1
|
Karimi H, Mohamadian M, Azizi P, Ghasemi P, Karimi M, Layegh T, Rahmatkhah-Yazdi M, Vaseghi S. Crocin has a greater therapeutic role in the restoration of behavioral impairments caused by maternal social isolation in adolescent than in adult offspring probably through GSK-3beta downregulation. LEARNING AND MOTIVATION 2024; 88:102060. [DOI: 10.1016/j.lmot.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S. Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol 2023; 60:7346-7361. [PMID: 37561236 PMCID: PMC10657788 DOI: 10.1007/s12035-023-03522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home cage under a constant 12 h/12 h light/dark cycle, as well as the changes following a 6-h advance of dark onset (phase shift). For comparison, we re-analysed data previously recorded in males. Dex-exposed females were spontaneously more active, and the activity onset re-entrained slower than in controls. In contrast, Dex-exposed males were less active, and the activity onset re-entrained faster than in controls. Following the phase shift, control females displayed a transient reorganisation of behaviour in light and virtually no change in dark, while Dex-exposed females showed limited variations from baseline in both light and dark, suggesting weaker photic entrainment. Next, we ran bulk RNA-sequencing in the suprachiasmatic nucleus (SCN) of Dex and control females. SPIA pathway analysis of ~ 2300 differentially expressed genes identified significantly downregulated dopamine signalling, and upregulated glutamate and GABA signalling. We selected a set of candidate genes matching the behaviour alterations and found consistent differential regulation for ~ 73% of tested genes in SCN and hippocampus tissue samples. Taken together, our data highlight sex differences in the outcome of prenatal exposure to excess GC in adult mice: in contrast to depression-like behaviour in males, the phenotype in females, defined by behaviour and differential gene expression, is consistent with ADHD models.
Collapse
Affiliation(s)
- Frederik Elberling
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Raj Bose
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| |
Collapse
|
3
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
5
|
Liu Z, Li X, Chen C, Sun N, Wang Y, Yang C, Xu Y, Xu Y, Zhang K. Identification of antisense lncRNAs targeting GSK3β as a regulator in major depressive disorder. Epigenomics 2020; 12:1725-1738. [PMID: 32896160 DOI: 10.2217/epi-2019-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To identify lncRNAs targeting GSK3β in MDD. Materials & methods: The levels of GSK3β and its three targeting lncRNAs (gsk3β antisense AS1, AS2 and AS3) were detected in 52 patients with major depressive disorder (MDD) before and after 8 weeks of escitalopram treatment. The functional study was evaluated using the silence of lncR-gsk3βAS2/3. The correlation between lncRNA-gsk3β and 89 MDD patients was analyzed. Human neuron progenitor cells were used to investigate the functional role of lncRNA-gsk3β in MDD. Results: All three lncRNAs were downregulated in MDD patients but upregulated after treatment. Inhibition of gsk3βAS2/3 reduced GSK3β expression and its phosphorylation levels in the neuron progenitor cells. Conclusion: Our findings suggest that lncRNA-gsk3βAS3 regulates GSK3β activity in MDD and has potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Chen Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yifan Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
6
|
Roy B, Dunbar M, Agrawal J, Allen L, Dwivedi Y. Amygdala-Based Altered miRNome and Epigenetic Contribution of miR-128-3p in Conferring Susceptibility to Depression-Like Behavior via Wnt Signaling. Int J Neuropsychopharmacol 2020; 23:165-177. [PMID: 32173733 PMCID: PMC7171932 DOI: 10.1093/ijnp/pyz071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies suggest that microRNAs (miRNAs) can participate in depression pathogenesis by altering a host of genes that are critical in corticolimbic functioning. The present study focuses on examining whether alterations in the miRNA network in the amygdala are associated with susceptibility or resiliency to develop depression-like behavior in rats. METHODS Amygdala-specific altered miRNA transcriptomics were determined in a rat depression model following next-generation sequencing method. Target prediction analyses (cis- and trans) and qPCR-based assays were performed to decipher the functional role of altered miRNAs. miRNA-specific target interaction was determined using in vitro transfection assay in neuroblastoma cell