1
|
Sudimac S, Kühn S. Can a nature walk change your brain? Investigating hippocampal brain plasticity after one hour in a forest. ENVIRONMENTAL RESEARCH 2024; 262:119813. [PMID: 39155041 DOI: 10.1016/j.envres.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
In cities, the incidence of mental disorders is higher, while visits to nature have been reported to benefit mental health and brain function. However, there is a lack of knowledge about how exposure to natural and urban environments affects brain structure. To explore the causal relationship between exposure to these environments and the hippocampal formation, 60 participants were sent on a one hour walk in either a natural (forest) or an urban environment (busy street), and high-resolution hippocampal imaging was performed before and after the walks. We found that the participants who walked in the forest had an increase in subiculum volume, a hippocampal subfield involved in stress response inhibition, while no change was observed after the urban walk. However, this result did not withstand Bonferroni correction for multiple comparisons. Furthermore, the increase in subiculum volume after the forest walk was associated with a decrease in self-reported rumination. These results indicate that visits to nature can lead to observable alterations in brain structure, with potential benefits for mental health and implications for public health and urban planning policies.
Collapse
Affiliation(s)
- Sonja Sudimac
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany.
| | - Simone Kühn
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany; University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany and London, UK, Lentzeallee 94, 14195, Berlin, Germany
| |
Collapse
|
2
|
Cong E, Zhong Y, Wu M, Chen H, Cai Y, Ling Z, Wang Y, Wen H, Hu Y, Zhang H, Li Y, Liu X, Zhong P, Lai W, Xu Y, Wu Y. Hippocampal subfield morphology from first episodes of bipolar disorder type II and major depressive disorder in a drug naïve Chinese cohort. Front Psychiatry 2024; 15:1438144. [PMID: 39119073 PMCID: PMC11306163 DOI: 10.3389/fpsyt.2024.1438144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Symptoms during the onset of major depressive disorder [MDD] and bipolar disorder type II [BD-II] are similar. The difference of hippocampus subregion could be a biological marker to distinguish MDD from BD-II. Methods We recruited 61 drug-naïve patients with a first-episode MDD and BD-II episode and 30 healthy controls (HC) to participate in a magnetic resonance imaging [MRI] study. We built a general linear model (one-way analysis of covariance) with 22 hippocampal subfields and two total hippocampal volumes as dependent variables, and the diagnosis of MDD, BD-II, and HC as independent variables. We performed pair-wise comparisons of hippocampal subfield volumes between MDD and HC, BD-II and MDD, BD-II and HC with post hoc for primary analysis. Results We identified three regions that differed significantly in size between patients and controls. The left hippocampal fissure, the hippocampal-amygdaloid transition area (HATA), and the right subiculum body were all significantly larger in patients with MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal volume increased significantly, especially on the left side comparing to HC. However, we found differences between MDD and BD-II were not statistically significant. The volume of the left HATA and right subiculum body in BD-II was larger. Conclusions The sample size of this study is relatively small, as it is a cross-sectional comparative study. In both MDD and BD-II groups, the volume of more left subregions appeared to increase. The left subregions were severely injured in the development of depressive disorder.
