1
|
Azar Y, Ludwig TE, Le Bon H, Strøm TB, Bluteau O, Di-Filippo M, Carrié A, Chtioui H, Béliard S, Marmontel O, Fonteille A, Gebhart M, Peretti N, Moulin P, Ferrières J, Pradignac A, Farnier M, Gallo A, Yelnik C, Blom D, Génin E, Bogsrud MP, Leren TP, Boileau C, Abifadel M, Rabès JP, Varret M. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024; 399:118596. [PMID: 39500114 DOI: 10.1016/j.atherosclerosis.2024.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS PCSK9 is a key regulator of LDL-cholesterol levels. PCSK9 gain of function variants (GOFVs) cause autosomal dominant hypercholesterolemia (ADH). The first described PCSK9-GOFV, p.Ser127Arg, almost exclusively reported in France, represents 67 % of the PCSK9 French GOFVs due to a founder effect. Few other carriers are reported in South Africa and Norway. This study aims to estimate when the common ancestor lived and to describe a cohort of p.Ser127Arg carriers. METHODS Eight families and 14 p.Ser127Arg carriers were genotyped and phenotyped. Haplotypes were constructed using 11 microsatellites around PCSK9 and 6 intragenic single nucleotide polymorphisms (SNPs). To add to the biological analysis, eight additional p.Ser127Arg carriers, 12 carriers of other PCSK9-GOFVs, 93 LDLR loss of function variant (LOFV) carriers and 49 non-carriers subjects were phenotyped. RESULTS The most common ancestor of p.Ser127Arg was estimated to have lived 775 years ago [95 % CI: 575-1075]. French Protestants exiled after the revocation of the Edict of Nantes in 1685 AD likely brought the variant to South Africa and Norway. As expected for ADH subjects, carriers of LDLR-LOFV, the p.Ser127Arg, or other PCSK9-GOFVs showed significantly higher LDL-C levels than that of the non-carriers. Interestingly, LDL-C levels are higher for LDLR-LOFVs and for the reduced secreted p.Ser127Arg than for secreted PCSK9-GOFVs, suggesting a greater effect of the p.Ser127Arg. Conversely, HDL-C was significantly lower for LDLR-LOFV and p.Ser127Arg carriers. CONCLUSIONS This first report from a large cohort of PCSK9-p.Ser127Arg carriers provides observations suggesting a stronger hypercholesterolemic potential of the mutated pro-PCSK9 compared with the secreted mature protein. This work also provides additional data to support the association between PCSK9 and HDL metabolism, and molecular evidence that this variant appeared in France around 1248 AD (Graphical Abstract = Fig. 1).
Collapse
Affiliation(s)
- Yara Azar
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Thomas E Ludwig
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | - Hugo Le Bon
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Thea Bismo Strøm
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Olivier Bluteau
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Mathilde Di-Filippo
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Alain Carrié
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Hedi Chtioui
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Sophie Béliard
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Oriane Marmontel
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Annie Fonteille
- Centre Hospitalier d'Annecy Genevois, Médecine Interne, Epagny Metz-Tessy, F-74370, France
| | | | - Noël Peretti
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Pediatric Gastroenterology-Hepatology and Nutrition, Bron, F-69002, France
| | - Philippe Moulin
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Endocrinology and Nutrition, Bron, F-69002, France
| | - Jean Ferrières
- Toulouse Rangueil University Hospital, Department of Cardiology, INSERM, UMR 1295, F-31400, Toulouse, France
| | - Alain Pradignac
- CHU of Strasbourg, Department of Internal Medicine, Endocrinology and Nutrition, Strasbourg, F-67000, France
| | - Michel Farnier
- University of Bourgogne Franche-Comté, PEC2 Team, Dijon, Cedex, F-25000, France