line. miRNA-specific findings from the rat in vivo model were further replicated in postmortem amygdala of major depressive disorder (MDD) subjects. RESULTS Changes in miRNome identified 17 significantly upregulated and 8 significantly downregulated miRNAs in amygdala of learned helpless (LH) compared with nonlearned helpless rats. Prediction analysis showed that the majority of the upregulated miRNAs had target genes enriched for the Wnt signaling pathway. Among altered miRNAs, upregulated miR-128-3p was identified as a top hit based on statistical significance and magnitude of change in LH rats. Target validation showed significant downregulation of Wnt signaling genes in amygdala of LH rats. A discernable increase in expression of amygdalar miR-128-3p along with significant downregulation of key target genes from Wnt signaling (WNT5B, DVL, and LEF1) was noted in MDD subjects. Overexpression of miR-128-3p in a cellular model lead to a marked decrease in the expression of Dvl1 and Lef1 genes, confirming them as validated targets of miR-128-3p. Additional evidence suggested that the amygdala-specific diminished expression of transcriptional repressor Snai1 could be potentially linked to induced miR-128-2 expression in LH rats. Furthermore, an amygdala-specific posttranscriptional switching mechanism could be active between miR-128-3p and RNA binding protein Arpp21 to gain control over their target genes such as Lef1. CONCLUSION Our study suggests that in amygdala a specific set of miRNAs may play an important role in depression susceptibility, which could potentially be mediated through Wnt signaling.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Dunbar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juhee Agrawal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama,Correspondence: Yogesh Dwivedi, PhD, Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Co-Director, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL ()
| |
Collapse
|
7
|
Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 2020; 9:cells9030727. [PMID: 32188010 PMCID: PMC7140610 DOI: 10.3390/cells9030727] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β), originally described as a negative regulator of glycogen synthesis, is a molecular hub linking numerous signaling pathways in a cell. Specific GSK3β inhibitors have anti-depressant effects and reduce depressive-like behavior in animal models of depression. Therefore, GSK3β is suggested to be engaged in the pathogenesis of major depressive disorder, and to be a target and/or modifier of anti-depressants’ action. In this review, we discuss abnormalities in the activity of GSK3β and its upstream regulators in different brain regions during depressive episodes. Additionally, putative role(s) of GSK3β in the pathogenesis of depression and the influence of anti-depressants on GSK3β activity are discussed.
Collapse
|
8
|
Lithium for schizophrenia: supporting evidence from a 12-year, nationwide health insurance database and from Akt1-deficient mouse and cellular models. Sci Rep 2020; 10:647. [PMID: 31959776 PMCID: PMC6971245 DOI: 10.1038/s41598-019-57340-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests AKT1 and DRD2-AKT-GSK3 signaling involvement in schizophrenia. AKT1 activity is also required for lithium, a GSK3 inhibitor, to modulate mood-related behaviors. Notably, GSK3 inhibitor significantly alleviates behavioral deficits in Akt1−/− female mice, whereas typical/atypical antipsychotics have no effect. In agreement with adjunctive therapy with lithium in treating schizophrenia, our data mining indicated that the average utilization rates of lithium in the Taiwan National Health Insurance Research Database from 2002 to 2013 are 10.9% and 6.63% in inpatients and outpatients with schizophrenia, respectively. Given that lithium is commonly used in clinical practice, it is of great interest to evaluate the effect of lithium on alleviating Akt1-related deficits. Taking advantage of Akt1+/− mice to mimic genetic deficiency in patients, behavioral impairments were replicated in female Akt1+/− mice but were alleviated by subchronic lithium treatment for 13 days. Lithium also effectively alleviated the observed reduction in phosphorylated GSK3α/β expression in the brains of Akt1+/− mice. Furthermore, inhibition of Akt expression using an Akt1/2 inhibitor significantly reduced neurite length in P19 cells and primary hippocampal cell cultures, which was also ameliorated by lithium. Collectively, our findings implied the therapeutic potential of lithium and the importance of the AKT1-GSK3 signaling pathway.
