1
|
Lin PBC, Holtzman DM. Current insights into apolipoprotein E and the immune response in Alzheimer's disease. Immunol Rev 2024. [PMID: 39445515 DOI: 10.1111/imr.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and the most common cause of dementia. Genetic analyses identified apolipoprotein E (APOE) as the strongest genetic risk for late-onset AD. Studies have shown that ApoE modulates AD pathogenesis in part by influencing amyloid-β (Aβ) deposition. However, ApoE also appears to regulate elements of AD via regulation of innate immune response, especially through microglial and astrocyte activation. In model systems, it also regulates changes in T-cells. This review focuses on the key findings that have advanced our understanding of the role of ApoE in the pathogenesis of AD and the current view of innate immune response regulated by ApoE in AD, while discussing open questions and areas for future research.
Collapse
Affiliation(s)
- Peter Bor-Chian Lin
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Bashir B, Ferdousi M, Durrington P, Soran H. Pancreatic and cardiometabolic complications of severe hypertriglyceridaemia. Curr Opin Lipidol 2024; 35:208-218. [PMID: 38841827 PMCID: PMC11224574 DOI: 10.1097/mol.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review endeavours to explore the aetiopathogenesis and impact of severe hypertriglyceridemia (SHTG) and chylomicronaemia on cardiovascular, and pancreatic complications and summarizes the novel pharmacological options for management. RECENT FINDINGS SHTG, although rare, presents significant diagnostic and therapeutic challenges. Familial chylomicronaemia syndrome (FCS), is the rare monogenic form of SHTG, associated with increased acute pancreatitis (AP) risk, whereas relatively common multifactorial chylomicronaemia syndrome (MCS) leans more towards cardiovascular complications. Despite the introduction and validation of the FCS Score, FCS continues to be underdiagnosed and diagnosis is often delayed. Longitudinal data on disease progression remains scant. SHTG-induced AP remains a life-threatening concern, with conservative treatment as the cornerstone while blood purification techniques offer limited additional benefit. Conventional lipid-lowering medications exhibit minimal efficacy, underscoring the growing interest in novel therapeutic avenues, that is, antisense oligonucleotides (ASO) and short interfering RNA (siRNA) targeting apolipoprotein C3 (ApoC3) and angiopoietin-like protein 3 and/or 8 (ANGPTL3/8). SUMMARY Despite advancements in understanding the genetic basis and pathogenesis of SHTG, diagnostic and therapeutic challenges persist. The rarity of FCS and the heterogenous phenotype of MCS underscore the need for the development of predictive models for complications and tailored personalized treatment strategies. The establishment of national and international registries is advocated to augment disease comprehension and identify high-risk individuals.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| | - Paul Durrington
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| |
Collapse
|
3
|
Michenaud L, Marrié N, Rimbert A, Marmontel O, Charrière S, Gibert C, Bouveyron C, Mammi J, Cariou B, Moulin P, Di Filippo M. Evaluation of biochemical algorithms to screen dysbetalipoproteinemia in ε2ε2 and rare APOE variants carriers. Clin Chem Lab Med 2024; 0:cclm-2024-0587. [PMID: 39069817 DOI: 10.1515/cclm-2024-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES Dysbetalipoproteinemia (DBL) is a combined dyslipidemia associated with an increased risk of atherosclerotic cardiovascular diseases mostly occurring in ε2ε2 subjects and infrequently in subjects with rare APOE variants. Several algorithms have been proposed to screen DBL. In this work, we compared the diagnostic performances of nine algorithms including a new one. METHODS Patients were divided into 3 groups according to their APOE genotype: ε2ε2 ("ε2ε2", n=49), carriers of rare variants ("APOEmut", n=20) and non-carriers of ε2ε2 nor APOE rare variant ("controls", n=115). The algorithms compared were those from Fredrickson, Sniderman, Boot, Paquette, De Graaf, Sampson, eSampson, Bea and ours, the "Hospices Civils de Lyon (HCL) algorithm". Our gold standard was the presence of a ε2ε2 genotype or of a rare variant associated with triglycerides (TG) >1.7 mmol/L. A replication in the UK Biobank and a robustness analysis were performed by considering only subjects with both TG and low-density lipoprotein-cholesterol (LDLc) >90th percentile. RESULTS Total cholesterol (TC)/ApoB and NHDLC/ApoB are the best ratios to suspect DBL. In ε2ε2, according to their likelihood ratios (LR), the most clinically efficient algorithms were the HCL, Sniderman and De Graaf's. In APOEmut, Sniderman's algorithm exhibited the lowest negative LR (0.07) whereas the HCL's exhibited the highest positive LR (29). In both cohorts, the HCL algorithm had the best LR. CONCLUSIONS We proposed a powerful algorithm based on ApoB concentration and the routine lipid profile, which performs remarkably well in detecting ε2ε2 or APOE variant-related DBL. Additional studies are needed to further evaluate algorithms performances in DBL carriers of infrequent APOE variants.
Collapse
Affiliation(s)
- Louise Michenaud
- 26900 Hospices Civils de Lyon , UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Bron, France
| | - Nathanaël Marrié
- 26900 Hospices Civils de Lyon , UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Bron, France
| | - Antoine Rimbert
- Nantes Université, CNRS, CHU Nantes, Inserm, l'institut du thorax, Nantes, France
| | - Oriane Marmontel
- 26900 Hospices Civils de Lyon , UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Bron, France
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Sybil Charrière
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- 26900 Hospices Civils de Lyon , Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Bron, France
| | - Charles Gibert
- 26900 Hospices Civils de Lyon , Laboratoire de Biologie Médicale Multi-Sites, Bron, France
| | - Caroline Bouveyron
- 26900 Hospices Civils de Lyon , UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Bron, France
| | - Jade Mammi
- 26900 Hospices Civils de Lyon , UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Bron, France
| | - Bertrand Cariou
- Nantes Université, CNRS, CHU Nantes, Inserm, l'institut du thorax, Nantes, France
| | - Philippe Moulin
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- 26900 Hospices Civils de Lyon , Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Hôpital Louis Pradel, Bron, France
| | - Mathilde Di Filippo
- 26900 Hospices Civils de Lyon , UF Dyslipidémies, Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Bron, France
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
4
|