| | - Antonio Gallo
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Cécile Yelnik
- CHUR of Lille, Department of Internal Medicine and Immunology, Lille, France; INSERM, UMR 1167 RID-AGE, Lille, F-59000, France
| | - Dirk Blom
- University of Cape Town, Division of Lipidology and Cape Heart Institute, Cape Town, 7925, South Africa
| | - Emmanuelle Génin
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | | | - Trond P Leren
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Catherine Boileau
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Bichat-Claude Bernard Hospital, Genetic Department, AP-HP, F-75018, Paris, France
| | - Marianne Abifadel
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Jean-Pierre Rabès
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Paris-Saclay University and Versailles-Saint-Quentin-en-Yvelines University, Ambroise Paré University Hospital, Biochemistry and Molecular Genetics Department, AP-HP, F-92104, Boulogne-Billancourt, France
| | - Mathilde Varret
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
2
|
Nóvoa-Medina Y, Marcelino-Rodriguez I, Suárez NM, Barreiro-Bautista M, Rivas-García E, Sánchez-Alonso S, González-Martínez G, Quinteiro-González S, Domínguez Á, Cabrera M, López S, Pavlovic S, Flores C, Wägner AM. Does HLA explain the high incidence of childhood-onset type 1 diabetes in the Canary Islands? The role of Asp57 DQB1 molecules. BMC Pediatr 2024; 24:569. [PMID: 39243072 PMCID: PMC11378579 DOI: 10.1186/s12887-024-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
The Canary Islands inhabitants, a recently admixed population with significant North African genetic influence, has the highest incidence of childhood-onset type 1 diabetes (T1D) in Spain and one of the highest in Europe. HLA accounts for half of the genetic risk of T1D. AIMS To characterize the classical HLA-DRB1 and HLA-DQB1 alleles in children from Gran Canaria with and without T1D. METHODS We analyzed classic HLA-DRB1 and HLA-DQB1 alleles in childhood-onset T1D patients (n = 309) and control children without T1D (n = 222) from the island of Gran Canaria. We also analyzed the presence or absence of aspartic acid at position 57 in the HLA-DQB1 gene and arginine at position 52 in the HLA-DQA1 gene. Genotyping of classical HLA-DQB1 and HLA-DRB1 alleles was performed at two-digit resolution using Luminex technology. The chi-square test (or Fisher's exact test) and odds ratio (OR) were computed to assess differences in allele and genotype frequencies between patients and controls. Logistic regression analysis was also used. RESULTS Mean age at diagnosis of T1D was 7.4 ± 3.6 years (46% female). Mean age of the controls was 7.6 ± 1.1 years (55% female). DRB1*03 (OR = 4.2; p = 2.13-13), DRB1*04 (OR = 6.6; p ≤ 2.00-16), DRB1* 07 (OR = 0.37; p = 9.73-06), DRB1*11 (OR = 0.17; p = 6.72-09), DRB1*12, DRB1*13 (OR = 0.38; p = 1.21-05), DRB1*14 (OR = 0.0; p = 0.0024), DRB1*15 (OR = 0.13; p = 7.78-07) and DRB1*16 (OR = 0.21; p = 0.003) exhibited significant differences in frequency between groups. Among the DQB1* alleles, DQB1*02 (OR: 2.3; p = 5.13-06), DQB1*03 (OR = 1.7; p = 1.89-03), DQB1*05 (OR = 0.64; p = 0.027) and DQB1*06 (OR = 0.19; p = 6.25-14) exhibited significant differences. A total of 58% of the studied HLA-DQB1 genes in our control population lacked aspartic acid at position 57. CONCLUSIONS In this population, the overall distributions of the HLA-DRB1 and HLA-DQB1 alleles are similar to those in other European populations. However, the frequency of the non-Asp-57 HLA-DQB1 molecules is greater than that in other populations with a lower incidence of T1D. Based on genetic, historical and epidemiological data, we propose that a common genetic background might help explain the elevated pediatric T1D incidence in the Canary Islands, North-Africa and middle eastern countries.