Collapse
|
9
|
Lee YS, Park SY, Heo HJ, Lee WS, Hong KW, Kim CD. Multitarget-directed cotreatment with cilostazol and aripiprazole for augmented neuroprotection against oxidative stress-induced toxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 2019; 857:172454. [PMID: 31202803 DOI: 10.1016/j.ejphar.2019.172454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Cerebrovascular dysfunction is crucially associated with cognitive impairment and a high prevalence of psychotic symptoms in the vascular dementia characterized by oxidative stress and multifactorial neurodegeneration. In this study, the significant decrease in BDNF expression in HT22 cells due to H2O2 (0.25 mM) was little affected by either aripiprazole (1 μM) or cilostazol (1 μM) alone, but significantly increased by cotreatment with both drugs. Even in the presence of H2O2, P-CK2α (Tyr 255), nuclear P-CREB (Ser 133), and nuclear P-β-catenin (Ser 675) levels were significantly increased in a synergistic manner by aripiprazole plus cilostazol cotreatment. Aripiprazole and cilostazol cotreatment synergistically increased P-GSK-3β (Ser 9) level. Nrf2/HO-1 expression was significantly elevated time- and concentration-dependently by either aripiprazole or cilostazol. In line with these, concurrent treatment with aripiprazole (1 μM) plus cilostazol (1 μM) significantly increased Nrf2 and HO-1 expression in a synergistic manner, accompanying with increased ARE luciferase activity, while each drug monotherapy showed little effects. Consequently, this cotreatment synergistically ameliorated the attenuated neurite outgrowth induced by H2O2 in the HT22 cells, and these were inhibited by K252A (inhibitor of BDNF receptor), TBCA (CK2 inhibitor), imatinib (β-catenin inhibitor) and ZnPP (inhibitor of HO-1), indicating that BDNF, P-CK2α, β-catenin and HO-1 activation are implicated in the enhanced neurite outgrowth. This study highlights that cotreatment with low concentrations of aripiprazole and cilostazol synergistically elicits neuroprotective effects by overcoming oxidative stress-evoked neurotoxicity associated with increased neurite outgrowth, providing a rationale for the use of this combinatorial treatment in vascular dementia.
Collapse
Affiliation(s)
- Yi Sle Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hye Jin Heo
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
10
|
Involvement of insulin signalling pathway in methamphetamine-induced hyperphosphorylation of Tau. Toxicology 2018; 408:88-94. [DOI: 10.1016/j.tox.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
|
11
|
Abstract
Introduction: Astroglia represent the main cellular homeostatic system of the central nervous system (CNS). Astrocytes are intimately involved in regulation and maintenance of neurotransmission by regulating neurotransmitters removal and turnover and by supplying neurons with neurotransmitters precursors. Astroglial cells are fundamental elements of monoaminergic transmission in the brain and in the spinal cord. Astrocytes receive monoaminergic inputs and control catabolism of monoamines through dedicated transporters and intracellular enzymatic pathways.Areas covered: Astroglial cells express serotonergic receptors; in this review, we provide an in-depth characterization of 5-HT2B receptors. Activation of these receptors triggers numerous intracellular signaling cascades that regulate expression of multiple genes. Astroglial 5-HT2B receptors are activated by serotonin-specific reuptake inhibitors, such as major anti-depressant fluoxetine. Expression of astroglial serotonin receptors undergoes remarkable changes in depression disorders, and these changes can be corrected by chronic treatment with anti-depressant drugs.Expert commentary: Depressive behaviors, which occur in rodents following chronic stress or in neurotoxic models of Parkinson disease, are associated with significant changes in the expression of astroglial, but not neuronal 5-HT2B receptors; while therapy with anti-depressants normalizes both receptors expression and depressive behavioral phenotype. In summary, astroglial serotonin receptors are linked to mood disorders and may represent a novel target for cell- and molecule-specific therapies of depression and mood disorders.
