
- Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
32
|
Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2016; 9:97-106. [PMID: 27757045 PMCID: PMC5055044 DOI: 10.2147/pgpm.s86013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Statins are a cornerstone of the pharmacologic treatment and prevention of atherosclerotic cardiovascular disease. Atherosclerotic disease is a predominant cause of mortality and morbidity worldwide. Statins are among the most commonly prescribed classes of medications, and their prescribing indications and target patient populations have been significantly expanded in the official guidelines recently published by the American and European expert panels. Adverse effects of statin pharmacotherapy, however, result in significant cost and morbidity and can lead to nonadherence and discontinuation of therapy. Statin-associated muscle symptoms occur in ~10% of patients on statins and constitute the most commonly reported adverse effect associated with statin pharmacotherapy. Substantial clinical and nonclinical research effort has been dedicated to determining whether genetics can provide meaningful insight regarding an individual patient’s risk of statin adverse effects. This contemporary review of the relevant clinical research on polymorphisms in several key genes that affect statin pharmacokinetics (eg, transporters and metabolizing enzymes), statin efficacy (eg, drug targets and pathways), and end-organ toxicity (eg, myopathy pathways) highlights several promising pharmacogenomic candidates. However, SLCO1B1 521C is currently the only clinically relevant pharmacogenetic test regarding statin toxicity, and its relevance is limited to simvastatin myopathy.
Collapse
Affiliation(s)
| | - Eduard B Mikulik
- Department of Biological Chemistry and Pharmacology, College of Medicine
| | - Anees M Dauki
- College of Pharmacy, The Ohio State University, Columbus, OH
| | | | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Gluba-Brzozka A, Franczyk B, Toth PP, Rysz J, Banach M. Molecular mechanisms of statin intolerance. Arch Med Sci 2016; 12:645-58. [PMID: 27279860 PMCID: PMC4889699 DOI: 10.5114/aoms.2016.59938] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Statins reduce cardiovascular morbidity and mortality in primary and secondary prevention. Despite their efficacy, many persons are unable to tolerate statins due to adverse events such as hepatotoxicity and myalgia/myopathy. In the case of most patients, it seems that mild-to-moderate abnormalities in liver and muscle enzymes are not serious adverse effects and do not outweigh the benefits of coronary heart disease risk reduction. The risk for mortality or permanent organ damage ascribed to statin use is very small and limited to cases of myopathy and rhabdomyolysis. Statin-induced muscle-related adverse events comprise a highly heterogeneous clinical disorder with numerous, complex etiologies and a variety of genetic backgrounds. Every patient who presents with statin-related side effects cannot undergo the type of exhaustive molecular characterization that would include all of these mechanisms. Frequently the only solution is to either discontinue statin therapy/reduce the dose or attempt intermittent dosing strategies at a low dose.
Collapse
Affiliation(s)
- Anna Gluba-Brzozka
- Department of Nephrology, Hypertension and Family Medicine, WAM University Hospital, Lodz, Poland
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Peter P. Toth
- CGH Medical Center, Sterling, Illinois, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacek Rysz
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Healthy Aging Research Center, Medical University of Lodz, Lodz, Poland
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Behdad N, Kojuri J, Azarpira N, Masoomi A, Namazi S. Association of ABCB1 (C3435T) and ABCC1 (G2012T) Polymorphisms with Clinical Response to Atorvastatin in Iranian Patients with Primary Hyperlipidemia. IRANIAN BIOMEDICAL JOURNAL 2016; 21:120-5. [PMID: 27238935 PMCID: PMC5274711 DOI: 10.18869/acadpub.ibj.21.2.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atorvastatin is prescribed for the primary and the secondary prevention of coronary artery diseases. A wide variation in inter-individual statin response suggests that genetic differences may contribute to this variation. This study investigated the association of ABCB1 (C3435T) and ABCC1 (G2012T) polymorphisms with clinical response to atorvastatin in Iranian primary hyperlipidemic patients. METHODS Individuals (n=179) with primary hypercholesterolemia were enrolled, and peripheral blood samples were collected. Genotyping of two polymorphisms were performed by amplification refractory mutation system PCR. RESULTS Following four weeks of treatment, a significant reduction of LDL-C was observed in variant groups (CT+TT) of ABCB1 (P=0.018) and wild-type group (GG) of ABCC1 genes (P=0.029). Logistic regression analysis revealed a significant difference between male and female responses to 10 mg/day atorvastatin (P=0.004, odds ratio=0.2, CI 95%=0.06-0.6). CONCLUSION Our finding indicated that these polymorphisms may be attributed to LDL-C serum levels in the primary hypercholesterolemia patients receiving atorvastatin.