Collapse
Affiliation(s)
- Enzhao Cong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyan Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyue Wu
- X-LANCE Lab, Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai, China
| | - Haiying Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ling
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingfang Zhong
- Affective Disorder Department, Lincang Psychiatric Hospital, Lincang, China
| | - Weijie Lai
- Psychiatric Department, Zhangzhou Fukang Hospital, Zhangzhou, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhang T, Zhao L, Chen C, Yang C, Zhang H, Su W, Cao J, Shi Q, Tian L. Structural and Functional Alterations of Hippocampal Subfields in Patients With Adult-Onset Primary Hypothyroidism. J Clin Endocrinol Metab 2024; 109:1707-1717. [PMID: 38324411 DOI: 10.1210/clinem/dgae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
CONTEXT Hypothyroidism is often associated with cognitive and emotional dysregulation; however, the underlying neuropathological mechanisms remain elusive. OBJECTIVE The study aimed to characterize abnormal alterations in hippocampal subfield volumes and functional connectivity (FC) in patients with subclinical hypothyroidism (SCH) and overt hypothyroidism (OH). METHODS This cross-sectional observational study comprised 47 and 40 patients with newly diagnosed adult-onset primary SCH and OH, respectively, and 53 well-matched healthy controls (HCs). The demographics, clinical variables, and neuropsychological scale scores were collected. Next, the hippocampal subfield volumes and seed-based FC were compared between the groups. Finally, correlation analyses were performed. RESULTS SCH and OH exhibited significant alterations in cognitive and emotional scale scores. Specifically, the volumes of the right granule cell molecular layer of the dentate gyrus (GC-ML-DG) head, cornu ammonis (CA) 4, and CA3 head were reduced in the SCH and OH groups. Moreover, the volumes of the right molecular layer head, CA1 body, left GC-ML-DG head, and CA4 head were lower in SCH. In addition, the hippocampal subfield volumes decreased more significantly in SCH than OH. The seed-based FC decreased in SCH but increased in OH compared with HCs. Correlation analyses revealed thyroid hormone was negatively correlated with FC values in hypothyroidism. CONCLUSION Patients with SCH and OH might be at risk of cognitive decline, anxiety, or depression, and exhibited alterations in volume and FC in specific hippocampal subfields. Furthermore, the reduction in volume was more pronounced in SCH. This study provides novel insights into the neuropathological mechanisms of brain impairment in hypothyroidism.
Collapse
Affiliation(s)
- Taotao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, 204 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Lianping Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Chen Yang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Huiyan Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Wenxiu Su
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, 204 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Jiancang Cao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Qian Shi
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, 204 Donggang West Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Tang M, Zhang L, Zhou Z, Cao L, Gao Y, Wang Y, Li H, Hu X, Bao W, Liang K, Kuang W, Sweeney JA, Gong Q, Huang X. Divergent effects of sex on hippocampal subfield alterations in drug-naive patients with major depressive disorder. J Affect Disord 2024; 354:173-180. [PMID: 38492647 DOI: 10.1016/j.jad.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.
Collapse
Affiliation(s)
- Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
5
|
Monereo-Sánchez J, Jansen JFA, van Boxtel MPJ, Backes WH, Köhler S, Stehouwer CDA, Linden DEJ, Schram MT. Association of hippocampal subfield volumes with prevalence, course and incidence of depressive symptoms: The Maastricht Study. Br J Psychiatry 2024; 224:66-73. [PMID: 37993980 PMCID: PMC10807974 DOI: 10.1192/bjp.2023.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Late-life depression has been associated with volume changes of the hippocampus. However, little is known about its association with specific hippocampal subfields over time. AIMS We investigated whether hippocampal subfield volumes were associated with prevalence, course and incidence of depressive symptoms. METHOD We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1-weighted and fluid-attenuated inversion recovery 3T magnetic resonance images. Depressive symptoms were assessed at baseline and annually over 7 years of follow-up (9-item Patient Health Questionnaire). We used negative binominal, logistic, and Cox regression analyses, corrected for multiple comparisons, and adjusted for demographic, cardiovascular and lifestyle factors. RESULTS A total of n = 4174 participants were included (mean age 60.0 years, s.d. = 8.6, 51.8% female). Larger right hippocampal fissure volume was associated with prevalent depressive symptoms (odds ratio (OR) = 1.26, 95% CI 1.08-1.48). Larger bilateral hippocampal fissure (OR = 1.37-1.40, 95% CI 1.14-1.71), larger right molecular layer (OR = 1.51, 95% CI 1.14-2.00) and smaller right cornu ammonis (CA)3 volumes (OR = 0.61, 95% CI 0.48-0.79) were associated with prevalent depressive symptoms with a chronic course. No associations of hippocampal subfield volumes with incident depressive symptoms were found. Yet, lower left hippocampal amygdala transition area (HATA) volume was associated with incident depressive symptoms with chronic course (hazard ratio = 0.70, 95% CI 0.55-0.89). CONCLUSIONS Differences in hippocampal fissure, molecular layer and CA volumes might co-occur or follow the onset of depressive symptoms, in particular with a chronic course. Smaller HATA was associated with an increased risk of incident (chronic) depression. Our results could capture a biological foundation for the development of chronic depressive symptoms, and stresses the need to discriminate subtypes of depression to unravel its biological underpinnings.
