1
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Liu S, Wan J, Wang D, Yang Y, Fang J, Luo T, Liang D, Hu J, Hou J, Wang P. Effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and cardiovascular disease: A meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:1339-1351. [PMID: 38734541 DOI: 10.1016/j.numecd.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIM The impact of the loss-of-function (LOF) genetic variant PCSK9 R46L on glucose homeostasis and cardiovascular disease (CVD) remains uncertain, despite its established correlation with diminished blood cholesterol levels. This meta-analysis aimed at exploring the effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and CVD. METHODS AND RESULTS PubMed, Embase, and the Cochrane Library were searched for cohort and case-control studies published until October 1, 2023. The studies should report the association of the PCSK9 R46L genetic variant with one of the following: fasting plasma insulin, blood glucose levels, diabetes mellitus, and CVD risk. A dominant model of the PCSK9 R46L genetic variant was employed to statistical analysis. The meta-analyses were performed for continuous variables with standard mean difference (SMD), categorical variables with odds ratio (OR) using a random-effects model. A total of 17 articles with 20 studies engaging 1,186,861 population were identified and mobilized for these analyses. The overall results indicated that, compared with non-carriers of the PCSK9 R46L genetic variant, carriers of the PCSK9 R46L genetic variant did not increase or decrease the levels of fasting plasma insulin (3 studies with 7277 population; SMD, 0.08; 95% CI, -0.04 to 0.19; P = 0.270), and the levels of fasting plasma glucose (7 studies with 9331 population; SMD, 0.03; 95% CI, -0.08 to 0.13; P = 0.610). However, carriers of the PCSK9 R46L genetic variant indeed had 17% reduction in the risk of CVD (11 studies with 558,263 population; OR, 0.83; 95% CI, 0.71 to 0.98; P = 0.030), and 9% increase in the risk of diabetes mellitus (10 studies with 744,466 population; OR, 1.09; 95% CI, 1.04 to 1.14; P < 0.01). Meta-regression analyses indicated that the increased risk of diabetes mellitus and the reduced risk of CVD were positively correlated with reduction in LDL-C (P = 0.004 and 0.033, respectively). CONCLUSIONS PCSK9 R46L genetic variant exhibited an elevated susceptibility to diabetes mellitus alongside a reduced vulnerability to CVD.
Collapse
Affiliation(s)
- Sen Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jindong Wan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jie Fang
- Department of Ultrasound Medicine, Xindu District People's Hospital of Chengdu, Chengdu 610500, Sichuan, China.
| | - Tao Luo
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jun Hu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China.
| |
Collapse
|
3
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
4
|
Huang Y, Dai Y, Wen C, He S, Shi J, Zhao D, Wu L, Zhou H. circSETD3 Contributes to Acquired Resistance to Gefitinib in Non-Small-Cell Lung Cancer by Targeting the miR-520h/ABCG2 Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:885-899. [PMID: 32805491 PMCID: PMC7452060 DOI: 10.1016/j.omtn.2020.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Gefitinib is a first-line treatment for patients with non-small-cell lung cancer (NSCLC), but acquired resistance is a major obstacle to its therapeutic efficacy, and the underlying mechanisms are not fully elucidated. Recent studies have indicated that circular RNAs play a crucial role in chemoresistance, but their expression and function in NSCLC cells with acquired resistance to gefitinib are largely unknown. In this study, we determined that circSETD3 was significantly upregulated in gefitinib-resistant NSCLC cell lines and the plasma of gefitinib-resistant NSCLC patients. circSETD3 markedly decreased the gefitinib sensitivity of NSCLC cells both in vitro and in nude mice xenografts. It could directly bind to miR-520h and lead to the upregulation of ATP-binding cassette subfamily G member 2 (ABCG2), an efflux transporter of gefitinib, resulting in a reduced intracellular gefitinib concentration. Moreover, we reported that the downregulation of serine/arginine splicing factor 1 (SRSF1) contributed to, at least in part, the increased expression of circSETD3 in NSCLC cells with acquired resistance to gefitinib. Taken together, our findings indicated that circSETD3 may serve as a prognostic biomarker and a potential therapeutic target for acquired resistance to gefitinib in NSCLC.
Collapse
Affiliation(s)
- Yutang Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yi Dai
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China; Wangjia Community Health Service Center, Chongqing 401120, China
| | - Chunjie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shuai He
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jingjing Shi
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dezhang Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Honghao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China; Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Chorba JS, Galvan AM, Shokat KM. Stepwise processing analyses of the single-turnover PCSK9 protease reveal its substrate sequence specificity and link clinical genotype to lipid phenotype. J Biol Chem 2017; 293:1875-1886. [PMID: 29259136 DOI: 10.1074/jbc.ra117.000754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/10/2017] [Indexed: 01/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) down-regulates the low-density lipoprotein (LDL) receptor, elevating LDL cholesterol and accelerating atherosclerotic heart disease, making it a promising cardiovascular drug target. To achieve its maximal effect on the LDL receptor, PCSK9 requires autoproteolysis. After cleavage, PCSK9 retains its prodomain in the active site as a self-inhibitor. Unlike other proprotein convertases, however, this retention is permanent, inhibiting any further protease activity for the remainder of its life cycle. Such inhibition has proven a major challenge toward a complete biochemical characterization of PCSK9's proteolytic function, which could inform therapeutic approaches against its hypercholesterolemic effects. To address this challenge, we employed a cell-based, high-throughput method using a luciferase readout to evaluate the single-turnover PCSK9 proteolytic event. We combined this method with saturation mutagenesis libraries to interrogate the sequence specificities of PCSK9 cleavage and proteolysis-independent secretion. Our results highlight several key differences in sequence identity between these two steps, complement known structural data, and suggest that PCSK9 self-proteolysis is the rate-limiting step of secretion. Additionally, we found that for missense SNPs within PCSK9, alterations in both proteolysis and secretion are common. Last, we show that some SNPs allosterically modulate PCSK9's substrate sequence specificity. Our findings indicate that PCSK9 proteolysis acts as a commonly perturbed but critical switch in controlling lipid homeostasis and provide a new hope for the development of small-molecule PCSK9 inhibitors.
Collapse
Affiliation(s)
- John S Chorba
- From the Division of Cardiology, Department of Medicine, Zuckerberg San Francisco General and University of California, San Francisco, California 94110 and .,the Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
| | - Adri M Galvan
- the Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
| | - Kevan M Shokat
- the Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94143
| |
Collapse
|