Scicchitano P, Amati F, Ciccone MM, D’Ascenzi F, Imbalzano E, Liga R, Paolillo S, Pastore MC, Rinaldi A, Mattioli AV, Cameli M. Hypertriglyceridemia: Molecular and Genetic Landscapes. Int J Mol Sci 2024; 25:6364. [PMID: 38928071 PMCID: PMC11203941 DOI: 10.3390/ijms25126364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid disorders represent one of the most worrisome cardiovascular risk factors. The focus on the impact of lipids on cardiac and vascular health usually concerns low-density lipoprotein cholesterol, while the role of triglycerides (TGs) is given poor attention. The literature provides data on the impact of higher plasma concentrations in TGs on the cardiovascular system and, therefore, on the outcomes and comorbidities of patients. The risk for coronary heart diseases varies from 57 to 76% in patients with hypertriglyceridemia. Specifically, the higher the plasma concentrations in TGs, the higher the incidence and prevalence of death, myocardial infarction, and stroke. Nevertheless, the metabolism of TGs and the exact physiopathologic mechanisms which try to explain the relationship between TGs and cardiovascular outcomes are not completely understood. The aims of this narrative review were as follows: to provide a comprehensive evaluation of the metabolism of triglycerides and a possible suggestion for understanding the targets for counteracting hypertriglyceridemia; to describe the inner physiopathological background for the relationship between vascular and cardiac damages derived from higher plasma concentrations in TGs; and to outline the need for promoting further insights in therapies for reducing TGs plasma levels.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital “F Perinei” ASL BA, 70022 Altamura, Italy
| | - Francesca Amati
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Riccardo Liga
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Andrea Rinaldi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant’Orsola-Malpighi Hospital, IRCCS, 40138 Bologna, Italy;
| | - Anna Vittoria Mattioli
- Department of Science of Quality of Life, University of Bologna “Alma Mater Studiorum”, 40126 Bologna, Italy;
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| |
Collapse
|
5
|
Almeida MC, Eger SJ, He C, Audouard M, Nikitina A, Glasauer SMK, Han D, Mejía-Cupajita B, Acosta-Uribe J, Villalba-Moreno ND, Littau JL, Elcheikhali M, Rivera EK, Carrettiero DC, Villegas-Lanau CA, Sepulveda-Falla D, Lopera F, Kosik KS. Single-nucleus RNA sequencing demonstrates an autosomal dominant Alzheimer's disease profile and possible mechanisms of disease protection. Neuron 2024; 112:1778-1794.e7. [PMID: 38417436 PMCID: PMC11156559 DOI: 10.1016/j.neuron.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | - Sarah J Eger
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Caroline He
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Arina Nikitina
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dasol Han
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Barbara Mejía-Cupajita
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Nelson David Villalba-Moreno
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Megan Elcheikhali
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Daniel Carneiro Carrettiero
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | | | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
6
|
Le A, Peng H, Golinsky D, Di Scipio M, Lali R, Paré G. What Causes Premature Coronary Artery Disease? Curr Atheroscler Rep 2024; 26:189-203. [PMID: 38573470 DOI: 10.1007/s11883-024-01200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides an overview of genetic and non-genetic causes of premature coronary artery disease (pCAD). RECENT FINDINGS pCAD refers to coronary artery disease (CAD) occurring before the age of 65 years in women and 55 years in men. Both genetic and non-genetic risk factors may contribute to the onset of pCAD. Recent advances in the genetic epidemiology of pCAD have revealed the importance of both monogenic and polygenic contributions to pCAD. Familial hypercholesterolemia (FH) is the most common monogenic disorder associated with atherosclerotic pCAD. However, clinical overreliance on monogenic genes can result in overlooked genetic causes of pCAD, especially polygenic contributions. Non-genetic factors, notably smoking and drug use, are also important contributors to pCAD. Cigarette smoking has been observed in 25.5% of pCAD patients relative to 12.2% of non-pCAD patients. Finally, myocardial infarction (MI) associated with spontaneous coronary artery dissection (SCAD) may result in similar clinical presentations as atherosclerotic pCAD. Recognizing the genetic and non-genetic causes underlying pCAD is important for appropriate prevention and treatment. Despite recent progress, pCAD remains incompletely understood, highlighting the need for both awareness and research.
Collapse
Affiliation(s)
- Ann Le
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Helen Peng
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Danielle Golinsky
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- School of Nursing, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Matteo Di Scipio
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Ricky Lali
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada.
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada.
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada.
| |
Collapse
|
7
|
Satny M, Todorovova V, Altschmiedova T, Hubacek JA, Dlouha L, Lanska V, Soska V, Kyselak O, Freiberger T, Bobak M, Vrablik M. Genetic risk score in patients with the APOE2/E2 genotype as a predictor of familial dysbetalipoproteinemia. J Clin Lipidol 2024; 18:e230-e237. [PMID: 38044203 DOI: 10.1016/j.jacl.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Familial dysbetalipoproteinemia (FD) is an autosomal recessive (rarely dominant) inherited disorder that is almost exclusively associated with the apolipoprotein E gene (APOE) variability. Nonetheless, only a small proportion of APOE2/E2 subjects develop the phenotype for mixed dyslipidemia; the context of other trigger metabolic or genetic factors remains unknown. METHODS One hundred and one patients with FD and eighty controls (all APOE2/E2 homozygotes; rs429358) were screened for 18 single-nucleotide polymorphisms (SNPs) within the genes involved in triglyceride metabolism. RESULTS Two SNPs were significantly associated with the FD phenotype (rs439401 within APOE; P < 0.0005 and rs964184 within ZPR1/APOA5/A4/C3/A1 gene cluster; P < 0.0001). Unweighted genetic risk scores - from these two SNPs (GRS2), and, also, additional 13 SNPs with P-value below 0.9 (GRS15) - were created as an additional tool to improve the risk estimation of FD development in subjects with the APOE2/E2 genotype. Both GRS2 and GRS15 were significantly (P < 0.0001) increased in patients and both GRSs discriminated almost identically between the groups (P = 0.86). Subjects with an unweighted GRS2 of three or more had an almost four-fold higher risk of FD development than other individuals (odds ratio (OR) 3.58, 95% confidence interva (CI): 1.78-7.18, P < 0.0005). CONCLUSIONS We identified several SNPs that are individual additive factors influencing FD development. The use of unweighted GRS2 is a simple and clinically relevant tool that further improves the prediction of FD in APOE2/E2 homozygotes with corresponding biochemical characteristics.
Collapse
Affiliation(s)
- Martin Satny
- 3rd Department of Internal Medicine, First Faculty of Medicine Charles University, General University Hospital, Prague, Czech Republic (Drs Satny, Todorovova, Altschmiedova, Hubacek and Vrablik).