Collapse
Affiliation(s)
- Jennifer Monereo-Sánchez
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; and Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, the Netherlands
| | - Jacobus F. A. Jansen
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; and Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, the Netherlands
| | - Martin P. J. van Boxtel
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - Walter H. Backes
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, the Netherlands; and School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - Sebastian Köhler
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; and Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, the Netherlands
| | - Coen D. A. Stehouwer
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, the Netherlands; and Department of Internal Medicine, Maastricht University Medical Center, the Netherlands
| | - David E. J. Linden
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - Miranda T. Schram
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, the Netherlands; and Maastricht Heart + Vascular Center, Maastricht University Medical Center, the Netherlands
| |
Collapse
|
6
|
Zeng Z, Dong Y, Zou L, Xu D, Luo X, Chu T, Wang J, Ren Q, Liu Q, Li X. GluCEST Imaging and Structural Alterations of the Bilateral Hippocampus in First-Episode and Early-Onset Major Depression Disorder. J Magn Reson Imaging 2023; 58:1431-1440. [PMID: 36808678 DOI: 10.1002/jmri.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Glutamate dysregulation is one of the key pathogenic mechanisms of major depressive disorder (MDD), and glutamate chemical exchange saturation transfer (GluCEST) has been used for glutamate measurement in some brain diseases but rarely in depression. PURPOSE To investigate the GluCEST changes in hippocampus in MDD and the relationship between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional. SUBJECTS Thirty-two MDD patients (34% males; 22.03 ± 7.21 years) and 47 healthy controls (HCs) (43% males; 22.00 ± 3.28 years). FIELD STRENGTH/SEQUENCE 3.0 T; magnetization prepared rapid gradient echo (MPRAGE) for three-dimensional T1-weighted images, two-dimensional turbo spin echo GluCEST, and multivoxel chemical shift imaging (CSI) for proton magnetic resonance spectroscopy (1 H MRS). ASSESSMENT GluCEST data were quantified by magnetization transfer ratio asymmetry (MTRasym ) analysis and assessed by the relative concentration of 1 H MRS-measured glutamate. FreeSurfer was used for hippocampus segmentation. STATISTICAL TESTS The independent sample t test, Mann-Whitney U test, Spearman's correlation, and partial correlation analysis were used. P < 0.05 was considered statistically significant. RESULTS In the left hippocampus, GluCEST values were significantly decreased in MDD (2.00 ± 1.08 [MDD] vs. 2.62 ± 1.41 [HCs]) and showed a significantly positive correlation with Glx/Cr (r = 0.37). GluCEST values were significantly positively correlated with the volumes of CA1 (r = 0.40), subiculum (r = 0.40) in the left hippocampus and CA1 (r = 0.51), molecular_layer_HP (r = 0.50), GC-ML-DG (r = 0.42), CA3 (r = 0.44), CA4 (r = 0.44), hippocampus-amygdala-transition-area (r = 0.46), and the whole hippocampus (r = 0.47) in the right hippocampus. Hamilton Depression Rating Scale scores showed significantly negative correlations with the volumes of the left presubiculum (r = -0.40), left parasubiculum (r = -0.47), and right presubiculum (r = -0.41). DATA CONCLUSION GluCEST can be used to measure glutamate changes and help to understand the mechanism of hippocampal volume loss in MDD. Hippocampal volume changes are associated with disease severity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yingying Dong
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, China
| | - Linxuan Zou
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xunrong Luo
- Department of Radiology, Cancer Hospital of Chongqing University, Chongqing, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Xu Y, Cui D, Zhao Y, Wu C, Mu Q, Fang Z, Hu S, Huang M, Zhang P, Lu S. Volumetric Alterations of the Hippocampal Subfields in Major Depressive Disorder with and without Suicidal Ideation. Behav Brain Res 2023; 457:114733. [PMID: 39491110 DOI: 10.1016/j.bbr.2023.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Major depressive disorder (MDD) is often accompanied with suicidal ideation (SI). Previous studies suggested that MDD patients who experienced suicidal attempts (SA) exhibited smaller hippocampal volume than those without SA. The hippocampus consists of several subfields that are histologically and functionally unique respectively. However, few studies have been designed to investigate the relationship between suicide and volumetric changes of the hippocampal subfields in MDD. A total of 92 participants, including 24 MDD patients with SI (MDD-SI), 30 MDD patients without SI (MDD-nSI), and 38 healthy controls (HC) were recruited in this study. High-resolution structural magnetic resonance images (MRI) were obtained and analyzed by using the automated hippocampal substructure module in FreeSurfer 7.3.2 Analyses of variance (ANOVA) were performed to obtain hippocampal subfields with significant