Collapse
Affiliation(s)
- Yeray Nóvoa-Medina
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Asociación Canaria para la Investigación Pediátrica (ACIP canarias), Las Palmas, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Itahisa Marcelino-Rodriguez
- Preventive Medicine and Public Health Area, University of La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta Barreiro-Bautista
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Eva Rivas-García
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Sánchez-Alonso
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gema González-Martínez
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sofía Quinteiro-González
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ángela Domínguez
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María Cabrera
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara López
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Svetlana Pavlovic
- Servicio de Pediatría Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
3
|
Suárez NM, Jebari-Benslaiman S, Jiménez-Monzón R, Benito-Vicente A, Brito-Casillas Y, Garcés L, González-Lleo AM, Tugores A, Boronat M, Martin C, Wägner AM, Sánchez-Hernández RM. Age, Origin and Functional Study of the Prevalent LDLR Mutation Causing Familial Hypercholesterolaemia in Gran Canaria. Int J Mol Sci 2023; 24:11319. [PMID: 37511081 PMCID: PMC10379432 DOI: 10.3390/ijms241411319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The p.(Tyr400_Phe402del) mutation in the LDL receptor (LDLR) gene is the most frequent cause of familial hypercholesterolaemia (FH) in Gran Canaria. The aim of this study was to determine the age and origin of this prevalent founder mutation and to explore its functional consequences. For this purpose, we obtained the haplotypic information of 14 microsatellite loci surrounding the mutation in one homozygous individual and 11 unrelated heterozygous family trios. Eight different mutation carrier haplotypes were identified, which were estimated to originate from a common ancestral haplotype 387 (110-1572) years ago. This estimation suggests that this mutation happened after the Spanish colonisation of the Canary Islands, which took place during the fifteenth century. Comprehensive functional studies of this mutation showed that the expressed LDL receptor was retained in the endoplasmic reticulum, preventing its migration to the cell surface, thus allowing us to classify this LDLR mutation as a class 2a, defective, pathogenic variant.
Collapse
Affiliation(s)
- Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Shifa Jebari-Benslaiman
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Roberto Jiménez-Monzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Asier Benito-Vicente
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Laida Garcés
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Ana M González-Lleo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| | - Antonio Tugores
- Unidad de Investigación, CHUIMI, 35016 Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| | - César Martin
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| | - Rosa M Sánchez-Hernández
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. Int J Mol Sci 2022; 23:ijms232415549. [PMID: 36555187 PMCID: PMC9779616 DOI: 10.3390/ijms232415549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving 50-60 genes. Among the two disease subtypes, the severe disease subtype of LAL-D is known as Wolman disease, with typical manifestations involving hepatomegaly, splenomegaly, vomiting, diarrhea, and hematopoietic abnormalities, such as anemia. In contrast, the mild disease subtype of this disorder is known as cholesteryl ester storage disease, with hypercholesterolemia, hypertriglyceridemia, and high-density lipoprotein disappearance. The prevalence of LAL-D is rare, but several treatment options, including enzyme replacement therapy, are available. Accordingly, a number of screening methodologies have been developed for this disorder. This review summarizes the current discussion on LAL-D, covering genetics, screening, and the tertiary structure of human LAL enzyme and preclinical study for the future development of a novel therapy.