Collapse
Affiliation(s)
- Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Ojo ET, Aluko OM, Umukoro S. Psychopharmacological evaluation of antidepressant-like activity of ethanol seed extract of grains of paradise (Aframomum meleguetaK. Schum.)in mice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Esther Toluwalope Ojo
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics; University of Ibadan; Ibadan Nigeria
| | - Oritoke Modupe Aluko
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics; University of Ibadan; Ibadan Nigeria
- Department of Physiology; School of Health and Health Technology, Federal University of Technology; Akure Ondo State Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
13
|
Bali A, Jaggi AS. Anti-stress effects of a GSK-3β inhibitor, AR-A014418, in immobilization stress of variable duration in mice. J Basic Clin Physiol Pharmacol 2018; 28:315-325. [PMID: 28590916 DOI: 10.1515/jbcpp-2016-0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/25/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The present study was designed to explore the anti-stress role of AR-A014418, a selective glycogen synthase kinase-3β inhibitor (GSK-3β), on changes provoked by immobilization stress of varying duration. METHODS Acute stress of varying degree was induced by subjecting mice to immobilization stress of short duration (30 min) or long duration (120 min). Thereafter, these animals were exposed to the same stressor for 5 days to induce stress adaptation. The behavioral alterations were assessed using an actophotometer, a hole-board, and the open field and social interaction tests. The serum corticosterone levels were assessed as markers of the hypothalamic-pituitary-adrenal (HPA) axis activity. The levels of total GSK-3β and p-GSK-3β-S9 were determined in the prefrontal cortex. RESULTS A single exposure to short or long immobilization stress produced behavioral and biochemical changes and the levels of p-GSK-3β-S9 decreased without affecting the total GSK-3β levels in the brain. However, repeated exposure to both short and long stress reversed the behavioral and biochemical changes along with the normalization of p-GSK-3β-S9 levels. The administration of AR-A014418, a selective GSK-3β inhibitor, diminished acute stress-induced behavioral and biochemical changes. Furthermore, AR-A014418 normalized acute stress-induced alterations in p-GSK-3β-S9 levels without changing total GSK-3β levels. CONCLUSIONS Our study suggests that acute stress-induced decrease in p-GSK-3β-S9 levels in the brain contributes to the development of behavioral and biochemical alterations and the normalization of GSK-3β signaling may contribute to stress adaptive behavior in mice which have been subjected to repeated immobilization stress.
Collapse
|
14
|
Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins. J Affect Disord 2018; 227:126-135. [PMID: 29055260 DOI: 10.1016/j.jad.2017.10.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Stress-induced failed resilience of brain plasticity can contribute to the onset and recurrence of depression. Chronic stress has been reported to open windows of epigenetic plasticity in hippocampus. However, how hippocampal plasticity underlies depression-like behaviors and how it adapts in response to stress has not been addressed. The present study aimed to investigate the signaling mechanisms of CUMS affecting hippocampal plasticity-related proteins expression and the regulation of swimming exercise in mice. METHODS Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) for 7 weeks. From the 4th week, CUMS mice were trained in a moderate swimming program for a total of 4 weeks. A videocomputerized tracking system was used to record behaviors of animals for a 5-min session. Real-time PCR and Western Blotting were used to examine gene expression in mouse hippocampus. RESULTS Our results demonstrated that CUMS induced depression-like behaviors, which were reversed by swimming exercise. Moreover, the behavioral changes induced by CUMS and exercise were correlated with hippocampal plasticity-related proteins expression of growth-associated protein-43 (GAP-43) and synaptophysin (SYN). The molecular mechanisms regulating this plasticity may include SIRT1/mircoRNA, CREB/BDNF, and AKT/GSK-3β signaling pathways. LIMITATIONS We did not establish a correlation between depression-like behaviors induced by chronic stress and epigenetic changes of hippocampal plasticity, either a causal molecular signaling underling this plasticity. CONCLUSIONS Our findings have identified swimming exercise effects on CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins, which provide a framework for developing new strategies to treat stress-induced depression.
Collapse
|
15
|
Zhao H, Liang B, Yu L, Xu Y. Anti-depressant-like effects of Jieyu chufan capsules in a mouse model of unpredictable chronic mild stress. Exp Ther Med 2017; 14:1086-1094. [PMID: 28810562 PMCID: PMC5525591 DOI: 10.3892/etm.2017.4601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Jieyu chufan (JYCF) is a well-known Chinese traditional medicine used for depression; however, the molecular mechanism underlying its anti-depressant action has remained elusive. In the present study, the anti-depressant effects of JYCF and the potential mechanisms were investigated in a mouse model. Five groups of 12 C57BL/6 mice each were used in the study, including a normal control group (NC group), a model control group (MC group) and three groups, which received different doses of JYCF (1.25, 2.5 and 5 g/kg) orally for 21 days (JYCF groups). The MC group and the three JYCF groups were subjected to 3 weeks of unpredictable chronic mild stress (UCMS) to induce depression-like behavior. All groups were subjected to a sucrose consumption test along with a forced swimming test to confirm depression-like behavior, an open-field test and an elevated plus maze test to confirm anxiety-like behavior, and a Morris water maze test to evaluate spatial learning and memory. In addition, synaptic density in the hippocampus was evaluated and western blot and immunostaining were used to analyze hippocampal expression of postsynaptic density protein-95 (PSD95), synaptophysin (Syn), cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), Akt and glycogen synthase kinase (GSK)-3β as well as their phosphorylated (p) versions. The results showed that JYCF (2.5 and 5 g/kg) alleviated depressive-like behaviors and increased synaptic density in UCMS mice. Moreover, JYCF upregulated the expression of PSD95, Syn and BDNF and increased phosphorylated Akt, CREB and GSK-3β in the hippocampus. These results suggested that JYCF exerts an anti-depressant-like activity in UCMS-induced mice, which is likely to be mediated by reversing the stress-induced disruption of BDNF and GSK-3β activity.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| | - Bingyu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
16
|
Bai Q, Song D, Gu L, Verkhratsky A, Peng L. Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine. Psychopharmacology (Berl) 2017; 234:1069-1077. [PMID: 28233032 DOI: 10.1007/s00213-017-4547-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. RESULTS At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. CONCLUSIONS Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.