differences among three groups and then post hoc tests were calculated for inter-group comparisons. Finally, the relationships between volumes of the hippocampal subfields and clinical characteristics were assessed using correlation analyses. The ANOVA revealed significant volumetric differences of the hippocampal subfields among three groups in the bilateral cornu ammonis (CA) 1 head, CA4, granule cell layer of the dentate gyrus (GC-ML-DG), molecular layer (ML), the right hippocampus-amygdala transition area (HATA), and the right subiculum (Sub) body. Relative to HC, both groups of MDD showed decreased volumes in the CA1 head, CA4, GC-ML-DG head, ML head, and whole hippocampal head of the left hippocampus, the right HATA, and bilateral whole hippocampal body and whole hippocampus. Meanwhile, the MDD-SI group further exhibited diminished volume in the CA1 head, GC-ML-DG head, ML head, CA4 body, Sub body, and whole hippocampal head of the right hippocampus, as well as bilateral GC-ML-DG body and ML body. Additionally, the MDD-SI group also showed decreased volumes in the right GC-ML-DG body, ML body, and Sub body when comparing to MDD-nSI group. However, no significant association was observed between hippocampal subfield volumes and clinical features in MDD. The present findings suggested that SI in MDD might be attributed to subfield abnormalities in the subiculum and DG-dominant circuit of the right hippocampus.
Collapse
Affiliation(s)
- Yuwei Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Cui
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Yang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China
| | - Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Stadtler H, Neigh GN. Sex Differences in the Neurobiology of Stress. Psychiatr Clin North Am 2023; 46:427-446. [PMID: 37500242 DOI: 10.1016/j.psc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
This review highlights the existing knowledge and data that explain the physiologic impacts of stress, especially pertaining to neurobiology, and how these impacts differ by sex. Furthermore, this review explains the benefits of interventions aimed at preventing or mitigating the adverse effects of stress, because of both the significant toll of stress on the body and the disproportionate impact of these changes experienced by women.
Collapse
Affiliation(s)
- Hannah Stadtler
- Department of Anatomy and Neurobiology, 1101 East Marshall Street Box 980709, Virginia Commonwealth University, Richmond, VA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, 1101 East Marshall Street Box 980709, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Wu C, Jia L, Mu Q, Fang Z, Hamoudi HJAS, Huang M, Hu S, Zhang P, Xu Y, Lu S. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia. BMC Psychiatry 2023; 23:540. [PMID: 37491229 PMCID: PMC10369779 DOI: 10.1186/s12888-023-05001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Previous neuroimaging findings have demonstrated the association between anhedonia and the hippocampus. However, few studies have focused on the structural changes in the hippocampus in major depressive disorder (MDD) patients with anhedonia. Meanwhile, considering that multiple and functionally specialized subfields of the hippocampus have their own signatures, the present study aimed to investigate the volumetric alterations of the hippocampus as well as its subfields in MDD patients with and without anhedonia. METHODS A total of 113 subjects, including 30 MDD patients with anhedonia, 40 MDD patients without anhedonia, and 43 healthy controls (HCs), were recruited in the study. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and the automated hippocampal substructure module in FreeSurfer 6.0 was used to evaluate the volumes of hippocampal subfields. We compared the volumetric differences in hippocampal subfields among the three groups by analysis of variance (ANOVA, post hoc Bonferroni), and partial correlation was used to explore the association between hippocampal subregion volumes and clinical characteristics. RESULTS ANOVA showed significant volumetric differences in the hippocampal subfields among the three groups in the left hippocampus head, mainly in the cornu ammonis (CA) 1, granule cell layer of the dentate gyrus (GC-ML-DG), and molecular layer (ML). Compared with HCs, both groups of MDD patients showed significantly smaller volumes in the whole left hippocampus head. Interestingly, further exploration revealed that only MDD patients with anhedonia had significantly reduced volumes in the left CA1, GC-ML-DG and ML when compared with HCs. No significant difference was found in the volumes of the hippocampal subfields between MDD patients without anhedonia and HCs, either the two groups of MDD patients. However, no association between hippocampal subfield volumes and clinical characteristics was found in either the subset of patients with anhedonia or in the patient group as a whole. CONCLUSIONS These preliminary findings suggest that MDD patients with anhedonia exhibit unique atrophy of the hippocampus and that subfield abnormalities in the left CA1 and DG might be associated with anhedonia in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 310003, Zhejiang, China.