Collapse
|
5
|
Diabetes and Familial Hypercholesterolemia: Interplay between Lipid and Glucose Metabolism. Nutrients 2022; 14:nu14071503. [PMID: 35406116 PMCID: PMC9002616 DOI: 10.3390/nu14071503] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disease characterized by high low-density lipoprotein (LDL) cholesterol (LDL-c) concentrations that increase cardiovascular risk and cause premature death. The most frequent cause of the disease is a mutation in the LDL receptor (LDLR) gene. Diabetes is also associated with an increased risk of cardiovascular disease and mortality. People with FH seem to be protected from developing diabetes, whereas cholesterol-lowering treatments such as statins are associated with an increased risk of the disease. One of the hypotheses to explain this is based on the toxicity of LDL particles on insulin-secreting pancreatic β-cells, and their uptake by the latter, mediated by the LDLR. A healthy lifestyle and a relatively low body mass index in people with FH have also been proposed as explanations. Its association with superimposed diabetes modifies the phenotype of FH, both regarding the lipid profile and cardiovascular risk. However, findings regarding the association and interplay between these two diseases are conflicting. The present review summarizes the existing evidence and discusses knowledge gaps on the matter.
Collapse
|
6
|
Sánchez-Hernández RM, González-Lleó AM, Tugores A, Brito-Casillas Y, Civeira F, Boronat M, Wägner A. Familial hypercholesterolemia in Gran Canaria: Founder mutation effect and high frequency of diabetes. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2021; 33:247-253. [PMID: 33814196 DOI: 10.1016/j.arteri.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Gran Canaria is a region of genetic isolation of familial hypercholesterolemia due to a founder mutation, p. [Tyr400_Phe402del], in the LDL receptor (LDLR) gene. Initial data suggest that its carriers could have a high prevalence of diabetes. MATERIAL AND METHODS Patients over 30 years of age with familial hypercholesterolemia and a confirmed mutation in LDLR were recruited from a tertiary hospital in Gran Canaria. The prevalence of diabetes and other clinical data were compared among carriers of p. [Tyr400_Phe402del] and those with other LDLR mutations. RESULTS 76.4% of the 89 participants were carriers of p.[Tyr400_Phe402del]. The prevalence of diabetes in this group was significantly higher (25 vs. 4%, P=.045). These cases also had a higher prevalence of cardiovascular disease and higher levels of LDL cholesterol and triglycerides. There were no differences in age, weight, body mass index, waist, age of onset, and time of statin treatment. However, they required PCSK9 inhibitors more often (51.5 vs 24%, P=.027). CONCLUSIONS The mutation p.[Tyr400_Phe402del] is associated with a high prevalence of diabetes, not explained by classic risk factors, such as age, obesity, or long-term use of statins.
Collapse
Affiliation(s)
- Rosa M Sánchez-Hernández
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, España; Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, España.
| | - Ana M González-Lleó
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, España; Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, España
| | - Antonio Tugores
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, España
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, España
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, ISS Aragón CIBERCV, Universidad de Zaragoza, Zaragoza, España
| | - Mauro Boronat
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, España; Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, España
| | - Ana Wägner
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, España; Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, España
| |
Collapse
|
7
|
Abstract
Dyslipidemias are a group of diseases, which are characterized by abnormal blood concentrations of cholesterol, triglycerides and/or low-density lipoprotein-cholesterol (LDL-c). Dyslipidemia is a determinant condition for the progress of an atherosclerotic plaque formation. The resulting atherogenicity is due to at least two mechanisms: first, to the accumulation in the plasma of lipid particles that have the capacity to alter the function of the endothelium and deposit at the atheromatous plaque, and second, at an insufficient concentration of multifactorial type of high density lipoprotein-cholesterol (HDL-c), whose function is to protect against the development of atherosclerosis. Its highest prevalence is encountered among individuals with diabetes, hypertension or overweight. Hyperlipidemia is one of the main predisposing factors for the development of cardiovascular disease. Hyperlipidemia can be the result of a genetic condition, the secondary expression of a primary process or the consequence of exogenous factors (food, cultural, socio-economic, etc.), all of which lead to the elevation of plasma lipid levels. The objective of this study was to carry out an analysis of the genes involved in the development of dyslipidemias that lead to cardiovascular disease with special emphasis on the proprotein convertase subtilin/kexin type 9 (PCSK9) gene. The PCSK9 gene participates in the development of primary dyslipidemias, mainly familial hypercholesterolemia, currently the pharmacological treatment of choice to reduce LDL-c are statins, however, it has been observed that these have been insufficient to eliminate cardiovascular risk, especially in subjects with primary forms of hypercholesterolemia related to genetic mutations, or statin intolerance.
