1
|
Kroll JL, Ritz T. Asthma, the central nervous system, and neurocognition: Current findings, potential mechanisms, and treatment implications. Neurosci Biobehav Rev 2023; 146:105063. [PMID: 36708797 DOI: 10.1016/j.neubiorev.2023.105063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Accumulating behavioral evidence suggests that asthma is associated with cognitive deficits. A number of studies have identified potential biological contributions to cognition in asthma; however, mechanistic pathways of central nervous system (CNS) involvement in asthma are yet to be established. We therefore conducted a literature review to identify studies examining potential CNS contributions to cognition in asthma. In this review, we discuss our general understanding of the CNS in asthma in the context of cognitive performance and outline a working model of mechanistic pathways linking the proposed neural influences of asthma pathology with cognition. To this extent, we incorporate neural, behavioral, psychological, social and environmental factors. Finally, we underscore the clinical significance of the CNS and neurocognitive sequelae in asthma, highlighting potential opportunities for routine monitoring, therapeutic intervention, and recommend key areas for future research.
Collapse
Affiliation(s)
- Juliet L Kroll
- Department of Psychology, Southern Methodist University, Dallas, TX, USA; Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
2
|
Miskowiak KW, Yalin N, Seeberg I, Burdick KE, Balanzá‐Martínez V, Bonnin CDM, Bowie CR, Carvalho AF, Dols A, Douglas K, Gallagher P, Hasler G, Kessing LV, Lafer B, Lewandowski KE, López‐Jaramillo C, Martinez‐Aran A, McIntyre RS, Porter RJ, Purdon SE, Schaffer A, Sumiyoshi T, Torres IJ, Van Rheenen TE, Yatham LN, Young AH, Vieta E, Stokes PRA. Can magnetic resonance imaging enhance the assessment of potential new treatments for cognitive impairment in mood disorders? A systematic review and position paper by the International Society for Bipolar Disorders Targeting Cognition Task Force. Bipolar Disord 2022; 24:615-636. [PMID: 35950925 PMCID: PMC9826389 DOI: 10.1111/bdi.13247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Developing treatments for cognitive impairment is key to improving the functioning of people with mood disorders. Neuroimaging may assist in identifying brain-based efficacy markers. This systematic review and position paper by the International Society for Bipolar Disorders Targeting Cognition Task Force examines the evidence from neuroimaging studies of pro-cognitive interventions. METHODS We included magnetic resonance imaging (MRI) studies of candidate interventions in people with mood disorders or healthy individuals, following the procedures of the Preferred Reporting Items for Systematic reviews and Meta-Analysis 2020 statement. Searches were conducted on PubMed/MEDLINE, PsycInfo, EMBASE, Cochrane Library, and Clinicaltrials.gov from inception to 30th April 2021. Two independent authors reviewed the studies using the National Heart, Lung, Blood Institutes of Health Quality Assessment Tool for Controlled Intervention Studies and the quality of neuroimaging methodology assessment checklist. RESULTS We identified 26 studies (N = 702). Six investigated cognitive remediation or pharmacological treatments in mood disorders (N = 190). In healthy individuals, 14 studies investigated pharmacological interventions (N = 319), 2 cognitive training (N = 73) and 4 neuromodulatory treatments (N = 120). Methodologies were mostly rated as 'fair'. 77% of studies investigated effects with task-based fMRI. Findings varied but most consistently involved treatment-associated cognitive control network (CCN) activity increases with cognitive improvements, or CCN activity decreases with no cognitive change, and increased functional connectivity. In mood disorders, treatment-related default mode network suppression occurred. CONCLUSIONS Modulation of CCN and DMN activity is a putative efficacy biomarker. Methodological recommendations are to pre-declare intended analyses and use task-based fMRI, paradigms probing the CCN, longitudinal assessments, mock scanning, and out-of-scanner tests.