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
10
|
Sambuco N, Bradley MM, Lang PJ. Hippocampal and amygdala volumes vary with transdiagnostic psychopathological dimensions of distress, anxious arousal, and trauma. Biol Psychol 2023; 177:108501. [PMID: 36646300 DOI: 10.1016/j.biopsycho.2023.108501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Reduced hippocampal and/or amygdala volumes have been reported in patients with a variety of different anxiety diagnoses, suggesting that structural alterations may vary transdiagnostically across the internalizing disorders. The current study measured hippocampal and amygdala volumes in anxiety and mood disorder patients assessing differences that vary dimensionally with transdiagnostic factors of distress, anxious arousal, and trauma, based on a principal components analysis of questionnaires relating to symptomology. High-resolution structural images were collected in a sample of 165 patients, and volumes extracted from the hippocampal formation (including CA1, CA2/3, CA4/DG, subiculum, and molecular layer) and the amygdala. Transdiagnostically, increasing distress was associated with reduced hippocampal CA1 volume, increasing anxious arousal was associated with reduced hippocampal CA4/DG volume, and increasing trauma severity was associated with reduced amygdala volume in women. Taken together, the data indicate that subcortical brain volumes decrease as the severity of transdiagnostic psychopathological symptomology increases.
Collapse
Affiliation(s)
- Nicola Sambuco
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA.
| | - Margaret M Bradley
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| | - Peter J Lang
- Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Twait EL, Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Hendrikse J, Gerritsen L, Geerlings MI. Psychosocial factors and hippocampal subfields: The Medea-7T study. Hum Brain Mapp 2022; 44:1964-1984. [PMID: 36583397 PMCID: PMC9980899 DOI: 10.1002/hbm.26185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Specific subfields within the hippocampus have shown vulnerability to chronic stress, highlighting the importance of looking regionally within the hippocampus to understand the role of psychosocial factors in the development of neurodegenerative diseases. A systematic review on psychosocial factors and hippocampal subfield volumes was performed and showed inconsistent results, highlighting the need for future studies to explore this relationship. The current study aimed to explore the association of psychosocial factors with hippocampal (subfield) volumes, using high-field 7T MRI. Data were from the Memory Depression and Aging (Medea)-7T study, which included 333 participants without dementia. Hippocampal subfields were automatically segmented from T2-weighted images using ASHS software. Generalized linear models accounting for correlated outcomes were used to assess the association between subfields (i.e., entorhinal cortex, subiculum, Cornu Ammonis [CA]1, CA2, CA3, dentate gyrus, and tail) and each psychosocial factor (i.e., depressive symptoms, anxiety symptoms, childhood maltreatment, recent stressful life events, and social support), adjusted for age, sex, and intracranial volume. Neither depression nor anxiety was associated with specific hippocampal (subfield) volumes. A trend for lower total hippocampal volume was found in those reporting childhood maltreatment, and a trend for higher total hippocampal volume was found in those who experienced a recent stressful life event. Among subfields, low social support was associated with lower volume in the CA3 (B = -0.43, 95% CI: -0.72; -0.15). This study suggests possible differential effects among hippocampal (subfield) volumes and psychosocial factors.