Collapse
Affiliation(s)
- Niusha Behdad
- Department of Pharmacotherapy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Kojuri
- Department of Cardiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoomi
- Department of Pharmacotherapy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Namazi
- Department of Pharmacotherapy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
León-Cachón RBR, Ascacio-Martínez JA, Gamino-Peña ME, Cerda-Flores RM, Meester I, Gallardo-Blanco HL, Gómez-Silva M, Piñeyro-Garza E, Barrera-Saldaña HA. A pharmacogenetic pilot study reveals MTHFR, DRD3, and MDR1 polymorphisms as biomarker candidates for slow atorvastatin metabolizers. BMC Cancer 2016; 16:74. [PMID: 26857559 PMCID: PMC4746878 DOI: 10.1186/s12885-016-2062-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 01/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background The genetic variation underlying atorvastatin (ATV) pharmacokinetics was evaluated in a Mexican population. Aims of this study were: 1) to reveal the frequency of 87 polymorphisms in 36 genes related to drug metabolism in healthy Mexican volunteers, 2) to evaluate the impact of these polymorphisms on ATV pharmacokinetics, 3) to classify the ATV metabolic phenotypes of healthy volunteers, and 4) to investigate a possible association between genotypes and metabolizer phenotypes. Methods A pharmacokinetic study of ATV (single 80-mg dose) was conducted in 60 healthy male volunteers. ATV plasma concentrations were measured by high-performance liquid chromatography mass spectrometry. Pharmacokinetic parameters were calculated by the non-compartmental method. The polymorphisms were determined with the PHARMAchip® microarray and the TaqMan® probes genotyping assay. Results Three metabolic phenotypes were found in our population: slow, normal, and rapid. Six gene polymorphisms were found to have a significant effect on ATV pharmacokinetics: MTHFR (rs1801133), DRD3 (rs6280), GSTM3 (rs1799735), TNFα (rs1800629), MDR1 (rs1045642), and SLCO1B1 (rs4149056). The combination of MTHFR, DRD3 and MDR1 polymorphisms associated with a slow ATV metabolizer phenotype. Conclusion Further studies using a genetic preselection method and a larger population are needed to confirm these polymorphisms as predictive biomarkers for ATV slow metabolizers. Trial registration Australian New Zealand Clinical Trials Registry: ACTRN12614000851662, date registered: August 8, 2014. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2062-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael B R León-Cachón
- Centro de Diagnóstico Molecular y Medicina Personalizada, Departamento de Ciencias Básicas, División Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, NL, México.,Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Jorge A Ascacio-Martínez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | | | | | - Irene Meester
- Centro de Diagnóstico Molecular y Medicina Personalizada, Departamento de Ciencias Básicas, División Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, NL, México
| | | | | | | | - Hugo A Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México. .,Vitagénesis S.A., Monterrey, NL, México.
| |
Collapse
|
36
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Su J, Xu H, Yang J, Yu Q, Yang S, Zhang J, Yao Q, Zhu Y, Luo Y, Ji L, Zheng Y, Yu J. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis 2015; 14:122. [PMID: 26438079 PMCID: PMC4594898 DOI: 10.1186/s12944-015-0114-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/02/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A number of researches have evaluated the association between the ABCB1 polymorphism and the lipid-lowering response of statins, but the results have been inconclusive. To examine the lipid-lowering efficacy and safety associated with the ABCB1 C3435T polymorphism in hypercholesterolemic patients receiving statin, all available studies were included in this meta-analysis. METHODS A systematic search for eligible studies in the Cochrane library database, Scopus and PubMed was performed. Articles meeting the inclusion criteria were comprehensively reviewed, and the available data were accumulated by the meta-analysis. RESULTS The results indicated that the comparisons of CC+CT vs. TT were associated with a significant elevation of the serum HDL-C levels after statin treatment (CC+CT vs. TT: MD, 2.46; 95 % CI, 0.36 to 4.55; P = 0.02), and the ABCB1 C3435T variant in homozygotes was correlated with decreases in LDL-C (CC vs. TT: MD, 2.29; 95 % CI, 0.37 to 4.20; P = 0.02) as well as TC (CC vs. TT: MD, 3.05; 95 % CI, 0.58 to 5.53; P = 0.02) in patients treated with statin. However, we did not observe a significant association in the TG group or an association between other genetic models serum lipid parameters. In addition, statin treatment more than 5 months led to a higher risk of muscle toxicity. CONCLUSIONS The evidence from the meta-analysis demonstrated that the ABCB1 C3435T polymorphism may represent a pharmacogenomic biomarker for predicting treatment outcomes in patients on statins and that statin treatment for more than 5 months can increase the risk of myopathy.