| | - Veronika Todorovova
- 3rd Department of Internal Medicine, First Faculty of Medicine Charles University, General University Hospital, Prague, Czech Republic (Drs Satny, Todorovova, Altschmiedova, Hubacek and Vrablik)
| | - Tereza Altschmiedova
- 3rd Department of Internal Medicine, First Faculty of Medicine Charles University, General University Hospital, Prague, Czech Republic (Drs Satny, Todorovova, Altschmiedova, Hubacek and Vrablik)
| | - Jaroslav A Hubacek
- 3rd Department of Internal Medicine, First Faculty of Medicine Charles University, General University Hospital, Prague, Czech Republic (Drs Satny, Todorovova, Altschmiedova, Hubacek and Vrablik); Centre of Experimental Medicine, Institute of Clinical and Experimental Medicine, Prague, Czech Republic (Drs Hubacek and Lanska)
| | - Lucie Dlouha
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic (Dr Dlouha)
| | - Vera Lanska
- Centre of Experimental Medicine, Institute of Clinical and Experimental Medicine, Prague, Czech Republic (Drs Hubacek and Lanska)
| | - Vladimir Soska
- Clinical Biochemistry Department, St. Anne University Hospital, Brno, Czech Republic (Drs Soska and Kyselak); 2nd Internal Department, Faculty of Medicine Masaryk University and St. Anne University Hospital, Brno, Czech Republic (Drs Soska and Kyselak)
| | - Ondrej Kyselak
- Clinical Biochemistry Department, St. Anne University Hospital, Brno, Czech Republic (Drs Soska and Kyselak); 2nd Internal Department, Faculty of Medicine Masaryk University and St. Anne University Hospital, Brno, Czech Republic (Drs Soska and Kyselak)
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, and Medical Faculty, Masaryk University, Brno, Czech Republic (Dr Freiberger)
| | - Martin Bobak
- Institute of Epidemiology and Health Care, University College London, London WC1E 7HB, United Kingdom, and Medical Faculty, Masaryk University, Brno, Czech Republic (Dr Bobak)
| | - Michal Vrablik
- 3rd Department of Internal Medicine, First Faculty of Medicine Charles University, General University Hospital, Prague, Czech Republic (Drs Satny, Todorovova, Altschmiedova, Hubacek and Vrablik)
| |
Collapse
|
8
|
Klose G, Gouni-Berthold I, März W. [Primary disorders of lipid metabolism: their place in current dyslipidemia guidelines and treatment innovations]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:895-906. [PMID: 37280381 DOI: 10.1007/s00108-023-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/08/2023]
Abstract
According to current guidelines, the selection and intensity of lipid-effective therapies are based on the risk to be treated. The sole clinical categories of primary and secondary prevention of cardiovascular diseases result in over- and under-treatment, which may be a contributory cause of incomplete implementation of current guidelines in everyday practice. For the extent of benefit in cardiovascular outcome studies with lipid-lowering drugs, the importance of dyslipdemia for the pathogenesis of atherosclerosis-related diseases is crucial. Primary lipid metabolism disorders are characterized by life-long increased exposure to atherogenic lipoproteins. This article describes the relevance of new data for low density lipoprotein-effective therapy: inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), adenosine triphosphate (ATP) citrate lyase with bempedoic acid, and ANGPTL3 with special consideration of primary lipid metabolism disorders, which are insufficiently taken into account, or not taken into account at all, in current guidelines. This is due to their apparently low prevalence rate and thus the lack of large outcome studies. The authors also discuss the consequences of increased lipoprotein (a), which cannot be sufficiently reduced until the ongoing intervention studies examining antisense oligonucleotides and small interfering RNA (siRNA) against apolipoprotein (a) are completed. Another challenge in practice is the treatment of rare, massive hypertriglyceridemia, especially with the aim of preventing pancreatitis. For this purpose, the apolipoprotein C3 (ApoC3) antisense oligonucleotide volenasorsen is available, which binds to the mRNA for ApoC3 and lowers triglycerides by around three quarters.
Collapse
Affiliation(s)
- G Klose
- Praxis für Endokrinologie Dres. I. Van de Loo & K. Spieker, Gerold-Janssen-Str. 2A, 28359, Bremen, Deutschland.
| | - I Gouni-Berthold
- Poliklinik für Endokrinologie, Diabetes und Präventivmedizin, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - W März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
- Klinisches Institut für medizinische und chemische Labordiagnostik, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
- SYNLAB Akademie, SYNLAB Holding Deutschland GmbH, P5, 7, 68161, Mannheim, Deutschland
- SYNLAB Akademie, SYNLAB Holding Deutschland GmbH, Augsburg, Deutschland
| |
Collapse
|
9
|
Blokhina AV, Ershova AI, Kiseleva AV, Sotnikova EA, Zharikova AA, Zaicenoka M, Vyatkin YV, Ramensky VE, Kutsenko VA, Shalnova SA, Meshkov AN, Drapkina OM. Applicability of Diagnostic Criteria and High Prevalence of Familial Dysbetalipoproteinemia in Russia: A Pilot Study. Int J Mol Sci 2023; 24:13159. [PMID: 37685967 PMCID: PMC10487848 DOI: 10.3390/ijms241713159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Familial dysbetalipoproteinemia (FD) is a highly atherogenic genetically based lipid disorder with an underestimated actual prevalence. In recent years, several biochemical algorithms have been developed to diagnose FD using available laboratory tests. The practical applicability of FD diagnostic criteria and the prevalence of FD in Russia have not been previously assessed. We demonstrated that the diagnostic algorithms of FD, including the diagnostic apoB levels, require correction, taking into account the distribution of apoB levels in the population. At the same time, a triglycerides cutoff ≥ 1.5 mmol/L may be a useful tool in identifying subjects with FD. In this study, a high prevalence of FD was detected: 0.67% (one in 150) based on the ε2ε2 haplotype and triglycerides levels ≥ 1.5 mmol/L. We also analyzed the presence and pathogenicity of APOE variants associated with autosomal dominant FD in a large research sample.
Collapse
Affiliation(s)
- Anastasia V. Blokhina
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Alexandra I. Ershova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Anna V. Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Evgeniia A. Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Anastasia A. Zharikova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Marija Zaicenoka
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Dolgoprudny, Russia;
| | - Yuri V. Vyatkin
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
- Department of Natural Sciences, Novosibirsk State University, 1, Pirogova Str., 630090 Novosibirsk, Russia
| | - Vasily E. Ramensky
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Vladimir A. Kutsenko
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Svetlana A. Shalnova
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
| | - Alexey N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
- National Medical Research Center for Cardiology, 3–ya Cherepkovskaya Street, 15A, 121552 Moscow, Russia
- Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia
- Department of General and Medical Genetics, Pirogov Russian National Research Medical University, 1 Ostrovityanova st., 117997 Moscow, Russia
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Petroverigsky per. 10, Bld. 3, 101000 Moscow, Russia; (A.I.E.); (A.V.K.); (E.A.S.); (A.A.Z.); (Y.V.V.); (V.E.R.); (V.A.K.); (S.A.S.); (A.N.M.); (O.M.D.)
| |
Collapse
|
10
|
Paquette M, Blais C, Fortin A, Bernard S, Baass A. Dietary recommendations for dysbetalipoproteinemia: A need for better evidence. J Clin Lipidol 2023; 17:549-556. [PMID: 37268489 DOI: 10.1016/j.jacl.2023.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
The increased risk of cardiovascular disease in patients with dysbetalipoproteinemia (DBL) is well documented and is associated with the dysfunctional metabolism of remnant lipoproteins. Although these patients are known to respond well to lipid-lowering medication including statins and fibrates, the best dietary approach to lower remnant lipoprotein accumulation and to prevent cardiovascular outcomes remain unclear. Indeed, current evidence is based on studies published mainly in the 1970s, which comprise small sample sizes and methodological limitations. This review aims to summarize nutritional studies performed in DBL patients to date and to discuss potential avenues in this field and future areas of research.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Chantal Blais
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Andréanne Fortin
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada; Department of Medicine, Division of Endocrinology, University of Montreal, Montreal, Québec, Canada; Research Centre of the Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, Québec, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
11
|
Abondio P, Bruno F, Luiselli D. Apolipoprotein E (APOE) Haplotypes in Healthy Subjects from Worldwide Macroareas: A Population Genetics Perspective for Cardiovascular Disease, Neurodegeneration, and Dementia. Curr Issues Mol Biol 2023; 45:2817-2831. [PMID: 37185708 PMCID: PMC10137191 DOI: 10.3390/cimb45040184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Human APOE is a 299-amino acid long protein expressed and secreted in several tissues and body districts, where it exerts different functions mainly related to lipid metabolism, with specific activities around cholesterol transport and absorption/elimination. It has three main isoforms, determined by the pair of mutations rs7412-C/T and rs429358-C/T, which gives rise to the functionally different APOE variants ε2, ε3, and ε4. These have a distinct impact on lipid metabolism and are differentially implicated in Alzheimer’s disease and neurodegeneration, cardiovascular disease, and dyslipidemia. A plethora of other single nucleotide variants along the sequence of the APOE gene have been studied in cohorts of affected individuals, where they also modulate the influence of the three main isoforms to determine the risk of developing the disease. However, no contextual analysis of gene-long haplotypes has been carried out so far, and never extensively in cohorts of healthy individuals from different worldwide populations. Leveraging a rich population genomics dataset, this study elucidates the distribution of APOE variants and haplotypes that are shared across populations and to specific macroareas, revealing a variety of risk-allele associations that distinguish specific ancestral backgrounds and can be leveraged for specific ancestry-informed screenings in medicine and public health.