Collapse
Affiliation(s)
- Emma L. Twait
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Kim Blom
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Huiberdina L. Koek
- Department of GeriatricsUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Maarten H. T. Zwartbol
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Rashid Ghaznawi
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Lotte Gerritsen
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
| | - Mirjam I. Geerlings
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Department of General PracticeAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands,Amsterdam Public Health, Aging & Later life, and Personalized MedicineAmsterdamThe Netherlands,Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and SleepAmsterdamThe Netherlands
| | | |
Collapse
|
12
|
Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder. Transl Psychiatry 2022; 12:209. [PMID: 35589678 PMCID: PMC9120054 DOI: 10.1038/s41398-022-01976-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
The hippocampus and amygdala limbic structures are critical to the etiology of major depressive disorder (MDD). However, there are no high-resolution characterizations of the role of their subregions in the whole brain network (connectome). Connectomic examination of these subregions can uncover disorder-related patterns that are otherwise missed when treated as single structures. 38 MDD patients and 40 healthy controls (HC) underwent anatomical and diffusion imaging using 7-Tesla MRI. Whole-brain segmentation was performed along with hippocampus and amygdala subregion segmentation, each representing a node in the connectome. Graph theory analysis was applied to examine the importance of the limbic subregions within the brain network using centrality features measured by node strength (sum of weights of the node's connections), Betweenness (number of shortest paths that traverse the node), and clustering coefficient (how connected the node's neighbors are to one another and forming a cluster). Compared to HC, MDD patients showed decreased node strength of the right hippocampus cornu ammonis (CA) 3/4, indicating decreased connectivity to the rest of the brain, and decreased clustering coefficient of the right dentate gyrus, implying it is less embedded in a cluster. Additionally, within the MDD group, the greater the embedding of the right amygdala central nucleus (CeA) in a cluster, the greater the severity of depressive symptoms. The altered role of these limbic subregions in the whole-brain connectome is related to diagnosis and depression severity, contributing to our understanding of the limbic system involvement in MDD and may elucidate the underlying mechanisms of depression.
Collapse
|
13
|
Fujii R, Watanabe K, Okamoto N, Natsuyama T, Tesen H, Igata R, Konishi Y, Ikenouchi A, Kakeda S, Yoshimura R. Hippocampal Volume and Plasma Brain-Derived Neurotrophic Factor Levels in Patients With Depression and Healthy Controls. Front Mol Neurosci 2022; 15:857293. [PMID: 35600081 PMCID: PMC9120937 DOI: 10.3389/fnmol.2022.857293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate associations between hippocampal subfield volumes and plasma levels of brain-derived neurotrophic factor (BDNF) in patients experiencing a first episode of major depression (MD) (n = 30) as compared to healthy controls (HC) (n = 49). Covariate-adjusted linear regression was performed to compare the MD and healthy groups, adjusting for age, sex, and total estimated intracranial volume. We demonstrated that there were no differences in total hippocampal volume between the MD and HC groups. However, the volumes of the hippocampus-amygdala-transition-area (HATA) on the left side of the brain as well as the parasubiculum, presubiculum, and fimbria on the right side were statistically significantly smaller in the MD group than in the HC group. Furthermore, the volume of the hippocampal fissure on the right side was statistically significantly smaller in the HC group than in the MD group. In the MD group, we found a positive linear correlation between hippocampal volume and plasma BDNF concentrations in the CA4 area on the left side (p = 0.043). In contrast, in the HC group, we found a negative linear correlation between parasubiculum volume on the right side and plasma BDNF concentrations (p = 0.04). These results suggest that some hippocampal subfields may already be atrophic at the start of MD. In addition, our findings suggest that the sensitivity of the right parasubiculum region to BDNF may differ between MD and HC groups. These findings guide future research directions and, if confirmed, may ultimately inform medical guidelines.
Collapse
Affiliation(s)
- Rintaro Fujii
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keita Watanabe
- Open Innovation Institute, Kyoto University, Kyoto, Japan
| | - Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomoya Natsuyama
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hirofumi Tesen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuki Konishi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Reiji Yoshimura,
| |
Collapse
|
14
|
Loessner L, Matthes C, Haussmann R, Brandt MD, Sauer C, Espin M, Noppes F, Werner A, Linn J, Hummel T, Haehner A, Donix M. Predictors of subjective cognitive deficits in patients with mild cognitive impairment. Psychogeriatrics 2022; 22:210-217. [PMID: 34939254 DOI: 10.1111/psyg.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Detailed examination of cognitive deficits in patients with mild cognitive impairment (MCI) yields substantial diagnostic and prognostic value, specifically with respect to memory. Magnitude and characteristics of subjective cognitive deficits, however, often receive less attention in this population at risk for developing dementia. METHODS We investigated predictors of subjective cognitive deficits in patients with MCI, using a detailed assessment for such impairments associated with different cognitive domains, as well as demographic and clinical variables including magnetic resonance imaging data. RESULTS The strongest predictor for subjective memory deficits was depressed mood, whereas subjective performance issues associated with attention or executive functions also corresponded to measurable impairments in the respective cognitive domains. Reduced hippocampal thickness and hemispheric entorhinal cortex thickness asymmetry were associated with objective memory impairment but not with subjective deficits or symptoms of depression. CONCLUSIONS Whereas low objective memory performance and reduced cortical thickness within medial temporal lobe subregions could be associated with neurodegeneration, greater subjective memory deficits in patients with MCI may indicate psychological burden.