Collapse
|
8
|
The incidence of skin melanoma in Gran Canaria (Canary Islands, Spain) is lower than expected in Southern Europe despite high-risk environmental conditions: an island-wide cross-sectional study. Cancer Causes Control 2021; 32:525-535. [PMID: 33646461 DOI: 10.1007/s10552-021-01403-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The Canary Islands are a leading European touristic destination. The ultraviolet index (UVI) in the region is the highest in Spain, and similar to indexes registered in Australia and New Zealand, which hold the highest incidence of skin melanoma worldwide. Yet according to cancer registry data, the incidence in the Canary Islands in the late 1990s was the lowest in Spain (among the lowest in Europe) and about six times lower than in New Zealand. PURPOSE To analyze the incidence rates of skin melanoma in Gran Canaria island between 2007 and 2018. METHODS The study was based in the two centres of the Canary Islands' Healthcare Service centralizing melanoma care in Gran Canaria. We analyzed crude and age-standardized (ASR) incidence rates of invasive cutaneous melanoma for the period 2007-2018 following the inclusion criteria of the International Agency for Research on Cancer (IARC). Clinical and histological characteristics of melanoma patients were assessed. RESULTS A total of 1058 patients were included. The incidence rates obtained matched the latest available Canary Islands' cancer registry data, confirming its reliability (ASR, Segi-Doll world standard population: 6.4 cases per 100,000 habitants for 2008-2012). The incidence was also below the latest IARC predictions for Southern Europe (GLOBOCAN 2018). Histological characteristics of patients were similar to other Southern European series. CONCLUSIONS The incidence of skin melanoma in Gran Canaria is unexpectedly low for a Southern European population exposed to such a high UVI. Further research in the Canary Islands could provide insight into a better understanding of melanoma pathogenesis.
Collapse
|
9
|
Proprotein Convertase Subtilisin/Kexin Type 9 Gene Variants in Familial Hypercholesterolemia: A Systematic Review and Meta-Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proprotein Convertase Subtilisin Kexin type 9 (PCSK9), comprises 12 exons, encoded for an enzyme which plays a critical role in the regulation of circulating low density lipoprotein. The gain-of-function (GOF) mutations aggravate the degradation of LDL receptors, resulting in familial hypercholesterolemia (FH), while loss-of-function (LOF) mutations lead to higher levels of the LDL receptors, lower the levels of LDL cholesterol, and preventing from cardiovascular diseases. It is noted that, previous publications related to the mutations of PCSK9 were not always unification. Therefore, this study aims to present the spectrum and distribution of PCSK9 gene mutations by a meta-analysis. A systematic literature analysis was conducted based on previous studies published by using different keywords. The weighted average frequency of PCSK9 mutation was calculated and accessed by MedCalc®. A total of 32 cohort studies, that included 19,725 familial hypercholesterolemia blood samples, were enrolled in the current study. The analysis results indicated that, based on the random-effect model, the weighted prevalence of PCSK9 mutation was 5.67% (95%CI = 3.68–8.05, p < 0.0001). The prevalence of PCSK9 GOF mutations was 3.57% (95%CI = 1.76–5.97, p < 0.0001) and PCSK9 LOF mutations was 6.05% (95%CI = 3.35–9.47, p < 0.0001). Additionally, the first and the second exon were identified as the hot spot of mutation occurred in PCSK9. Both GOF and LOF mutations have a higher proportion in Asia and Africa compared with other regions. The GOF PCSK9 p.(Glu32Lys) and LOF PCSK9 p.(Leu21dup/tri) were dominant in the Asia region with the proportion as 6.58% (95%CI = 5.77–7.47, p = 0.62) and 16.20% (95%CI = 6.91–28.44, p = 0.0022), respectively. This systematic analysis provided scientific evidence to suggest the mutation of PCSK9 was related to the metabolism of lipoprotein and atherosclerotic cardiovascular disease.