Collapse
|
12
|
Bea AM, Cenarro A, Marco-Bened V, Laclaustra M, Martn C, Ibarretxe D, Pint X, Arrobas T, Vials C, Civeira F, Olmos S. Diagnosis of Familial Dysbetalipoproteinemia Based on the Lipid Abnormalities Driven by APOE2/E2 Genotype. Clin Chem 2023; 69:140-148. [PMID: 36644927 DOI: 10.1093/clinchem/hvac213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/14/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Familial dysbetalipoproteinemia (FDBL) is a monogenic disease due to variants in APOE with a highly variable phenotype. Current diagnostic lipid-based methods have important limitations. The objective is twofold: to define characteristics of dysbetalipoproteinemia (DBL) based on the analysis of APOE in patients from a lipid unit and in a sample from the general population, and to propose a screening algorithm for FDBL. METHODS Lipids and APOE genotype from consecutive unrelated subjects from Miguel Servet University Hospital (MSUH) (n 3603), subjects from the general population participants of the Aragon Workers Health Study (AWHS) (n 4981), and selected subjects from external lipid units (Ext) (n 390) were used to define DBL criteria and to train and validate a screening tool. RESULTS Thirty-five subjects from MSUH, 21 subjects from AWHS, and 31 subjects from Ext were APOE2/2 homozygous. The combination of non high-density lipoprotein cholesterol (non-HDLc)/apoB 1.7 plus triglycerides/apoB 1.35, in mg/dL (non-HDLc [mmol/L]/apolipoprotein B (apoB) [g/L] 4.4 and triglycerides [mmol/L]/apoB [g/L] 3.5), provided the best diagnostic performance for the identification of subjects with hyperlipidemia and APOE2/2 genotype (sensitivity 100 in the 3 cohorts, and specificity 92.8 [MSUH], 80.9 [AWHS], and 77.6 [Ext]). This improves the performance of previous algorithms. Similar sensitivity and specificity were observed in APOE2/2 subjects receiving lipid-lowering drugs. CONCLUSIONS The combination of non-HDLc/apoB and triglycerides/apoB ratios is a valuable tool to diagnose DBL in patients with hyperlipidemia with or without lipid-lowering drugs. FDBL diagnosis requires DBL and the presence of a compatible APOE genotype. Most adult APOE2/2 subjects express DBL, making FDBL as common as familial hypercholesterolemia in the population.
Collapse
Affiliation(s)
- Ana M Bea
- Hospital Universitario Miguel Servet, IIS Aragn, CIBERCV, Zaragoza, Spain
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragn, CIBERCV, Zaragoza, Spain.,Molecular Research Laboratory, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Victoria Marco-Bened
- Hospital Universitario Miguel Servet, IIS Aragn, CIBERCV, Zaragoza, Spain.,Departamento de Medicina, Psiquiatra y Dermatologa, Universidad de Zaragoza, Zaragoza, Spain
| | - Martn Laclaustra
- Hospital Universitario Miguel Servet, IIS Aragn, CIBERCV, Zaragoza, Spain.,Departamento de Medicina, Psiquiatra y Dermatologa, Universidad de Zaragoza, Zaragoza, Spain
| | - Csar Martn
- Fundacin Biofisika Bizkaia, Leioa, Spain.,Biofisika Institute (UPV/EHU, CSIC), Leioa, Spain.,Department of Biochemistry and Molecular Biology, Universidad del Pas Vasco UPV/EHU, Bilbao, Spain
| | - Daiana Ibarretxe
- Unitat de Medicina Vascular i Metabolisme (UVASMET) Hospital Universitari Sant Joan, IISPV, CIBERDEM, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Xavier Pint
- Unidad de Lpidos, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-Idibell, Universidad de Barcelona, CiberObn, Barcelona, Spain
| | - Teresa Arrobas
- Laboratorio de Nutricin y RCV, Laboratorio de Bioqumica Clnica, Hospital Virgen Macarena, Sevilla, Spain
| | - Clara Vials
- Endocrinology Department, Hospital Clnic de Barcelona, Barcelona, Spain.,Institut dInvestigacions Biomdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigacin Biomdica en Red Fisiopatologa de la Obesidad y Nutricin (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragn, CIBERCV, Zaragoza, Spain.,Departamento de Medicina, Psiquiatra y Dermatologa, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Olmos
- Hospital Universitario Miguel Servet, IIS Aragn, CIBERCV, Zaragoza, Spain.,Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Heidemann BE, Koopal C, Roeters van Lennep JE, Stroes ESG, Riksen NP, Mulder MT, -van der Zee LCVV, Blackhurst DM, Marais AD, Visseren FLJ. Effect of evolocumab on fasting and post fat load lipids and lipoproteins in familial dysbetalipoproteinemia. J Clin Lipidol 2023; 17:112-123. [PMID: 36384662 DOI: 10.1016/j.jacl.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Familial dysbetalipoproteinemia (FD) is the second most common monogenic lipid disorder (prevalence 1 in 850-3500), characterized by postprandial remnant accumulation and associated with increased cardiovascular disease (CVD) risk. Many FD patients do not achieve non-HDL-C treatment goals, indicating the need for additional lipid-lowering treatment options. OBJECTIVES To evaluate the effect of the PCSK9 monoclonal antibody evolocumab added to standard lipid-lowering therapy on fasting and post fat load lipids and lipoproteins in patients with FD. METHODS A randomized placebo-controlled double-blind crossover trial comparing evolocumab (140 mg subcutaneous every 2 weeks) with placebo during two 12-week treatment periods. At the start and end of each treatment period patients received an oral fat load. The primary endpoint was the 8-hour post fat load non-HDL-C area under the curve (AUC). Secondary endpoints included fasting and post fat load lipids and lipoproteins. RESULTS In total, 28 patients completed the study. Mean age was 62±9 years and 93% had an Ɛ2Ɛ2 genotype. Evolocumab reduced the 8-hour post fat load non-HDL-C AUC with 49% (95%CI 42-55) and apolipoprotein B (apoB) AUC with 47% (95%CI 41-53). Other fasting and absolute post fat load lipids and lipoproteins including triglycerides and remnant-cholesterol were also significantly reduced by evolocumab. However, evolocumab did not have significant effects on the rise above fasting levels that occurred after consumption of the oral fat load. CONCLUSIONS Evolocumab added to standard lipid-lowering therapy significantly reduced fasting and absolute post fat load concentrations of non-HDL-C, apoB and other atherogenic lipids and lipoproteins in FD patients. The clinically significant decrease in lipids and lipoproteins can be expected to translate into a reduction in CVD risk in these high-risk patients.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Charlotte Koopal
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jeanine E Roeters van Lennep
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonie C van Vark -van der Zee
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dee M Blackhurst
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - A David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
14
|
Stellenwert primärer Fettstoffwechselstörungen im Kontext aktueller Dyslipidämie-Leitlinien und aktueller Innovationen in der Lipidtherapie. JOURNAL FÜR KLINISCHE ENDOKRINOLOGIE UND STOFFWECHSEL 2022. [DOI: 10.1007/s41969-022-00178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Abstract
PURPOSE OF REVIEW In recent years, there has been interest for the development of simplified diagnosis algorithms of dysbetalipoproteinemia (DBL) in order to avoid the complex testing associated with the Fredrickson criteria (reference method). The purpose of this review is to present recent advances in the field of DBL with a focus on screening and diagnosis. RECENT FINDINGS Recently, two different multi-step algorithms for the diagnosis of DBL have been published and their performance has been compared to the Fredrickson criteria. Furthermore, a recent large study demonstrated that only a minority (38%) of DBL patients are carriers of the E2/E2 genotype and that these individuals presented a more severe phenotype. SUMMARY The current literature supports the fact that the DBL phenotype is more heterogeneous and complex than previously thought. Indeed, DBL patients can present with either mild or more severe phenotypes that can be distinguished as multifactorial remnant cholesterol disease and genetic apolipoprotein B deficiency. Measurement of apolipoprotein B as well as APOE gene testing are both essential elements in the diagnosis of DBL.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute
- Department of Medicine, Division of Endocrinology, University of Montreal
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute
- Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, Québec, Canada
| |
Collapse
|
16
|
Heidemann BE, Koopal C, Baass A, Defesche JC, Zuurbier L, Mulder MT, Roeters van Lennep JE, Riksen NP, Boot C, Marais AD, Visseren FLJ. Establishing the relationship between Familial Dysbetalipoproteinemia and genetic variants in the APOE gene. Clin Genet 2022; 102:253-261. [PMID: 35781703 PMCID: PMC9543580 DOI: 10.1111/cge.14185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Familial Dysbetalipoproteinemia (FD) is the second most common monogenic dyslipidemia and is associated with a very high cardiovascular risk due to cholesterol‐enriched remnant lipoproteins. FD is usually caused by a recessively inherited variant in the APOE gene (ε2ε2), but variants with dominant inheritance have also been described. The typical dysbetalipoproteinemia phenotype has a delayed onset and requires a metabolic hit. Therefore, the diagnosis of FD should be made by demonstrating both the genotype and dysbetalipoproteinemia phenotype. Next Generation Sequencing is becoming more widely available and can reveal variants in the APOE gene for which the relation with FD is unknown or uncertain. In this article, two approaches are presented to ascertain the relationship of a new variant in the APOE gene with FD. The comprehensive approach consists of determining the pathogenicity of the variant and its causal relationship with FD by confirming a dysbetalipoproteinemia phenotype, and performing in vitro functional tests and, optionally, in vivo postprandial clearance studies. When this is not feasible, a second, pragmatic approach within reach of clinical practice can be followed for individual patients to make decisions on treatment, follow‐up, and family counseling.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Charlotte Koopal
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Québec, Canada
| | - Joep C Defesche
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Linda Zuurbier
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Niels P Riksen
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christopher Boot
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A David Marais
- Division of Chemical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa; Cape Town, South Africa
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
17
|
Paquette M, Bernard S, Paré G, Baass A. Dysbetalipoproteinemia: Differentiating Multifactorial Remnant Cholesterol Disease From Genetic ApoE Deficiency. J Clin Endocrinol Metab 2022; 107:538-548. [PMID: 34467996 DOI: 10.1210/clinem/dgab648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Dysbetalipoproteinemia (DBL) is characterized by the accumulation of remnant lipoprotein particles and associated with an increased risk of cardiovascular and peripheral vascular disease (PVD). DBL is thought to be mainly caused by the presence of an E2/E2 genotype of the apolipoprotein E (APOE) gene, in addition to environmental factors. However, there exists considerable phenotypic variability among DBL patients. OBJECTIVE The objectives were to verify the proportion of DBL subjects, diagnosed using the gold standard Fredrickson criteria, who did not carry E2/E2 and to compare the clinical characteristics of DBL patients with and without E2/E2. METHODS A total of 12 432 patients with lipoprotein ultracentrifugation as well as APOE genotype or apoE phenotype data were included in this retrospective study. RESULTS Among the 12 432 patients, 4% (n = 524) were positive for Fredrickson criteria (F+), and only 38% (n = 197) of the F+ individuals were E2/E2. The F+ E2/E2 group had significantly higher remnant cholesterol concentration (3.44 vs 1.89 mmol/L) and had higher frequency of DBL-related xanthomas (24% vs 2%) and floating beta (95% vs 11%) than the F+ non-E2/E2 group (P < 0.0001). The F+ E2/E2 group had an independent higher risk of PVD (OR 11.12 [95% CI 1.87-66.05]; P = 0.008) events compared with the F+ non-E2/E2 group. CONCLUSION In the largest cohort of DBL worldwide, we demonstrated that the presence of E2/E2 was associated with a more severe DBL phenotype. We suggest that 2 DBL phenotypes should be distinguished: the multifactorial remnant cholesterol disease and the genetic apoE deficiency disease.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
- Department of Medicine, Division of Endocrinology, Université de Montreal, Québec, Canada
| | - Guillaume Paré
- Genetic Molecular Epidemiology Lab, Population Health Research Institute, Ontario, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada
- Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Québec, Canada
| |
Collapse
|
18
|
Blokhina AV, Ershova AI, Meshkov AN, Drapkina OM. Familial dysbetalipoproteinemia: highly atherogenic and underdiagnosed disorder. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Familial dysbetalipoproteinemia (FD) is a genetic, highly atherogenic disorder. The penetrance of FD depends on the patient’s lifestyle and concomitant diseases. Despite the fact that FD was described almost half a century ago, it is still insufficiently studied and is extremely rarely diagnosed. In actual clinical practice, physicians do not have clear understanding of clinical course and genetic basis of FD. The aim was to present the most complete, but at the same time a critical review with a modern view on FD. We analyzed Russian and foreign publications from following electronic databases: PubMed, eLIBRARY, Google Scholar. As a result, the phenotypic features and genetic variability of the disease were considered and the main issues of diagnosis and treatment of patients with FD were discussed. The data presented will help the clinician to timely suspect the FD, conduct a full range of investigations and prescribe evidence-based lipid-lowering therapy.
Collapse
Affiliation(s)
- A. V. Blokhina
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. I. Ershova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
19
|
Seedat F, Patel M, Phillip V, Mohamed F, Marais AD, Blackhurst DM, Solomon G, Currin S, Raal FJ. Hyperlipidemic myeloma, a rare form of acquired dysbetalipoproteinemia, in an HIV seropositive African female. Clin Chim Acta 2021; 520:71-75. [PMID: 34052205 DOI: 10.1016/j.cca.2021.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Dysbetalipoproteinemia (DBL) is an uncommon condition characterized by a mixed hyperlipidemia due to accumulation of remnant lipoproteins and is highly atherogenic. Typically, DBL is an autosomal recessive condition requiring an additional metabolic stress with reduced apolipoprotein E (apoE) function. However, DBL is also described in patients with multiple myeloma without the characteristic apoE2/E2 mutation seen in familial DBL. Although the underlying pathogenesis in these cases is not fully characterized, it is thought to occur due to interference with apoE function by antibodies produced from clonal plasma cells. Such cases are referred to as hyperlipidemic myeloma (HLM) and have rarely been described in the literature. To our knowledge there is no prior description of HLM in HIV positive patients in Africa. We describe a case of HLM in an African woman with underlying HIV infection who presented with phenotypic and biochemical features of DBL that responded poorly to lipid lowering therapy.