Collapse
Affiliation(s)
- Lorenz Loessner
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Matthes
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz D Brandt
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Cathrin Sauer
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Melanie Espin
- Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Noppes
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Werner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Haehner
- Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
15
|
Liu MN, Pantouw JG, Yang KC, Hu LY, Liou YJ, Lirng JF, Chou YH. Sub-regional hippocampal volumes in first-episode drug-naïve major depression disorder. Neurosci Lett 2021; 763:136178. [PMID: 34416346 DOI: 10.1016/j.neulet.2021.136178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/20/2023]
Abstract
Hippocampal volume reduction was reported to underlie depressive symptomatology, however, the evidence to date remains inconsistent. For the complex intrinsic organization of hippocampus, the hippocampal volumes can be further divided into subfields or axial parts. The current study aimed to explore the alterations of hippocampal sub-regional volumes in first episode drug-naïve major depressive disorder (MDD) by two segmentation methods. Thirty-five first-episode drug-naïve MDD and 35 age- and gender-matched healthy controls (HC) were recruited. Volumes of three sub-regions of hippocampus along the longitudinal axis (head, body and tail) were analyzed manually and eight transverse subfields were automatically determined using FreeSurfer. An asymmetric index (AI) of volumes was defined as (∣Left - Right∣/∣Left + Right∣) * 100. There were significant reductions in the volumes of bilateral hippocampal head in MDD compared to HC. The volumes of eight subfields were not different between groups. MDD patients had higher AI values in the subfield of cornu ammonis 4/dentate gyrus than HC. The change in hippocampal sub-regional volumes might be an imaging biomarker in the first-episode, drug-naïve patients with MDD. Current findings may contribute to developing new diagnostic and therapeutic strategies for major depression.
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | | | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jiing-Feng Lirng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan.
| |
Collapse
|
16
|
Association between the expression of lncRNA BASP-AS1 and volume of right hippocampal tail moderated by episode duration in major depressive disorder: a CAN-BIND 1 report. Transl Psychiatry 2021; 11:469. [PMID: 34508068 PMCID: PMC8433329 DOI: 10.1038/s41398-021-01592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) encompasses an array of changes at molecular and neurobiological levels. As chronic stress promotes neurotoxicity there are alterations in the expression of genes and gene-regulatory molecules. The hippocampus is particularly sensitive to the effects of stress and its posterior volumes can deliver clinically valuable information about the outcomes of antidepressant treatment. In the present work, we analyzed individuals with MDD (N = 201) and healthy controls (HC = 104), as part of the CAN-BIND-1 study. We used magnetic resonance imaging (MRI) to measure hippocampal volumes, evaluated gene expression with RNA sequencing, and assessed DNA methylation with the (Infinium MethylationEpic Beadchip), in order to investigate the association between hippocampal volume and both RNA expression and DNA methylation. We identified 60 RNAs which were differentially expressed between groups. Of these, 21 displayed differential methylation, and seven displayed a correlation between methylation and expression. We found a negative association between expression of Brain Abundant Membrane Attached Signal Protein 1 antisense 1 RNA (BASP1-AS1) and right hippocampal tail volume in the MDD group (β = -0.218, p = 0.021). There was a moderating effect of the duration of the current episode on the association between the expression of BASP1-AS1 and right hippocampal tail volume in the MDD group (β = -0.48, 95% C.I. [-0.80, -0.16]. t = -2.95 p = 0.004). In conclusion, we found that overexpression of BASP1-AS1 was correlated with DNA methylation, and was negatively associated with right tail hippocampal volume in MDD.