Collapse
Affiliation(s)
- Jia Su
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Hongyu Xu
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Jun Yang
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, People's Republic of China.
| | - Shujun Yang
- Department of Hematology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, People's Republic of China.
| | - Jianjiang Zhang
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Qi Yao
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Yunyun Zhu
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Yuan Luo
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Lindan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China.
| | - Yibo Zheng
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| | - Jingbo Yu
- Department of Gerontology, Ningbo No.1 Hospital, Ningbo, Zhejiang Province, 315010, People's Republic of China.
| |
Collapse
|
38
|
Huang Q, Aa J, Jia H, Xin X, Tao C, Liu L, Zou B, Song Q, Shi J, Cao B, Yong Y, Wang G, Zhou G. A Pharmacometabonomic Approach To Predicting Metabolic Phenotypes and Pharmacokinetic Parameters of Atorvastatin in Healthy Volunteers. J Proteome Res 2015. [PMID: 26216528 DOI: 10.1021/acs.jproteome.5b00440] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qing Huang
- China Pharmaceutical
University, Nanjing 210009, China
- Jiangsu Institute
for Food and Drug Control, Nanjing 210008, China
| | - Jiye Aa
- China Pharmaceutical
University, Nanjing 210009, China
| | - Huning Jia
- China Pharmaceutical
University, Nanjing 210009, China
- Department
of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaoqing Xin
- China Pharmaceutical
University, Nanjing 210009, China
- Department
of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Chunlei Tao
- Anhui University
of Chinese Medicine, Hefei 230038, China
| | - Linsheng Liu
- Clinical
Pharmacology Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bingjie Zou
- Department
of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qinxin Song
- China Pharmaceutical
University, Nanjing 210009, China
| | - Jian Shi
- China Pharmaceutical
University, Nanjing 210009, China
| | - Bei Cao
- China Pharmaceutical
University, Nanjing 210009, China
| | - Yonghong Yong
- The First Affiliated
Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guangji Wang
- China Pharmaceutical
University, Nanjing 210009, China
| | - Guohua Zhou
- Department
of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
39
|
Mirošević Skvrce N, Macolić Šarinić V, Šimić I, Ganoci L, Muačević Katanec D, Božina N. ABCG2 gene polymorphisms as risk factors for atorvastatin adverse reactions: a case-control study. Pharmacogenomics 2015; 16:803-15. [PMID: 26086347 DOI: 10.2217/pgs.15.47] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM To explore the association between dose-related adverse drug reactions (ADRs) of atorvastatin and polymorphisms of ABCG2, taking into account the influence of CYP3A4 and SLCO1B1 genes. MATERIALS & METHODS Sixty patients who experienced atorvastatin dose-related ADRs and 90 matched patients without ADRs were enrolled in the study. Genotyping for ABCG2 421C > A, CYP3A4*22, SLCO1B1 388A > G, SLCO1B1 521T > C variants was performed by real-time PCR. RESULTS Patients with ABCG2 421CA or AA genotypes had 2.9 times greater odds of developing atorvastatin dose-dependent ADRs (OR: 2.91; 95% CI: 1.22-6.95; p = 0.016) than those with ABCG2 421CC genotype. After adjustments for clinical and genetic risk factors, ABCG2 remained a statistically significant predictor of adverse drug reactions (OR: 2.75; 95% CI: 1.1-6.87; p = 0.03;). Also, carriers of SLCO1B1 521 TC or CC genotypes had 2.3 greater odds (OR: 1.03-4.98; 95% CI: 1.03-4.98; p = 0.043) of experiencing ADRs caused by atorvastatin in comparison with carriers of SLCO1B1 521 TT genotype. CONCLUSION Our study demonstrated an association between atorvastatin-induced ADRs and genetic variants in the ABCG2 gene.