Collapse
Affiliation(s)
- Faheem Seedat
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Moosa Patel
- Division of Clinical Hematology, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vinitha Phillip
- Division of Clinical Hematology, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Farzahna Mohamed
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A David Marais
- Division of Chemical Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Dee M Blackhurst
- Division of Chemical Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Gabriele Solomon
- Division of Chemical Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Sean Currin
- Department of Chemical Pathology, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Frederick J Raal
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Heidemann BE, Wolters FJ, Kavousi M, Gruppen EG, Dullaart RP, Marais AD, Visseren FL, Koopal C. Adiposity and the development of dyslipidemia in APOE ε2 homozygous subjects: A longitudinal analysis in two population-based cohorts. Atherosclerosis 2021; 325:57-62. [PMID: 33892328 DOI: 10.1016/j.atherosclerosis.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Familial dysbetalipoproteinemia (FD), characterized by remnant lipoprotein accumulation and premature cardiovascular disease, occurs in homozygous carriers of the APOE ε2 allele, but genetic predisposition alone does not suffice for the clinical phenotype. Cross-sectional studies suggest that a second metabolic hit - notably adiposity or insulin resistance - is required, but the association between these risk factors and development of FD has not been studied prospectively. METHODS For this study, we evaluated 18,987 subjects from two large prospective Dutch population-based cohorts (PREVEND and Rotterdam Study) of whom 118 were homozygous APOE ε2 carriers. Of these, 69 subjects were available for prospective analyses. Dyslipidemia - likely to be FD - was defined as fasting triglyceride (TG) levels >3 mmol/L in untreated subjects or use of lipid lowering medication. The effect of weight, body mass index (BMI), waist circumference, type 2 diabetes mellitus and non-TG metabolic syndrome on development of dyslipidemia was investigated. RESULTS Eleven of the 69 ε2ε2 subjects (16%) developed dyslipidemia - likely FD - during follow-up. Age-, sex- and cohort-adjusted risk factors for the development of FD were BMI (OR 1.19; 95%CI 1.04-1.39), waist circumference (OR 1.26 95%CI 1.01-1.61) and presence of non-TG metabolic syndrome (OR 4.39; 95%CI 1.04-18.4) at baseline. Change in adiposity during follow-up was not associated with development of dyslipidemia. CONCLUSIONS Adiposity increases the risk of developing an FD-like lipid phenotype in homozygous APOE ε2 subjects. These results stress the importance of healthy body weight in subjects at risk of developing FD.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Frank J Wolters
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, University of Groningen, the Netherlands
| | - Robin Pf Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, University of Groningen, the Netherlands
| | - A David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, South Africa, Cape Town, South Africa
| | - Frank Lj Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Charlotte Koopal
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
21
|
Limonova AS, Ershova AI, Meshkov AN, Kiseleva AV, Divashuk MG, Kutsenko VA, Drapkina OM. Case Report: Hypertriglyceridemia and Premature Atherosclerosis in a Patient With Apolipoprotein E Gene ε 2ε 1 Genotype. Front Cardiovasc Med 2021; 7:585779. [PMID: 33537346 PMCID: PMC7847930 DOI: 10.3389/fcvm.2020.585779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
We present a case of a 40-year-old male with premature atherosclerosis, with evidence of both eruptive and tendinous xanthomas, which could imply an increase in both low-density lipoprotein (LDL) and triglyceride (TG) levels. However, his LDL was 2.08 mmol/l, TG -11.8 mmol/l on rosuvastatin 20 mg. Genetic evaluation was performed using a custom panel consisting of 25 genes and 280 variants responsible for lipid metabolism. A rare ε2ε1 genotype of apolipoprotein E was detected. The combination of clinical manifestations and genetic factors in this patient leads to the diagnosis of familial dysbetalipoproteinemia. Implementation of genetic testing into routine clinical practice could not only improve disease diagnostics and management, but also help prevent their development.
Collapse
Affiliation(s)
- Alena S Limonova
- Laboratory of Clinomics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexandra I Ershova
- Laboratory of Clinomics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexey N Meshkov
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna V Kiseleva
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Mikhail G Divashuk
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,Kurchatov Genomics Center-All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Vladimir A Kutsenko
- Biostatistics Laboratory, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,Department of Theory of Probability, Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Oxana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Nascimento JCR, Matos GA, Pereira LC, Mourão AECCB, Sampaio AM, Oriá RB, Toniutto P. Impact of apolipoprotein E genetic polymorphisms on liver disease: An essential review. Ann Hepatol 2021; 19:24-30. [PMID: 31548169 DOI: 10.1016/j.aohep.2019.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Cirrhosis is an advanced stage of liver disease, compromising liver function with systemic health implications and poor quality of life. Hepatitis C virus (HCV) infection and alcoholic liver disease are the main causes of this pathology. However, since genetic factors may play a large role in the progression and severity of liver disease, and as apolipoprotein E (apoE) has been recognised to be mainly synthesised in the liver, apoE polymorphism studies are important to better understand the causal mechanisms in liver diseases. In this review, we summarise up-to-date studies addressing how apoE polymorphisms influence liver cirrhosis and liver transplantation outcomes and potential protective mechanisms. Although more clinical studies are needed to support these findings, the apoE ɛ4 allele seems to be protective against the progression of liver cirrhosis in the majority of aetiologies and the postoperative serum apoE phenotype of the transplanted subject receptors was converted to that of the donor, indicating that >90% of apoE in plasma is synthesised in the hepatic system.
Collapse
Affiliation(s)
- José C R Nascimento
- Laboratory of Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil
| | - Gabriella A Matos
- Laboratory of Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lianna C Pereira
- Laboratory of Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Anderson E C C B Mourão
- Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil
| | - Aline M Sampaio
- Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil
| | - Reinaldo B Oriá
- Department of Anesthesia and Liver Transplantation, Fortaleza General Hospital, Fortaleza, CE, Brazil.