Collapse
Affiliation(s)
- Qiufang Bai
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Li Gu
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China.
| |
Collapse
|
17
|
Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, Wang Y, Chen ZY. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry 2016; 6:e892. [PMID: 27622936 PMCID: PMC5048193 DOI: 10.1038/tp.2016.122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant.
Collapse
Affiliation(s)
- W-J Zhou
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - N Xu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Second Hospital of Shandong University, Jinan, Shandong, China
| | - L Kong
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - S-C Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - X-F Xu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - M-Z Jia
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Y Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Z-Y Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, CAS Center for Excellence in Brain Science and Intelligence Technology, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test. Neural Plast 2016; 2016:5098591. [PMID: 27478647 PMCID: PMC4949347 DOI: 10.1155/2016/5098591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023] Open
Abstract
While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.
Collapse
|
19
|
Qin C, Li S, Yan Q, Wang X, Chen Y, Zhou P, Lu M, Zhu F. Elevation of Ser9 phosphorylation of GSK3β is required for HERV-W env-mediated BDNF signaling in human U251 cells. Neurosci Lett 2016; 627:84-91. [PMID: 27235578 DOI: 10.1016/j.neulet.2016.05.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023]
Abstract
Human endogenous retrovirus W family (HERV-W) envelope (env) is known to be associated with neurological and psychiatric disorders, such as multiple sclerosis and schizophrenia. Previous studies showed that overexpression of HERV-W env could induce brain-derived neurotrophic factor (BDNF) gene expression. In human and rat cells, BDNF-mediated signal transduction might be modulated by glycogen synthase kinase 3β (GSK3β). Both BDNF and GSK3β are schizophrenia-related genes. In this paper, we investigated whether GSK3β was involved in the HERV-W env-induced expression of BDNF. We found that HERV-W env increased phosphorylation of GSK3β at Ser9 (p-GSK3β (Ser9)) and the ratio of p-GSK3β (Ser9) to total GSK3β (p<0.05) in U251 cells. Overexpression of HERV-W env led to a 36.2% reduction in GSK3β activity compared to control (p<0.05). The levels of β-catenin, cyclin D1 and TSC2 mRNAs were upregulated (p<0.05). These data suggested that overexpression of HERV-W env might activate the GSK3β signaling pathway in U251 cells. Further, knockdown of GSK3β reduced the expression of total GSK3β, p-GSK3β (Ser9), and the ratio of p-GSK3β (Ser9) to total GSK3β by 28.6%, 50.4%, and 30.2%, respectively (p<0.05). Levels of β-catenin, cyclin D1 and TSC2 mRNAs were also reduced (p<0.05). Interestingly, GSK3β activity increased (p<0.05). Knockdown of GSK3β also decreased mRNA and protein expression of BDNF by 49.9% and 48.5% respectively (p<0.05). These results indicated that phosphorylation of GSK3β at Ser9 might be involved in HERV-W env-induced BDNF expression, and will hopefully improve our understanding of the role of HERV-W env in neurological and psychiatric diseases (schizophrenia, etc).