Collapse
Affiliation(s)
| | | | - Iveta Šimić
- Department of Internal Medicine, University of Zagreb School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lana Ganoci
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Diana Muačević Katanec
- Department of Internal Medicine, University of Zagreb School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
40
|
Malina DMT, Fonseca FA, Barbosa SA, Kasmas SH, Machado VA, França CN, Borges NC, Moreno RA, Izar MC. Additive effects of plant sterols supplementation in addition to different lipid-lowering regimens. J Clin Lipidol 2015; 9:542-52. [PMID: 26228672 DOI: 10.1016/j.jacl.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Plant sterol (PS) supplementation has been widely used alone or combined with lipid-lowering therapies (LLTs) to reduce low-density lipoprotein (LDL) cholesterol. The effects of PS added to high-intensity LLT are less reported, especially regarding the effects on cholesterol synthesis and absorption. METHODS A prospective, randomized, open-label study, with parallel arms and blinded end points was designed to evaluate the effects of addition of PS to LLT on LDL cholesterol, markers of cholesterol synthesis, and absorption. Eighty-six patients of both genders were submitted to a 4-wk run-in period with atorvastatin 10 mg (baseline). Following, subjects received atorvastatin 40 mg, ezetimibe 10 mg, or combination of both drugs for another 4-wk period (phase I). In phase II, capsules containing 2.0 g of PSs were added to previous assigned treatments for 4 wk. Lipids, apolipoproteins, plasma campesterol, β-sitosterol, and desmosterol levels were assayed at all time points. Within and between-group analyses were performed. RESULTS Compared with baseline, atorvastatin 40 mg reduced total and LDL cholesterol (3% and 22%, respectively, P < .05), increased β-sitosterol, campesterol/cholesterol, and β-sitosterol/cholesterol ratios (39%, 47%, and 32%, respectively, P < .05); ezetimibe 10 mg reduced campesterol and campesterol/cholesterol ratio (67% and 70%, respectively, P < .05), and the combined therapy decreased total and LDL cholesterol (22% and 38%, respectively, P < .05), campesterol, β-sitosterol, and campesterol/cholesterol ratio (54%, 40%, and 27%, P < .05). Addition of PS further reduced total and LDL cholesterol by ∼ 7.7 and 6.5%, respectively, in the atorvastatin therapy group and 5.0 and 4.0% in the combined therapy group (P < .05, for all), with no further effects in absorption or synthesis markers. CONCLUSIONS PS added to LLT can further improve lipid profile, without additional effects on intestinal sterol absorption or synthesis.
Collapse
Affiliation(s)
- Daniela M T Malina
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francisco A Fonseca
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sílvio A Barbosa
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Soraia H Kasmas
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Valéria A Machado
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina N França
- Health Sciences Post-Graduation Division, University of Santo Amaro-UNISA, Sao Paulo, Brazil
| | | | | | - Maria C Izar
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
41
|
Genetic and immunologic susceptibility to statin-related myopathy. Atherosclerosis 2015; 240:260-71. [PMID: 25818852 DOI: 10.1016/j.atherosclerosis.2015.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/14/2023]
Abstract
Statin-related myopathy (SRM) undermines drug adherence that is critical for achieving the benefits of lipid-lowering therapy. While the exact mechanism of SRM remains largely unknown, recent evidence supports specific genetic and immunologic influence on the development of intolerance. Genes of interest include those involved in the pharmacokinetics of statin response (i.e. drug metabolism, uptake transporters, and efflux transporters), pharmacodynamics (i.e. drug toxicity and immune-mediated myopathy), and gene expression. We examine the influence of genetic and immunologic variation on the pharmacokinetics, pharmacodynamics, and gene expression of SRM.