| | - Pierluigi Toniutto
- Hepatology and Liver Transplantation Unit, Department of Medical Area (DAME) Academic Hospital, University of Udine, Italy
| |
Collapse
|
23
|
Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci 2020; 21:E6113. [PMID: 32854299 PMCID: PMC7504288 DOI: 10.3390/ijms21176113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism diseases. Answers to these questions will likely uncover novel strategies for the treatment of aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations of lipids-referred to as lipotoxicity-resulting in cellular dysfunction and cell death.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| |
Collapse
|
24
|
Paquette M, Bernard S, Blank D, Paré G, Baass A. A simplified diagnosis algorithm for dysbetalipoproteinemia. J Clin Lipidol 2020; 14:431-437. [DOI: 10.1016/j.jacl.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
|
25
|
Boot CS, Luvai A, Neely RDG. The clinical and laboratory investigation of dysbetalipoproteinemia. Crit Rev Clin Lab Sci 2020; 57:458-469. [PMID: 32255405 DOI: 10.1080/10408363.2020.1745142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Familial dysbetalipoproteinemia (type III hyperlipoproteinemia) is a potentially underdiagnosed inherited dyslipidemia associated with greatly increased risk of coronary and peripheral vascular disease. The mixed hyperlipidemia observed in this disorder usually responds well to appropriate medical therapy and lifestyle modification. Although there are characteristic clinical features such as palmar and tuberous xanthomata, associated with dysbetalipoproteinemia, they are not always present, and their absence cannot be used to exclude the disorder. The routine lipid profile cannot distinguish dysbetalipoproteinemia from other causes of mixed hyperlipidemia and so additional investigations are required for confident diagnosis or exclusion. A range of investigations that have been proposed as potential diagnostic tests are discussed in this review, but the definitive biochemical test for dysbetalipoproteinemia is widely considered to be beta quantification. Beta quantification can determine the presence of "β-VLDL" in the supernatant following ultracentrifugation and whether the VLDL cholesterol to triglyceride ratio is elevated. Both features are considered hallmarks of the disease. However, beta quantification and other specialist tests are not widely available and are not high-throughput tests that can practically be applied to all patients with mixed hyperlipidemia. Using apolipoprotein B (as a ratio either to total or non-HDL cholesterol or as part of a multi-step algorithm) as an initial test to select patients for further investigation is a promising approach. Several studies have demonstrated a high degree of diagnostic sensitivity and specificity using these approaches and apolipoprotein B is a relatively low-cost test that is widely available on high-throughput platforms. Genetic testing is also important in the diagnosis, but it should be noted that most individuals with an E2/2 genotype do not suffer from remnant hyperlipidemia and around 10% of familial dysbetalipoproteinemia cases are caused by rarer, autosomal dominant mutations in APOE that will only be detected if the gene is fully sequenced. Wider implementation of diagnostic pathways utilizing apo B could lead to more rational use of specialist investigations and more consistent detection of patients with dysbetalipoproteinemia. Without the application of a consistent evidence-based approach to identifying dysbetalipoproteinemia, many cases are likely to remain undiagnosed.
Collapse
Affiliation(s)
- Christopher S Boot
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ahai Luvai
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert D G Neely
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Lewandowski CT, Maldonado Weng J, LaDu MJ. Alzheimer's disease pathology in APOE transgenic mouse models: The Who, What, When, Where, Why, and How. Neurobiol Dis 2020; 139:104811. [PMID: 32087290 DOI: 10.1016/j.nbd.2020.104811] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer's disease (AD) modifying treatments in the past several decades, despite successful studies in preclinical mouse models. This inconsistency has caused a renewed focus on improving the fidelity and reliability of AD mouse models, with disparate views on how this improvement can be accomplished. However, the interactive effects of the universal biological variables of AD, which include age, APOE genotype, and sex, are often overlooked. Age is the greatest risk factor for AD, while the ε4 allele of the human APOE gene, encoding apolipoprotein E, is the greatest genetic risk factor. Sex is the final universal biological variable of AD, as females develop AD at almost twice the rate of males and, importantly, female sex exacerbates the effects of APOE4 on AD risk and rate of cognitive decline. Therefore, this review evaluates the importance of context for understanding the role of APOE in preclinical mouse models. Specifically, we detail how human AD pathology is mirrored in current transgenic mouse models ("What") and describe the critical need for introducing human APOE into these mouse models ("Who"). We next outline different methods for introducing human APOE into mice ("How") and highlight efforts to develop temporally defined and location-specific human apoE expression models ("When" and "Where"). We conclude with the importance of choosing the human APOE mouse model relevant to the question being addressed, using the selection of transgenic models for testing apoE-targeted therapeutics as an example ("Why").
Collapse
Affiliation(s)
- Cutler T Lewandowski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
27
|
Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice. Mol Neurodegener 2019; 14:47. [PMID: 31861986 PMCID: PMC6923910 DOI: 10.1186/s13024-019-0352-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a fatal neurodegenerative disease. APOE4 is the greatest genetic risk factor for AD, increasing risk up to 15-fold compared to the common APOE3. Importantly, female (♀) APOE4 carriers have a greater risk for developing AD and an increased rate of cognitive decline compared to male (♂) APOE4 carriers. While recent evidence demonstrates that AD, APOE genotype, and sex affect the gut microbiome (GM), how APOE genotype and sex interact to affect the GM in AD remains unknown. Methods This study analyzes the GM of 4-month (4 M) ♂ and ♀ E3FAD and E4FAD mice, transgenic mice that overproduce amyloid-β 42 (Aβ42) and express human APOE3+/+ or APOE4+/+. Fecal microbiotas were analyzed using high-throughput sequencing of 16S ribosomal RNA gene amplicons and clustered into operational taxonomic units (OTU). Microbial diversity of the EFAD GM was compared across APOE, sex and stratified by APOE + sex, resulting in 4-cohorts (♂E3FAD, ♀E3FAD, ♂E4FAD and ♀E4FAD). Permutational multivariate analysis of variance (PERMANOVA) evaluated differences in bacterial communities between cohorts and the effects of APOE + sex. Mann-Whitney tests and machine-learning algorithms identified differentially abundant taxa associated with APOE + sex. Results Significant differences in the EFAD GM were associated with APOE genotype and sex. Stratification by APOE + sex revealed that APOE-associated differences were exhibited in ♂EFAD and ♀EFAD mice, and sex-associated differences were exhibited in E3FAD and E4FAD mice. Specifically, the relative abundance of bacteria from the genera Prevotella and Ruminococcus was significantly higher in ♀E4FAD compared to ♀E3FAD, while the relative abundance of Sutterella was significantly higher in ♂E4FAD compared to ♂E3FAD. Based on 29 OTUs identified by the machine-learning algorithms, heatmap analysis revealed significant clustering of ♀E4FAD separate from other cohorts. Conclusions The results demonstrate that the 4 M EFAD GM is modulated by APOE + sex. Importantly, the effect of APOE4 on the EFAD GM is modulated by sex, a pattern similar to the greater AD pathology associated with ♀E4FAD. While this study demonstrates the importance of interactive effects of APOE + sex on the GM in young AD transgenic mice, changes associated with the development of pathology remain to be defined.
Collapse
|
28
|
Sulaiman RA. Inherited metabolic disorders and dyslipidaemia. J Clin Pathol 2019; 73:384-390. [PMID: 31757783 DOI: 10.1136/jclinpath-2019-205910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/04/2022]
Abstract
Monogenic dyslipidaemia is a diverse group of multisystem disorders. Patients may present to various specialities from early childhood to late in adult life, and it usually takes longer before the diagnosis is established. Increased awareness of these disorders among clinicians is imperative for early diagnosis. This best practice review provides an overview of primary dyslipidaemias, highlighting their clinical presentation, relevant biochemical and molecular tests. It also addresses the emerging role of genetics in the early diagnosis and prevention of these disorders.