Collapse
Affiliation(s)
- Kamilla W. Miskowiak
- Copenhagen Affective disorder Research Centre (CADIC), Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
| | - Nefize Yalin
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Ida Seeberg
- Copenhagen Affective disorder Research Centre (CADIC), Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark
| | - Katherine E. Burdick
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA,Department of PsychiatryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Vicent Balanzá‐Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of MedicineUniversity of Valencia, CIBERSAMValenciaSpain
| | - Caterina del Mar Bonnin
- Clinical Institute of Neuroscience, Hospital ClinicUniversity of Barcelona, IDIBAPS, CIBERSAMBarcelonaSpain
| | | | - Andre F. Carvalho
- IMPACT Strategic Research Centre (Innovation in Mental and Physical Health and Clinical Treatment)Deakin UniversityGeelongVictoriaAustralia
| | - Annemieke Dols
- Department of Old Age Psychiatry, GGZ in Geest, Amsterdam UMC, location VUmc, Amsterdam NeuroscienceAmsterdam Public Health research instituteAmsterdamThe Netherlands
| | - Katie Douglas
- Department of Psychological MedicineUniversity of OtagoChristchurchNew Zealand
| | - Peter Gallagher
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Gregor Hasler
- Psychiatry Research UnitUniversity of FribourgFribourgSwitzerland
| | - Lars V. Kessing
- Copenhagen Affective disorder Research Centre (CADIC), Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Beny Lafer
- Bipolar Disorder Research Program, Institute of Psychiatry, Hospital das Clinicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Kathryn E. Lewandowski
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA,McLean HospitalSchizophrenia and Bipolar Disorder ProgramBelmontMassachusettsUSA
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of PsychiatryUniversidad de AntioquiaMedellínColombia
| | - Anabel Martinez‐Aran
- Clinical Institute of Neuroscience, Hospital ClinicUniversity of Barcelona, IDIBAPS, CIBERSAMBarcelonaSpain
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit, Brain and Cognition Discovery FoundationUniversity of TorontoTorontoCanada
| | - Richard J. Porter
- Department of Psychological MedicineUniversity of OtagoChristchurchNew Zealand
| | - Scot E. Purdon
- Department of PsychiatryUniversity of AlbertaEdmontonCanada
| | - Ayal Schaffer
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Ivan J. Torres
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneCarltonAustralia,Centre for Mental Health, Faculty of Health, Arts and DesignSwinburne UniversityHawthornAustralia
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Allan H. Young
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital ClinicUniversity of Barcelona, IDIBAPS, CIBERSAMBarcelonaSpain
| | - Paul R. A. Stokes
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
3
|
Jaszczyk A, Juszczak GR. Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 2021; 126:113-145. [PMID: 33727030 DOI: 10.1016/j.neubiorev.2021.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
The review integrates different experimental approaches including biochemistry, c-Fos expression, microdialysis (glutamate, GABA, noradrenaline and serotonin), electrophysiology and fMRI to better understand the effect of elevated level of glucocorticoids on the brain activity and metabolism. The available data indicate that glucocorticoids alter the dynamics of neuronal activity leading to context-specific changes including both excitation and inhibition and these effects are expected to support the task-related responses. Glucocorticoids also lead to diversification of available sources of energy due to elevated levels of glucose, lactate, pyruvate, mannose and hydroxybutyrate (ketone bodies), which can be used to fuel brain, and facilitate storage and utilization of brain carbohydrate reserves formed by glycogen. However, the mismatch between carbohydrate supply and utilization that is most likely to occur in situations not requiring energy-consuming activities lead to metabolic stress due to elevated brain levels of glucose. Excessive doses of glucocorticoids also impair the production of energy (ATP) and mitochondrial oxidation. Therefore, glucocorticoids have both adaptive and maladaptive effects consistently with the concept of allostatic load and overload.
