1
|
Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ, Cuchel M. A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency. J Lipid Res 2022; 63:100169. [PMID: 35065092 PMCID: PMC8953693 DOI: 10.1016/j.jlr.2022.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 10/31/2022] Open
Abstract
Syndromes associated with LCAT deficiency, a rare autosomal recessive condition, include fish-eye disease (FED) and familial LCAT deficiency (FLD). FLD is more severe and characterized by early and progressive chronic kidney disease (CKD). No treatment is currently available for FLD, but novel therapeutics are under development. Furthermore, although biomarkers of LCAT deficiency have been identified, their suitability to monitor disease progression and therapeutic efficacy is unclear, as little data exist on the rate of progression of renal disease. Here, we systematically review observational studies of FLD, FED, and heterozygous subjects, which summarize available evidence on the natural history and biomarkers of LCAT deficiency, in order to guide the development of novel therapeutics. We identified 146 FLD and 53 FED patients from 219 publications, showing that both syndromes are characterized by early corneal opacity and markedly reduced HDL-C levels. Proteinuria/hematuria were the first signs of renal impairment in FLD, followed by rapid decline of renal function. Furthermore, LCAT activity toward endogenous substrates and the percentage of circulating esterified cholesterol (EC%) were the best discriminators between these two syndromes. In FLD, higher levels of total, non-HDL, and unesterified cholesterol were associated with severe CKD. We reveal a nonlinear association between LCAT activity and EC% levels, in which subnormal levels of LCAT activity were associated with normal EC%. This review provides the first step toward the identification of disease biomarkers to be used in clinical trials and suggests that restoring LCAT activity to subnormal levels may be sufficient to prevent renal disease progression.
Collapse
Affiliation(s)
- Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archna Bajaj
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Nguyen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jill Schnall
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinbo Chen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kostas Stylianou
- Department of Nephrology, Heraklion University Hospital, Crete, Greece
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Mehta R, Elías-López D, Martagón AJ, Pérez-Méndez OA, Sánchez MLO, Segura Y, Tusié MT, Aguilar-Salinas CA. LCAT deficiency: a systematic review with the clinical and genetic description of Mexican kindred. Lipids Health Dis 2021; 20:70. [PMID: 34256778 PMCID: PMC8276382 DOI: 10.1186/s12944-021-01498-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LCAT (lecithin-cholesterol acyltransferase) deficiency is characterized by two distinct phenotypes, familial LCAT deficiency (FLD) and Fish Eye disease (FED). This is the first systematic review evaluating the ethnic distribution of LCAT deficiency, with particular emphasis on Latin America and the discussion of three Mexican-Mestizo probands. METHODS A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) Statement in Pubmed and SciELO. Articles which described subjects with LCAT deficiency syndromes and an assessment of the ethnic group to which the subject pertained, were included. RESULTS The systematic review revealed 215 cases (154 FLD, 41 FED and 20 unclassified) pertaining to 33 ethnic/racial groups. There was no association between genetic alteration and ethnicity. The mean age of diagnosis was 42 ± 16.5 years, with fish eye disease identified later than familial LCAT deficiency (55 ± 13.8 vs. 41 ± 14.7 years respectively). The prevalence of premature coronary heart disease was significantly greater in FED vs. FLD. In Latin America, 48 cases of LCAT deficiency have been published from six countries (Argentina (1 unclassified), Brazil (38 FLD), Chile (1 FLD), Columbia (1 FLD), Ecuador (1 FLD) and Mexico (4 FLD, 1 FED and 1 unclassified). Of the Mexican probands, one showed a novel LCAT mutation. CONCLUSIONS The systematic review shows that LCAT deficiency syndromes are clinically and genetically heterogeneous. No association was confirmed between ethnicity and LCAT mutation. There was a significantly greater risk of premature coronary artery disease in fish eye disease compared to familial LCAT deficiency. In FLD, the emphasis should be in preventing both cardiovascular disease and the progression of renal disease, while in FED, cardiovascular risk management should be the priority. The LCAT mutations discussed in this article are the only ones reported in the Mexican- Amerindian population.
Collapse
Affiliation(s)
- Roopa Mehta
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Daniel Elías-López
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Alexandro J Martagón
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México
| | - Oscar A Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, México City, México
| | - Maria Luisa Ordóñez Sánchez
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Yayoi Segura
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Maria Teresa Tusié
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Carlos A Aguilar-Salinas
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México. .,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México.
| |
Collapse
|
3
|
Rial-Crestelo D, Santos-Recuero I, Julve J, Blanco-Vaca F, Torralba M. A novel homozygous mutation causing lecithin-cholesterol acyltransferase deficiency in a proband of Romanian origin with a record of extreme gestational hyperlipidemia. J Clin Lipidol 2017; 11:1475-1479.e3. [PMID: 28942093 DOI: 10.1016/j.jacl.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
A patient from Romania with extraordinarily high total cholesterol levels and clinical and biochemical features consistent with familial lecithin-cholesterol acyltransferase deficiency is reported. The genetic analysis performed on our proband showed a novel homozygous mutation on codon 119 of lecithin-cholesterol acyltransferase gene that causes the substitution of glycine by aspartate. The same mutation, also in homozygosis, was observed in her older sister, whereas his brother presented it in heterozygosis.