Collapse
Affiliation(s)
- Chengchen Qin
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Shan Li
- Department of Biochemistry, College of Basic Medicine, Hubei University of Medicine, Hubei 442000, PR China
| | - Qiujin Yan
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Xiuling Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Yatang Chen
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Mengxin Lu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, PR China; Hubei Province Key Laboratory of Allergy and Immunology, PR China.
| |
Collapse
|
20
|
Li X, Liu Z, Li W, Sun N, Xu Y, Xie Z, Zhang K. PTPRR regulates ERK dephosphorylation in depression mice model. J Affect Disord 2016; 193:233-41. [PMID: 26773914 DOI: 10.1016/j.jad.2015.12.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/16/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Protein tyrosine phosphatase receptor type R (PTPRR), which regulates the dephosphorylation of the downstream mitogen-activated protein kinase (MAPK) steering cell proliferation, apoptosis and synaptic plasticity, may be involved in the pathogenesis of depression. METHODS Lentiviral vectors were utilized to express the PTPRR constitutively in the hippocampal dentate gyrus (DG) of mice before or after chronic mild stress. Behavior tests, MAPK levels, neuronal apoptosis and cell proliferation in the hippocampal DG were examined. RESULTS Without chronic mild stress (CMS), the lenti-shPTPRR mice showed shorter immobility time in the tail suspension test than controls, while the lenti-PTPRR mice exhibited significantly less sucrose intake and increased immobility time in the forced swim tests than control mice, indicating increased prodepressant-like effects of PTPRR in lenti-PTPRR mice. Similarly, under CMS, the lenti-shPTPRR mice had more sucrose intake, shorter immobility time in the forced swim test and tail suspension test compared to controls, and lenti-PTPRR mice had less sucrose intake and longer immobility time in forced swim test and tail suspension test, exhibiting increased susceptibility to depressive-like behaviors and greater sensitivity to CMS. Besides, the Phospho-ERK1/2(p-ERK) had significant lower phosphorylation in lenti-PTPRR group and higher expression in lenti-shPTPRR group, both without CMS. The Lenti-PTPRR mice exposed to CMS had significant lower p-ERK, and the lenti-shPTPRR mice exposed to CMS had significant higher p-ERK and lower p-P38. Moreover, there were more cells underwent apoptosis in lenti-PTPRR group ,with and without CMS. In cell proliferation, less BrdU positive cells were observed in lenti-PTPRR mice than controls. CONCLUSION The site-specific lentiviral injections resulted in the PTPRR over-expression in the hippocampal DG and subsequent increased ERK dephosphorylation, which leads to more neuron apoptosis, less cell proliferation, depression onset and increased sensitivity to CMS. PTPRR/ERK pathway could be potential target for depression therapy.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhongchen Xie
- Animal center of Tsinghua university, Beijing, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
21
|
Investigations on GSK-3β/NF-kB signaling in stress and stress adaptive behavior in electric foot shock subjected mice. Behav Brain Res 2016; 302:1-10. [PMID: 26778780 DOI: 10.1016/j.bbr.2016.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/03/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
Abstract
The present study was designed to explore the role of GSK-3β and NF-kB signaling in electric foot shock-induced stress and stress adaptation. Mice were subjected to foot shocks of 0.5mA intensity and 1s duration of 1h to produce acute stress. Animals were exposed to the same stressor for 5 days to induce stress adaptation. The behavioral alterations were assessed using the actophotometer, hole board, open field and social interaction tests. The serum corticosterone levels were assessed as a marker of the HPA axis. The levels of total GSK-3β, p-GSK-3β-S9 and p-NF-kB were determined in the hippocampus, frontal cortex and amygdala. Acute electric foot shock stress produced behavioral and biochemical changes; decreased the levels of p-GSK-3β-S9, produced no change in total GSK-3β levels and increased p-NF-kB levels in the brain. However, repeated exposure of foot shock stress restored the behavioral and biochemical changes along with normalization of p-GSK-3β-S9 and p-NF-kB levels. Administration of AR-A01, a selective GSK-3β inhibitor, or diethyldithiocarbamic acid (DDTC), a selective NF-kB inhibitor, diminished acute stress-induced behavioral and biochemical changes. Furthermore, AR-A014418 normalized acute stress-induced alterations in p-GSK-3β-S9 and p-NF-kB levels, however, DDTC selectively restored NF-kB levels without any change in p-GSK-3β-S9 levels. It probably suggests that NF-kB is a downstream mediator of the GSK-3 signaling cascade. It may conclude that acute stress associated decrease in p-GSK-3β-S9 and increase in p-NF-kB levels in the brain contribute in the development of behavioral and biochemical alterations and normalization of GSK-3β/NF-kB signaling may contribute in stress adaptive behavior in response to repeated electric foot shock-subjected mice.
