1
|
Yang X, Li M, Jiang J, Hu X, Qing Y, Sun L, Yang T, Wang D, Cui G, Gao Y, Zhang J, Li X, Shen Y, Qin S, Wan C. Dysregulation of phospholipase and cyclooxygenase expression is involved in Schizophrenia. EBioMedicine 2021; 64:103239. [PMID: 33581645 PMCID: PMC7892797 DOI: 10.1016/j.ebiom.2021.103239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a severe mental disease with highly heterogeneous clinical manifestations and pathological mechanisms. Schizophrenia is linked to abnormalities in cell membrane phospholipids and blunting of the niacin skin flush response, but the associations between these phenotypes and its molecular pathogenesis remain unclear. This study aimed to describe the PLA2/COX pathway, the key link between phospholipids and niacin flush, and to illustrate the pathogenic mechanisms in schizophrenia that mediate the above phenotypes. METHODS A total of 166 patients with schizophrenia and 54 healthy controls were recruited in this study and assigned to a discovery set and a validation set. We assessed the mRNA levels of 19 genes related to the PLA2/COX cascade in leukocytes by real-time PCR. Plasma IL-6 levels were measured with an ELISA kit. Genetic association analysis was performed on PLA2G4A and PTGS2 to investigate their potential relationship with blunted niacin-skin response in an independent sample set. FINDINGS Six of the 19 genes in the PLA2/COX pathway exhibited significant differences between schizophrenia and healthy controls. The disturbance of the pathway indicates the activation of arachidonic acid (AA) hydrolysis and metabolization, resulting in the abnormalities of membrane lipid homeostasis and immune function, further increasing the risk of schizophrenia. On the other hand, the active process of AA hydrolysis from cell membrane phospholipids and decreased transcription of CREB1, COX-2 and PTGER4 may explain the reported findings of a blunted niacin response in schizophrenia. The significant genetic associations between PLA2G4A and PTGS2 with the niacin-skin responses further support the inference. INTERPRETATION These results suggested that the activation of AA hydrolysis and the imbalance in COX-1 and COX-2 expression are involved in the pathogenesis of schizophrenia and blunting of the niacin flush response. FUNDING This work was supported by the National Key R&D Program of China (2016YFC1306900, 2016YFC1306802); the National Natural Science Foundation of China (81971254, 81771440, 81901354); Interdisciplinary Program of Shanghai Jiao Tong University (ZH2018ZDA40, YG2019GD04, YG2016MS48); Grants of Shanghai Brain-Intelligence Project from STCSM (16JC1420500); Shanghai Key Laboratory of Psychotic Disorders (13DZ2260500); and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01); China Postdoctoral Science Foundation (2018M642029, 2018M630442, 2019M661526, 2020T130407); Natural Science Foundation of Shanghai (20ZR1426700); and Startup Fund for Youngman Research at SJTU (19 × 100040033).
Collapse
Affiliation(s)
- Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqi Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Shen
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Elawa S, Mirdell R, Farnebo S, Tesselaar E. Skin blood flow response to topically applied methyl nicotinate: Possible mechanisms. Skin Res Technol 2019; 26:343-348. [PMID: 31777124 DOI: 10.1111/srt.12807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/09/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methyl nicotinate (MN) induces a local cutaneous erythema in the skin and may be valuable as a local provocation in the assessment of microcirculation and skin viability. The mechanisms through which MN mediates its vascular effect are not fully known. The aim of this study was to characterize the vasodilatory effects of topically applied MN and to study the involvement of nitric oxide (NO), local sensory nerves, and prostaglandin-mediated pathways. METHODS MN was applied on the skin of healthy subjects in which NO-mediated (L-NMMA), nerve-mediated (lidocaine/prilocaine), and cyclooxygenase-mediated (NSAID) pathways were selectively inhibited. Microvascular responses in the skin were measured using laser speckle contrast imaging (LSCI). RESULTS NSAID reduced the MN-induced perfusion increase with 82% (P < .01), whereas lidocaine/prilocaine reduced it with 32% (P < .01). L-NMMA did not affect the microvascular response to MN. CONCLUSION The prostaglandin pathway and local sensory nerves are involved in the vasodilatory actions of MN in the skin.
Collapse
Affiliation(s)
- Sherif Elawa
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Robin Mirdell
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Medical Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|