Collapse
Affiliation(s)
- Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland.
| |
Collapse
|
4
|
Harrewijn A, Vidal-Ribas P, Clore-Gronenborn K, Jackson SM, Pisano S, Pine DS, Stringaris A. Associations between brain activity and endogenous and exogenous cortisol - A systematic review. Psychoneuroendocrinology 2020; 120:104775. [PMID: 32592873 PMCID: PMC7502528 DOI: 10.1016/j.psyneuen.2020.104775] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
To arrive at a coherent understanding of the relation between glucocorticoids and the human brain, we systematically reviewed the literature for studies examining the associations between endogenous or exogenous cortisol and human brain function. Higher levels of endogenous cortisol during psychological stress were related to increased activity in the middle temporal gyrus and perigenual anterior cingulate cortex (ACC), decreased activity in the ventromedial prefrontal cortex, and altered function (i.e., mixed findings, increased or decreased) in the amygdala, hippocampus and inferior frontal gyrus. Moreover, endogenous cortisol response to psychological stress was related to increased activity in the inferior temporal gyrus and altered function in the amygdala during emotional tasks that followed psychological stress. Exogenous cortisol administration was related to increased activity in the postcentral gyrus, superior frontal gyrus and ACC, and altered function in the amygdala and hippocampus during conditioning, emotional and reward-processing tasks after cortisol administration. These findings were in line with those from animal studies on amygdala activity during and after stress.
Collapse
Affiliation(s)
- Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Pablo Vidal-Ribas
- Social and Behavioral Sciences Branch, National Institute of Child Health and Human Development, 6710 Rockledge Drive, Bethesda, MD, 20892, USA
| | - Katharina Clore-Gronenborn
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9501 Euclid Ave. EC10, Cleveland, OH, 44195, USA; Genetic Epidemiology Research Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sarah M Jackson
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Simone Pisano
- Department of Neuroscience, AORN Santobono-Pausilipon, Via Mario Fiore 6, Naples, Italy; Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples, Italy
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Argyris Stringaris
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Corticosteroids and Cognition: A Meta-Analysis. Neuropsychol Rev 2019; 29:288-312. [DOI: 10.1007/s11065-019-09405-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
|
7
|
Abstract
This review examines the putative link between glucocorticoid and hippocampal abnormalities in posttraumatic stress disorder (PTSD). Increased glucocorticoid receptor (GR) sensitivity in PTSD may permit enhanced negative feedback inhibition of cortisol at the pituitary, hypothalamus, or other brain regions comprising the hypothalamic-pituitary-adrenal (HPA) axis and would be expected to affect other physiological systems that are regulated by glucocorticoids. Molecular and transcriptional studies of cortisol are consistent with the hypothesis that cortisol actions may be amplified in PTSD as a result of enhanced GR sensitivity in monocytes and some brain regions, although cortisol levels themselves are unchanged and oftentimes lower than normal. Concurrently, magnetic resonance imaging studies have demonstrated that individuals with PTSD have smaller hippocampal volume than individuals without PTSD. Initial hypotheses regarding the mechanism underlying hippocampal alterations in PTSD focused on elevated glucocorticoid levels in combination with extreme stress as the primary cause, but this explanation has not been well supported in human studies. Lack of data from neuroimaging studies preclude a firm link between PTSD onset and hippocampal volume changes. Rather, the available evidence is consistent with the possibility that smaller hippocampal volume (like reduced cortisol levels and enhanced GR sensitivity) may be a vulnerability factor for developing the disorder; limitations of hippocampal-based models of PTSD are described. We further review neuroimaging studies examining hippocampal structure and function following manipulation of glucocorticoid levels and also examining changes in the hippocampus in relationship to other brain regions. Evidence that the GR may be an important therapeutic target for the treatment of PTSD, especially for functions subserved by the hippocampus, is discussed. Implications of the current review for future research are described, with an emphasis on the need to integrate findings of glucocorticoid abnormalities with functional-imaging paradigms to formulate a comprehensive model of HPA-axis functioning in PTSD.