Collapse
|
42
|
Li Q, Hong J, Wu J, Huang ZX, Li QJ, Yin RX, Lin QZ, Wang F. The role of common variants of ABCB1 and CYP7A1 genes in serum lipid levels and lipid-lowering efficacy of statin treatment: a meta-analysis. J Clin Lipidol 2014; 8:618-629. [PMID: 25499945 DOI: 10.1016/j.jacl.2014.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The relation between the ABCB1 and CYP7A1 genes and serum lipid levels and lipid-lowering efficacy of statin treatment is inconsistent. OBJECTIVE The purpose of this meta-analysis was to explore the associations between the ABCB1 and CYP7A1 genes and serum lipid levels and lipid-lowering efficacy of statin treatment. METHODS MEDLINE, EMBASE, and the Cochrane Library databases were searched systematically for studies of associations between relevant single nucleotide polymorphisms C3435 T (ABCB1), G2677 A/T (ABCB1), and A-204C (CYP7A1) and serum lipid levels or statin treatment. Associations were assessed in pooled data by calculating mean difference with 95% confidence intervals. RESULTS Seventeen studies with 4890 patients were included in this meta-analysis. The "AA" group at A-204C (CYP7A1) had lower serum total cholesterol (TC) levels than "AC + CC" group. The "AA" group at A-204C (CYP7A1) had greater reduction in low-density lipoprotein cholesterol (LDL-C) with statin treatment than "AC + CC" group. The "GG" group at G2677 A/T (ABCB1) had less reduction in TC and LDL-C with statin treatment than "non-GG" group. CONCLUSIONS The A-204C (CYP7A1) polymorphism was associated with the level of TC and the lipid-lowering efficacy of statin treatment in the level of LDL-C. The G2677 A/T (ABCB1) polymorphism was associated with the lipid-lowering efficacy of statin treatment in the levels of LDL-C and TC.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Hong
- Department of Internal Medicine, Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Zhen-Xing Huang
- Department of Endocrinology, Institute of the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Qing-Jie Li
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Quan-Zhen Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
43
|
Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol 2014; 70:539-47. [PMID: 24595600 DOI: 10.1007/s00228-014-1661-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Treatment with statins requires close monitoring of serum creatine kinase (CK) levels to prevent myopathy, a common and potentially serious dose-dependent adverse effect of these drugs. We have investigated the correlation between elevated CK levels and polymorphisms in the genes encoding transporters involved in statin disposition. METHODS Patients with and without statin-induced elevated serum CK levels were genotyped for polymorphisms in SLCO1B1 (SLCO1B1 A388G and SLCO1B1 T521C), ABCB1 (ABCB1 C1236T and ABCB1 C3435T) and ABCG2 (ABCG2 C421A). RESULTS Patients carrying SLCO1B1 T521C or ABCB1 C1236T single nucleotide polymorphisms (SNPs) had an odds ratio (OR) for statin-induced elevated serum CK levels of 8.86 (p<0.01) and 4.67 (p<0.05), respectively, while patients carrying the SLCO1B1 A388G SNP had an OR of 0.24 (p<0.05). An arbitrary score based on genotype combination discriminated patients with and without CK elevation at a specificity of 97 % and a sensitivity of 39 %. CONCLUSION Genotyping of the SLCO1B1, ABCB1 and ABCG2 genes deserves consideration as a clinical approach to improve statin safety while concomitantly reducing the burden of blood tests for CK measurements.
Collapse
|
44
|
Talameh JA, Kitzmiller JP. Pharmacogenetics of Statin-Induced Myopathy: A Focused Review of the Clinical Translation of Pharmacokinetic Genetic Variants. ACTA ACUST UNITED AC 2014; 5. [PMID: 25221728 PMCID: PMC4160888 DOI: 10.4172/2153-0645.1000128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Statins are the most commonly prescribed drugs in the United States and are extremely effective in reducing major cardiovascular events in the millions of Americans with hyperlipidemia. However, many patients (up to 25%) cannot tolerate or discontinue statin therapy due to statin-induced myopathy (SIM). Patients will continue to experience SIM at unacceptably high rates or experience unnecessary cardiovascular events (as a result of discontinuing or decreasing their statin therapy) until strategies for predicting or mitigating SIM are identified. A promising strategy for predicting or mitigating SIM is pharmacogenetic testing, particularly of pharmacokinetic genetic variants as SIM is related to statin exposure. Data is emerging on the association between pharmacokinetic genetic variants and SIM. A current, critical evaluation of the literature on pharmacokinetic genetic variants and SIM for potential translation to clinical practice is lacking. This review focuses specifically on pharmacokinetic genetic variants and their association with SIM clinical outcomes. We also discuss future directions, specific to the research on pharmacokinetic genetic variants, which could speed the translation into clinical practice. For simvastatin, we did not find sufficient evidence to support the clinical translation of pharmacokinetic genetic variants other than SLCO1B1. However, SLCO1B1 may also be clinically relevant for pravastatin- and pitavastatin-induced myopathy, but additional studies assessing SIM clinical outcome are needed. CYP2D6*4 may be clinically relevant for atorvastatin-induced myopathy, but mechanistic studies are needed. Future research efforts need to incorporate statin-specific analyses, multi-variant analyses, and a standard definition of SIM. As the use of statins is extremely common and SIM continues to occur in a significant number of patients, future research investments in pharmacokinetic genetic variants have the potential to make a profound impact on public health.