Collapse
|
22
|
Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast 2015; 2016:2592319. [PMID: 26881097 PMCID: PMC4736009 DOI: 10.1155/2016/2592319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 01/19/2023] Open
Abstract
Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). The ex vivo methodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.
Collapse
|
23
|
Luo YW, Xu Y, Cao WY, Zhong XL, Duan J, Wang XQ, Hu ZL, Li F, Zhang JY, Zhou M, Dai RP, Li CQ. Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress. Neuropharmacology 2015; 89:318-24. [PMID: 25446675 DOI: 10.1016/j.neuropharm.2014.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
Abstract
Depression is a common psychiatric disorder associated with chronic stress. Insulin-like growth factor 2 (IGF2) is a growth factor that serves important roles in the brain during development and at adulthood. Here, the role of IGF2 expression in the hippocampus was investigated in a rat model of depression. A chronic restraint stress (CRS) model of depression was established in rats, exhibiting depression-like behavior as assessed with the sucrose preference test (SPT) and forced swimming test (FST), and with evaluation of the corticosterone levels. Hippocampal IGF2 levels were significantly lower in rats suffering CRS than in controls, as were levels of pERK1/2 and GluR1. Lentivirus-mediated hippocampal IGF2 overexpression alleviated depressive behavior in restrained rats, elevated the levels of pERK1/2 and GluR1 proteins, but it did not affect the expression of pGSK3β, GluR2, NMDAR1, and NMDAR2A. These results suggest the chronic restraint stress induces depressive behavior, which may be mediated by ERK-dependent IGF2 signaling, pointing to an antidepressant role for this molecular pathway.
Collapse
Affiliation(s)
- Yan-Wei Luo
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jung YH, Hong SI, Ma SX, Hwang JY, Kim JS, Lee JH, Seo JY, Lee SY, Jang CG. Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomol Ther (Seoul) 2014; 22:453-9. [PMID: 25414777 PMCID: PMC4201223 DOI: 10.4062/biomolther.2014.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 11/05/2022] Open
Abstract
Chronic mild stress (CMS) has been reported to induce an anhedonic-like state in mice that resembles some of the symptoms of human depression. In the present study, we used a chronic mild stress animal model of depression and anxiety to examine the responses of two strains of mice that have different behavioral responsiveness. An outbred ICR and an inbred C57BL/6 strain of mice were selected because they are widely used strains in behavioral tests. The results showed that the inbred C57BL/6 and outbred ICR mice were similarly responsive to CMS treatment in sucrose intake test (SIT) and open field test (OFT). However, the two strains showed quite different responses in forced swimming test (FST) and novelty-suppressed feeding (NSF) test after 3 weeks of CMS treatment. Only C57BL/6 mice displayed the depression- and anxiety-like behavioral effects in response to CMS treatment in FST and NSF test. Our results suggest that there are differences in responsiveness to CMS according to the different types of strain of mice and behavioral tests. Therefore, these results provide useful information for the selection of appropriate behavioral methods to test depression- and anxiety-like behaviors using CMS in ICR and C57BL/6 mice.
Collapse
Affiliation(s)
- Yang-Hee Jung
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ji-Young Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun-Sup Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ju-Hyun Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
25
|
Ma G, Song T, Chen M, Fu Y, Xu Y, Ma E, Wang W, Du J, Huang M. Hippocampal and thalamic neuronal metabolism in a putative rat model of schizophrenia. Neural Regen Res 2014; 8:2415-23. [PMID: 25206551 PMCID: PMC4146111 DOI: 10.3969/j.issn.1673-5374.2013.26.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022] Open
Abstract
The transcription factor early growth response protein 3 (EGR3) is involved in schizophrenia. We developed a putative rat model of schizophrenia by transfecting lentiviral particles carrying the Egr3 gene into bilateral hippocampal dentate gyrus. We assessed spatial working memory using the Morris water maze test, and neuronal metabolite levels in bilateral hippocampus and thalamus were determined by 3.0 T proton magnetic resonance spectroscopy. Choline content was significantly greater in the hippocampus after transfection, while N-acetylaspartate and the ratio of N-acetylaspartate to creatine/phosphocreatine in the thalamus were lower than in controls. This study is the first to report evaluation of brain metabolites using 3.0 T proton magnetic resonance spectroscopy in rats transfected with Egr3, and reveals metabolic abnormalities in the hippocampus and thalamus in this putative model of schizophrenia.