Collapse
Affiliation(s)
- David Rial-Crestelo
- Departamento de Medicina Interna, Servicio de Medicina Interna, Hospital Universitario de Guadalajara, Servicio de Salud de Castilla La Mancha, Guadalajara, Castilla la Mancha, Spain; Departamento de Medicina, Universidad de Alcalá, Madrid, Spain.
| | - Ildefonso Santos-Recuero
- Departamento de Análisis Clínicos, Bioquímica, Servicio de Análisis Clínicos, Bioquímica, Hospital Universitario de Guadalajara, Servicio de Salud de Castilla La Mancha, Guadalajara, Castilla la Mancha, Spain
| | - Josep Julve
- IIB-Sant Pau, Barcelona, Cataluña, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Cataluña, Spain; CIBERDEM, Barcelona, Barcelona, Cataluña, Spain
| | - Francisco Blanco-Vaca
- IIB-Sant Pau, Barcelona, Cataluña, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Cataluña, Spain; CIBERDEM, Barcelona, Barcelona, Cataluña, Spain
| | - Miguel Torralba
- Departamento de Medicina Interna, Servicio de Medicina Interna, Hospital Universitario de Guadalajara, Servicio de Salud de Castilla La Mancha, Guadalajara, Castilla la Mancha, Spain; Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
4
|
Patel DV. Systemic associations of corneal deposits: a review and photographic guide. Clin Exp Ophthalmol 2016; 45:14-23. [DOI: 10.1111/ceo.12790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Dipika V Patel
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
5
|
Pisciotta L, Vitali C, Favari E, Fossa P, Adorni MP, Leone D, Artom N, Fresa R, Calabresi L, Calandra S, Bertolini S. A complex phenotype in a child with familial HDL deficiency due to a novel frameshift mutation in APOA1 gene (apoA-IGuastalla). J Clin Lipidol 2015; 9:837-846. [PMID: 26687706 DOI: 10.1016/j.jacl.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/07/2015] [Accepted: 09/09/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND We describe a kindred with high-density lipoprotein (HDL) deficiency due to APOA1 gene mutation in which comorbidities affected the phenotypic expression of the disorder. METHODS An overweight boy with hypertriglyceridemia (HTG) and HDL deficiency (HDL cholesterol 0.39 mmol/L, apoA-I 40 mg/dL) was investigated. We sequenced the candidate genes for HTG (LPL, APOC2, APOA5, GPIHBP1, LMF1) and HDL deficiency (LCAT, ABCA1 and APOA1), analyzed HDL subpopulations, measured cholesterol efflux capacity (CEC) of sera and constructed a model of the mutant apoA-I. RESULTS No mutations in HTG-related genes, ABCA1 and LCAT were found. APOA1 sequence showed that the proband, his mother and maternal grandfather were heterozygous of a novel frameshift mutation (c.546_547delGC), which generated a truncated protein (p.[L159Afs*20]) containing 177 amino acids with an abnormal C-terminal tail of 19 amino acids. Trace amounts of this protein were detectable in plasma. Mutation carriers had reduced levels of LpA-I, preβ-HDL and large HDL and no detectable HDL-2 in their plasma; their sera had a reduced CEC specifically the ABCA1-mediated CEC. Metabolic syndrome in the proband explains the extremely low HDL cholesterol level (0.31 mmol/L), which was half of that found in the other carriers. The proband's mother and grandfather, both presenting low plasma low-density lipoprotein cholesterol, were carriers of the β-thalassemic trait, a condition known to be associated with a reduced low-density lipoprotein cholesterol and a reduced prevalence of cardiovascular disease. This trait might have delayed the development of atherosclerosis related to HDL deficiency. CONCLUSIONS In these heterozygotes for apoA-I truncation, the metabolic syndrome has deleterious effect on HDL system, whereas β-thalassemia trait may delay the onset of cardiovascular disease.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Cecilia Vitali
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elda Favari
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Paola Fossa
- Department of Pharmacy, University of Genoa, Genoa, Italy
| | | | - Daniela Leone
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy
| | - Nathan Artom
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Raffaele Fresa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|