Collapse
Affiliation(s)
- Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Miller M. Increased CVD Risk in Young Adults With Elevated Non–HDL-C. J Am Coll Cardiol 2019; 74:80-82. [DOI: 10.1016/j.jacc.2019.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
|
30
|
Mihăilă RG. Pragmatic Analysis of Dyslipidemia Involvement in Coronary Artery Disease: A Narrative Review. Curr Cardiol Rev 2019; 16:36-47. [PMID: 31113345 PMCID: PMC7393591 DOI: 10.2174/1573403x15666190522100041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022] Open
Abstract
Background Dyslipidemia is the main factor involved in the occurrence and progression of coronary artery disease. Objective The research strategy is aimed at analyzing new data on the pathophysiology of dyslipidemia involvement in coronary artery disease, the modalities of atherogenic risk estimation and therapeutic advances. Methods Scientific articles published in PubMed from January 2017 to February 2018 were searched using the terms “dyslipidemia” and “ischemic heart disease”. Results PCSK9 contributes to the increase in serum levels of low-density lipoprotein-cholesterol and lipoprotein (a). The inflammation is involved in the progression of hyperlipidemia and atherosclerosis. Hypercholesterolemia changes the global cardiac gene expression profile and is thus involved in the increase of oxidative stress, mitochondrial dysfunction, and apoptosis initiated by inflammation. Coronary artery calcifications may estimate the risk of coronary events. The cardio-ankle vascular index evaluates the arterial stiffness and correlates with subclinical coronary atherosclerosis. The carotid plaque score is superior to carotid intima-media thickness for risk stratification in patients with familial hypercholesterolemia and both can independently predict coronary artery disease. The lipoprotein (a) and familial hypercholesterolemia have a synergistic role in predicting the risk of early onset and severity of coronary atherosclerosis. A decrease in atherosclerotic coronary plaque progression can be achieved in patients with plasma LDL-cholesterol levels below 70 mg/dL. A highly durable RNA interference therapeutic inhibitor of PCSK9 synthesis could be a future solution. Conclusion The prophylaxis and treatment of coronary artery disease in a dyslipidemic patient should be based on a careful assessment of cardio-vascular risk factors and individual metabolic particularities, so it may be personalized.
Collapse
Affiliation(s)
- Romeo-Gabriel Mihăilă
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, Sibiu, Romania; CVASIC Laboratory, Emergency County Clinical Hospital Sibiu, Sibiu, Romania
| |
Collapse
|
31
|
Morise AP, Hegele RA. Atypical familial dysbetalipoproteinemia associated with high polygenic cholesterol and triglyceride scores treated with ezetimibe and evolocumab. J Clin Lipidol 2019; 13:411-414. [DOI: 10.1016/j.jacl.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 11/24/2022]
|
32
|
Update on the diagnosis, treatment and management of rare genetic lipid disorders. Pathology 2019; 51:193-201. [DOI: 10.1016/j.pathol.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
|
33
|
Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2018; 51:165-176. [PMID: 30598326 DOI: 10.1016/j.pathol.2018.11.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (apoE), a 34 kDa circulating glycoprotein of 299 amino acids, predominantly synthesised in the liver, associates with triglyceride-rich lipoproteins to mediate the clearance of their remnants after enzymatic lipolysis in the circulation. Its synthesis in macrophages initiates the formation of high density-like lipoproteins to effect reverse cholesterol transport to the liver. In the nervous system apoE forms similar lipoproteins which perform the function of distributing lipids amongst cells. ApoE accounts for much of the variation in plasma lipoproteins by three common variants (isoforms) that influence low-density lipoprotein concentration and the risk of atherosclerosis. ApoE2 generally is most favourable and apoE4 least favourable for cardiovascular and neurological health. The apoE variants relate to different amino acids at positions 112 and 158: cysteine in both for apoE2, arginine at both sites for apoE4, and respectively cysteine and arginine for apoE3 that is viewed as the wild type. Paradoxically, under metabolic stress, homozygosity for apoE2 may result in dysbetalipoproteinaemia in adults owing to impaired binding of remnant lipoproteins to the LDL receptor and related proteins as well as heparan sulphate proteoglycans. This highly atherogenic condition is also seen with other mutations in apoE, but with autosomal dominant inheritance. Mutations in apoE may also cause lipoprotein glomerulopathy. In the central nervous system apoE binds amyloid β-protein and tau protein and fragments may incur cellular damage. ApoE4 is a strong risk factor for the development of Alzheimer's disease. ApoE has several other physiological effects that may influence health and disease, including supply of docosahexaenoic acid for the brain and modulating immune and inflammatory responses. Genotyping of apoE may have application in disorders of lipoprotein metabolism as well as glomerulopathy and may be relevant to personalised medicine in understanding cardiovascular risk, and the outcome of nutritional and therapeutic interventions. Quantitation of apoE will probably not be clinically useful. ApoE is also of interest as it may generate peptides with biological function and could be employed in nanoparticles that may allow crossing of the blood-brain barrier. Therapeutic options may emerge from these newer insights.
Collapse
Affiliation(s)
- A David Marais
- Chemical Pathology Division, Pathology Department, University of Cape Town Health Science Faculty and National Health Laboratory Service, Cape Town, South Africa.
| |
Collapse
|
34
|
Dyslipidemias in clinical practice. Clin Chim Acta 2018; 487:117-125. [PMID: 30201369 DOI: 10.1016/j.cca.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Most dyslipidemic conditions have been linked to an increased risk of cardiovascular disease. Over the past few years major advances have been made regarding the genetic and metabolic basis of dyslipidemias. Detailed characterization of the genetic basis of familial lipid disorders and knowledge concerning the effects of environmental factors on the expression of dyslipidemias have increased substantially, contributing to a better diagnosis in individual patients. In addition to these developments, therapeutic options to lower cholesterol levels in clinical practice have expanded even further in patients with familial hypercholesterolemia and in subjects with cardiovascular disease. Finally, promising upcoming therapeutic lipid lowering strategies will be reviewed. All these advances will be discussed in relation to current clinical practice with special focus on common lipid disorders including familial dyslipidemias.
Collapse
|
35
|
The Effect of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors on Nonfasting Remnant Cholesterol in a Real World Population. J Lipids 2018; 2018:9194736. [PMID: 30105099 PMCID: PMC6076932 DOI: 10.1155/2018/9194736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 11/17/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have demonstrated significant effects on low-density lipoprotein (LDL) cholesterol and nonhigh density lipoprotein (HDL) cholesterol. To date, there have been limited reports on the effect of PCSK9 inhibitors on remnant cholesterol. Objectives Assess the effect of PCSK9 inhibitors on nonfasting remnant cholesterol in a real world population. Identify whether pretreatment triglyceride levels are associated with PCSK9 inhibition success as indicated by changes in remnant cholesterol levels. Methods Patients in our adult lipid clinic (n = 109) receiving PCSK9 inhibition for atherosclerotic cardiovascular disease or familial hypercholesterolemia who had available pre- and post-PCSK9 inhibition standard nonfasting lipid data were, retrospectively, selected for data analysis. Remnant cholesterol was the difference between non-HDL and LDL cholesterol. LDL cholesterol was measured directly and calculated from Friedewald and Martin/Hopkins methods. Data were analyzed using repeated measures ANOVA and multivariable linear regression for differential effects on remnant and LDL cholesterol based upon pretreatment nonfasting triglyceride levels. Results Remnant cholesterol as well as total, LDL, non-HDL cholesterol, and triglycerides decreased significantly (P<0.001) after PCSK9 inhibition. Patients with higher pretreatment triglyceride levels showed greater decrease in remnant cholesterol after PCSK9 inhibition (P<0.001) than those with lower pretreatment triglycerides. Conclusions In patients receiving PCSK9 inhibitors, remnant cholesterol as determined from nonfasting blood was reduced in proportion to pretreatment triglycerides.
Collapse
|
36
|
Rahman F, Blumenthal RS, Jones SR, Martin SS, Gluckman TJ, Whelton SP. Fasting or Non-fasting Lipids for Atherosclerotic Cardiovascular Disease Risk Assessment and Treatment? Curr Atheroscler Rep 2018; 20:14. [DOI: 10.1007/s11883-018-0713-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|