Collapse
Affiliation(s)
- Jasmine A Talameh
- Center for Pharmacogenomics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
45
|
Mancini GBJ, Tashakkor AY, Baker S, Bergeron J, Fitchett D, Frohlich J, Genest J, Gupta M, Hegele RA, Ng DS, Pearson GJ, Pope J. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Working Group Consensus update. Can J Cardiol 2013; 29:1553-68. [PMID: 24267801 DOI: 10.1016/j.cjca.2013.09.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 12/21/2022] Open
Abstract
The Proceedings of a Canadian Working Group Consensus Conference, first published in 2011, provided a summary of statin-associated adverse effects and intolerance and management suggestions. In this update, new clinical studies identified since then that provide further insight into effects on muscle, cognition, cataracts, diabetes, kidney disease, and cancer are discussed. Of these, the arenas of greatest controversy pertain to purported effects on cognition and the emergence of diabetes during long-term therapy. Regarding cognition, the available evidence is not strongly supportive of a major adverse effect of statins. In contrast, the linkage between statin therapy and incident diabetes is more firm. However, this risk is more strongly associated with traditional risk factors for new-onset diabetes than with statin itself and any possible negative effect of new-onset diabetes during statin treatment is far outweighed by the cardiovascular risk reduction benefits. Additional studies are also discussed, which support the principle that systematic statin rechallenge, and lower or intermittent statin dosing strategies are the main methods for dealing with suspected statin intolerance at this time.
Collapse
Affiliation(s)
- G B John Mancini
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Associations of ABCB1 and IL-10 genetic polymorphisms with sirolimus-induced dyslipidemia in renal transplant recipients. Transplantation 2013; 94:971-7. [PMID: 23073467 DOI: 10.1097/tp.0b013e31826b55e2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hyperlipidemia is a common adverse effect of sirolimus (SRL). We previously showed significant associations of ABCB1 3435C>T and IL-10 -1082G>A with log-transformed SRL dose-adjusted weighted-normalized trough. We further examined to see whether these polymorphisms were also associated with SRL-induced dyslipidemia. METHODS Genotyping was performed for ABCB1 1236C>T, 2677 G>T/A, and 3435C>T; CYP3A4 -392A>G; CYP3A5 6986A>G and 14690G>A; IL-10 -1082G>A; TNF -308G>A; and ApoE ε2, ε3, and ε4 alleles. The longitudinal changes of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels after SRL treatment before statin therapy were analyzed by a linear mixed-effects model, with adjustments for selected covariates for each lipid. RESULTS Under the dominant genetic model, ABCB1 3435C>T was associated with TC (P=0.0001) and LDL-C (P<0.0001) values after SRL administration. Mean TC and LDL-C levels were 26.9 and 24.9 mg/dL higher, respectively, in ABCB1 3435T carriers than 3435CC homozygotes at an average SRL trough concentration of 4 ng/mL without concomitant medication. ABCB1 1236C>T under the recessive model and IL-10 -1082G>A under the dominant model were associated with log-transformed TG values (P=0.0051 and 0.0436, respectively). Mean TG value was 25.1% higher in ABCB1 1236TT homozygotes compared with ABCB1 1236C carriers and was 12.4% higher in IL-10 -1082AA homozygotes than -1082G carriers. CONCLUSIONS ABCB1 polymorphisms were found to be associated with lipid responses to SRL treatment, confirming the role of ABCB1 gene in SRL pharmacokinetics and pharmacodynamics. Further studies are necessary to define the role of ABCB1 and IL-10 polymorphisms on SRL-induced dyslipidemia in renal transplantation.