Collapse
Affiliation(s)
- Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tianbin Song
- Department of Radiology, Beijing Shunyi Hospital, Beijing 101300, China
| | - Min Chen
- Department of Radiology, Beijing Hospital Affiliated to the Ministry of Public Health, Beijing 100730, China
| | - Yuan Fu
- Department of Radiology, Beijing Hospital Affiliated to the Ministry of Public Health, Beijing 100730, China
| | - Yong Xu
- Department of Mental Health, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ensen Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA 92103-8226, USA
| | - Mingxiong Huang
- Radiology Imaging Laboratory, Department of Radiology, University of California, San Diego, CA 92121, USA
| |
Collapse
|
26
|
Grizzell JA, Echeverria V. New Insights into the Mechanisms of Action of Cotinine and its Distinctive Effects from Nicotine. Neurochem Res 2014; 40:2032-46. [PMID: 24970109 DOI: 10.1007/s11064-014-1359-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Tobacco consumption is far higher among a number of psychiatric and neurological diseases, supporting the notion that some component(s) of tobacco may underlie the oft-reported reduction in associated symptoms during tobacco use. Popular dogma holds that this component is nicotine. However, increasing evidence support theories that cotinine, the main metabolite of nicotine, may underlie at least some of nicotine's actions in the nervous system, apart from its adverse cardiovascular and habit forming effects. Though similarities exist, disparate and even antagonizing actions between cotinine and nicotine have been described both in terms of behavior and physiology, underscoring the need to further characterize this potentially therapeutic compound. Cotinine has been shown to be psychoactive in humans and animals, facilitating memory, cognition, executive function, and emotional responding. Furthermore, recent research shows that cotinine acts as an antidepressant and reduces cognitive-impairment associated with disease and stress-induced dysfunction. Despite these promising findings, continued focus on this potentially safe alternative to tobacco and nicotine use is lacking. Here, we review the effects of cotinine, including comparisons with nicotine, and discuss potential mechanisms of cotinine-specific actions in the central nervous system which are, to date, still being elucidated.
Collapse
Affiliation(s)
- J Alex Grizzell
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33611, USA.,Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA
| | - Valentina Echeverria
- Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA. .,Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, 33647, USA.
| |
Collapse
|
27
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
28
|
Ginseng Total Saponins Reverse Corticosterone-Induced Changes in Depression-Like Behavior and Hippocampal Plasticity-Related Proteins by Interfering with GSK-3 β -CREB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:506735. [PMID: 24523822 PMCID: PMC3913067 DOI: 10.1155/2014/506735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/30/2013] [Accepted: 12/05/2013] [Indexed: 12/31/2022]
Abstract
This study aimed to explore the antidepressant mechanisms of ginseng total saponins (GTS) in the corticosterone-induced mouse depression model. In Experiment 1, GTS (50, 25, and 12.5 mg kg(-1) d(-1), intragastrically) were given for 3 weeks. In Experiment 2, the same doses of GTS were administrated after each corticosterone (20 mg kg(-1) d(-1), subcutaneously) injection for 22 days. In both experiments, mice underwent a forced swimming test and a tail suspension test on day 20 and day 21, respectively, and were sacrificed on day 22. Results of Experiment 1 revealed that GTS (50 and 25 mg kg(-1) d(-1)) exhibited antidepressant activity and not statistically altered hippocampal protein levels of brain-derived neurotrophic factor (BDNF) and neurofilament light chain (NF-L). Results of Experiment 2 showed that GTS (50 and 25 mg kg(-1) d(-1)) ameliorated depression-like behavior without normalizing hypercortisolism. The GTS treatments reversed the corticosterone-induced changes in mRNA levels of BDNF and NF-L, and protein levels of BDNF NF-L, phosphor-cAMP response element-binding protein (Ser133), and phosphor-glycogen synthase kinase-3 β (Ser9) in the hippocampus. These findings imply that the effect of GTS on corticosterone-induced depression-like behavior may be mediated partly through interfering with hippocampal GSK-3 β -CREB signaling pathway and reversing decrease of some plasticity-related proteins.
Collapse
|