Collapse
|
10
|
Kanuri B, Fong V, Haller A, Hui DY, Patel SB. Mice lacking global Stap1 expression do not manifest hypercholesterolemia. BMC MEDICAL GENETICS 2020; 21:234. [PMID: 33228548 PMCID: PMC7685646 DOI: 10.1186/s12881-020-01176-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Background Autosomal dominant familial hypercholesterolemia (ADH; MIM#143890) is one of the most common monogenic disorders characterized by elevated circulatory LDL cholesterol. Initial studies in humans with ADH identified a potential relationship with variants of the gene encoding signal transducing adaptor family member protein 1 (STAP1; MIM#604298). However, subsequent studies have been contradictory. In this study, mice lacking global Stap1 expression (Stap1−/−) were characterized under standard chow and a 42% kcal western diet (WD). Methods Mice were studied for changes in different metabolic parameters before and after a 16-week WD regime. Growth curves, body fats, circulatory lipids, parameters of glucose homeostasis, and liver architecture were studied for comparisons. Results Surprisingly, Stap1−/− mice fed the 16-week WD demonstrated no marked differences in any of the metabolic parameters compared to Stap1+/+ mice. Furthermore, hepatic architecture and cholesterol content in FPLC-isolated lipoprotein fractions also remained comparable to wild-type mice. Conclusion These results strongly suggest that STAP1 does not alter lipid levels, that a western diet did not exacerbate a lipid disorder in Stap1 deficient mice and support the contention that it is not causative for hyperlipidemia in ADH patients. These results support other published studies also questioning the role of this locus in human hypercholesterolemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01176-x.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Fong
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - April Haller
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - David Y Hui
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Tada H, Hori M, Nomura A, Hosomichi K, Nohara A, Kawashiri MA, Harada-Shiba M. A catalog of the pathogenic mutations of LDL receptor gene in Japanese familial hypercholesterolemia. J Clin Lipidol 2020; 14:346-351.e9. [PMID: 32331935 DOI: 10.1016/j.jacl.2020.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Little data exist on the pathogenic mutations of LDL receptor in Japanese familial hypercholesterolemia (FH). OBJECTIVE We aimed to catalog the pathogenic mutations of LDL receptor gene in the 2 major Japanese FH-care centers (Kanazawa University and National Cerebral and Cardiovascular Center Research Institute), where genetic testing of FH has been performed centrally on requests from institutes all over Japan during more than past 2 decades. METHODS 796 FH subjects from 472 families who had nonsynonymous mutations in LDL receptor gene were included in this study. Genetic mutations were analyzed for mutations by Sanger sequencing as well as by multiplex ligation probe dependent amplification technique for large rearrangements. Pathogenic mutations were defined either as 1) protein truncated variants, 2) registered as pathogenic in ClinVar, or Human Gene Mutation Database (HGMD), or meet the criteria of American College of Medical Genetics and Genomics guideline, or 3) CADD score > 10. RESULTS We found 138 different mutations. Among them, 132 mutations were considered as pathogenic, including 19 large rearrangement mutations. However, 6 missense mutations were classified as variants of unknown significance. A single mutation accounted for as much as 41% of the FH subjects recruited from Kanazawa University mainly due to founder gene effect, whereas many singleton mutations were found from National Cerebral and Cardiovascular Center Research Institute located in Osaka. CONCLUSIONS We provided the largest catalog of pathogenic mutations of LDL receptor gene in Japanese FH. This could aid to determine the pathogenicity of the LDL receptor genetic mutations not only in Japanese but also in other ethnicities.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Akihiro Nomura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Genetics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|