Collapse
|
47
|
Marusic S, Lisicic A, Horvatic I, Bacic-Vrca V, Bozina N. Atorvastatin-related rhabdomyolysis and acute renal failure in a genetically predisposed patient with potential drug-drug interaction. Int J Clin Pharm 2012; 34:825-7. [PMID: 23076661 DOI: 10.1007/s11096-012-9717-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Abstract
CASE DESCRIPTION A 75-year-old man developed rhabdomyolysis and acute renal failure during atorvastatin therapy. All medications were discontinued and the patient was treated with intermittent hemodialysis throughout the course of hospitalization. After four weeks, patient's kidney function tests and serum myoglobin levels decreased to normal values and muscle weakness gradually disappeared. Genotyping results showed that the patient had a single-nucleotide polymorphism within genes encoding the organic anion-transporting polypeptide 1B1 and ATP binding cassette sub-family B member 1, which predisposed him for statin-induced myopathy. He was also a poor metabolizer of cytochrome P450 2C19. Concomitant therapy with pantoprazole could have resulted in the inhibition of cytochrome P450 3A4-mediated metabolism of atorvastatin and contributed to the development of rhabdomyolysis. CONCLUSION The case illustrates the clinical relevance and relationship between pharmacogenetic and pharmacokinetic factors in the development of statin-induced myopathy.
Collapse
Affiliation(s)
- Srecko Marusic
- Department of Clinical Pharmacology, University Hospital Dubrava, Av. Gojka Suska 6, 10000, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
48
|
Kolovou G, Kolovou V, Mihas C, Giannakopoulou V, Vasiliadis I, Boussoula E, Kollia A, Boutsikou M, Katsiki N, Mavrogeni S. Cholesteryl Ester Transfer Protein and ATP-Binding Cassette Transporter A1 Genotype Alter the Atorvastatin and Simvastatin Efficacy. Angiology 2012; 64:266-72. [DOI: 10.1177/0003319712444594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We compared the efficacy of atorvastatin with simvastatin according to cholesteryl ester transfer protein (CETP) and adenosine triphosphate-binding cassette transporter A1 ( ABCA1) genes. Patients treated with atorvastatin (n = 254) or simvastatin (n = 332) were genotyped for CETP (TaqIB and I405V) and ABCA1 (R219K) genetic variants. For genotype B1B2, atorvastatin compared with simvastatin treatment resulted in a greater decrease in total cholesterol (35.4% vs 31.6%, P = .035) and a lower increase in high-density lipoprotein cholesterol (2% vs 8%, P = .05). For genotype B2B2, atorvastatin compared with simvastatin treatment resulted in a lower decrease in low-density lipoprotein cholesterol (31.85 vs 42%, P = .029). For genotypes RR and KK, atorvastatin compared with simvastatin treatment resulted in a greater decrease of triglycerides (27% vs 17% and 35% vs 15%, respectively; P = .02 for all comparisons). The TaqIB and R219K (opposite to I405V) gene polymorphisms seem to modify the response to lipid-lowering therapy with simvastatin or atorvastatin treatment.
Collapse
Affiliation(s)
- Genovefa Kolovou
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vana Kolovou
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
- Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | | | | | - Iannis Vasiliadis
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Elena Boussoula
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Aikaterini Kollia
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Maria Boutsikou
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Niki Katsiki
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital campus, University College London Medical School, University College London (UCL), London, UK
| | - Sophie Mavrogeni
- 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
49
|
Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2011; 27:85-105. [PMID: 22123128 DOI: 10.2133/dmpk.dmpk-11-rv-098] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent pharmacogenomic/pharmacogenetic (PGx) studies have disclosed important roles for drug transporters in the human body. Changes in the functions of drug transporters due to drug/food interactions or genetic polymorphisms, for example, are associated with large changes in pharmacokinetic (PK) profiles of substrate drugs, leading to changes in drug response and side effects. This information is extremely useful not only for drug development but also for individualized treatment. Among drug transporters, the ATP-binding cassette (ABC) transporters are expressed in most tissues in humans, and play protective roles; reducing drug absorption from the gastrointestinal tract, enhancing drug elimination into bile and urine, and impeding the entry of drugs into the central nervous system and placenta. In addition to PK/pharmacodynamic (PD) issues, ABC transporters are reported as etiologic and prognostic factors (or biomarkers) for genetic disorders. Although a consensus has not yet been reached, clinical studies have demonstrated that the PGx of ABC transporters influences the overall outcome of pharmacotherapy and contributes to the pathogenesis and progression of certain disorders. This review explains the impact of PGx in ABC transporters in terms of PK/PD, focusing on P-glycoprotein and breast cancer resistance protein (BCRP).
Collapse
Affiliation(s)
- Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|