Collapse
|
8
|
A randomized, double-blind, placebo-controlled trial of lamotrigine for prescription corticosteroid effects on the human hippocampus. Eur Neuropsychopharmacol 2019; 29:376-383. [PMID: 30612854 PMCID: PMC9167568 DOI: 10.1016/j.euroneuro.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
In animals, stress and corticosteroid excess are associated with decreases in memory performance and hippocampal volume that may be prevented with agents that decrease glutamate release. Humans also demonstrate changes in memory and hippocampus with corticosteroids. In this report the effects of glutamate-release inhibitor lamotrigine on hippocampal structure and memory were examined in people receiving medically needed prescription corticosteroid therapy. A total of 54 outpatient adults (n = 28 women) receiving chronic (≥ 6 months) oral corticosteroid therapy were randomized to lamotrigine or placebo for 48 weeks. Declarative memory was assessed using the Rey Auditory Verbal Learning Test (RAVLT); structural magnetic resonance imaging (MRI) as well as single-voxel proton MR spectroscopy (1HMRS) focused on hippocampus were obtained at baseline and week 48. Utilizing a mixed-model approach, structural and biochemical data were examined by separate ANOVAs, and memory was assessed with a multi-level longitudinal model. RAVLT total scores demonstrated significantly better declarative memory performance with lamotrigine than placebo (p = 0.047). Hippocampal subfield volumes were not significantly different between the treatment groups. In summary, lamotrigine was associated with less decline in declarative memory performance than placebo in corticosteroid-treated patients. Findings suggest that, in humans as well as in animal models, glutamate release inhibitors may attenuate some of the effects on the human memory associated with corticosteroids.
Collapse
|
9
|
McKinnon MC, Boyd JE, Frewen PA, Lanius UF, Jetly R, Richardson JD, Lanius RA. A review of the relation between dissociation, memory, executive functioning and social cognition in military members and civilians with neuropsychiatric conditions. Neuropsychologia 2016; 90:210-34. [DOI: 10.1016/j.neuropsychologia.2016.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/16/2016] [Accepted: 07/16/2016] [Indexed: 01/01/2023]
|
10
|
Hippocampal volume in healthy controls given 3-day stress doses of hydrocortisone. Neuropsychopharmacology 2015; 40:1216-21. [PMID: 25409592 PMCID: PMC4367466 DOI: 10.1038/npp.2014.307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/08/2022]
Abstract
In animal models, corticosterone elevations are associated with hippocampal changes that can be prevented with phenytoin. In humans, Cushing's syndrome and long-term prescription corticosteroid use are associated with a reduction in the hippocampal volume. However, little is known about the effects of short-term corticosteroid administration on the hippocampus. The current report examines changes in the hippocampal volume during a brief hydrocortisone exposure and whether volumetric changes can be blocked by phenytoin. A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in healthy adults (n=17). Participants received hydrocortisone (160 mg/day)/placebo, phenytoin/placebo, both medications together, or placebo/placebo, with 21-day washouts between the conditions. Structural MRI scans and cortisol levels were obtained following each medication condition. No significant difference in the total brain volume was observed with hydrocortisone. However, hydrocortisone was associated with a significant 1.69% reduction in the total hippocampal volume compared with placebo. Phenytoin blocked the volume reduction associated with hydrocortisone. Reduction in hippocampal volume correlated with the change in cortisol levels (r=-0.58, P=0.03). To our knowledge, this is the first report of structural hippocampal changes with brief corticosteroid exposure. The correlation between the change in hippocampal volume and cortisol level suggests that the volume changes are related to cortisol elevation. Although the findings from this pilot study need replication, they suggest that the reductions in hippocampal volume occur even during brief exposure to corticosteroids, and that hippocampal changes can, as in animal models, be blocked by phenytoin. The results may have implications both for understanding the response of the hippocampus to stress as well as for patients receiving prescription corticosteroids.
Collapse
|