Collapse
|
17
|
Impact of Frailty on Hippocampal Volume in Patients with Chronic Obstructive Pulmonary Disease. Biomedicines 2021; 9:biomedicines9091103. [PMID: 34572291 PMCID: PMC8468719 DOI: 10.3390/biomedicines9091103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Brain frailty may be related to the pathophysiology of poor clinical outcomes in chronic obstructive pulmonary disease (COPD). This study examines the relationship between hippocampal subfield volumes and frailty and depressive symptoms, and their combined association with quality of life (QOL) in patients with COPD. The study involved 40 patients with COPD. Frailty, depressive symptoms and QOL were assessed using Kihon Checklist (KCL), Hospital Anxiety and Depression Scale (HADS), and World Health Organization Quality of Life Assessment (WHO/QOL-26). Anatomical MRI data were acquired, and volumes of the hippocampal subfields were obtained using FreeSurfer (version 6.0). Statistically, HADS score had significant association with WHO/QOL-26 and KCL scores. KCL scores were significantly associated with volumes of left and right whole hippocampi, presubiculum and subiculum, but HADS score had no significant association with whole hippocampi or hippocampal subfield volumes. Meanwhile, WHO/QOL-26 score was significantly associated with volume of the left CA1. There was a significant association between frailty, depression, and QOL. Hippocampal pathology was related to frailty and, to some extent, with QOL in patients with COPD. Our results suggest the impact of frailty on hippocampal volume and their combined associations with poor QOL in COPD.
Collapse
|
18
|
Zarate-Garza PP, Ortega-Balderas JA, Ontiveros-Sanchez de la Barquera JA, Lugo-Guillen RA, Marfil-Rivera A, Quiroga-Garza A, Guzman-Lopez S, Elizondo-Omaña RE. Hippocampal volume as treatment predictor in antidepressant naïve patients with major depressive disorder. J Psychiatr Res 2021; 140:323-328. [PMID: 34126427 DOI: 10.1016/j.jpsychires.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Major depression disorder (MDD) limits psychosocial functioning and quality of life. One of the biological alterations is a hippocampal volume (HV) reduction. Previous prospective neuroimaging studies present inconsistencies regarding HV reductions and clinical features and response of antidepressant treatment of the participants. To clarify the relationship between antidepressant response and the HV reported, we prospectively evaluated antidepressant-naïve subjects diagnosed with MDD for the first time. We recruited twenty-one subjects and applied the Hamilton Depression Rating Scale (HAM-D), Montgomery-Asberg Depression Rating Scale (MADRS), Beck Depression Inventory (BDI), and the Clinical Global Impression (CGI) scale. The participants underwent brain Magnetic Resonance Imaging (MRI) scanning to measure the HV, and subsequently were treated naturalistically with first-line antidepressant medication for eight weeks. Thirteen subjects met the criteria for remission at eight weeks of treatment. The baseline right and left hippocampal volumes were larger in subjects who achieved remission (p = 0.012) and (p = 0.001), respectively. The main finding of this study is that the antidepressant naïve subjects who met the criteria for clinical remission according to the HAM-D, MADRS, and the CGI scale scores, had larger pretreatment hippocampal volumes. Our results assess the HV as a treatment outcome predictor.
Collapse
Affiliation(s)
- Pablo Patricio Zarate-Garza
- Universidad Autónoma de Nuevo Leon, School of Medicine, Human Anatomy Department, Monterrey, Nuevo León, Mexico.
| | | | | | | | - Alejandro Marfil-Rivera
- Universidad Autónoma de Nuevo Leon, Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Neurology Department, Monterrey, Nuevo León, Mexico.
| | - Alejandro Quiroga-Garza
- Universidad Autónoma de Nuevo Leon, School of Medicine, Human Anatomy Department, Monterrey, Nuevo León, Mexico.
| | - Santos Guzman-Lopez
- Universidad Autónoma de Nuevo Leon, School of Medicine, Human Anatomy Department, Monterrey, Nuevo León, Mexico.
| | | |
Collapse
|
19
|
Takaishi M, Asami T, Yoshida H, Nakamura R, Yoshimi A, Hirayasu Y. Smaller volume of right hippocampal CA2/3 in patients with panic disorder. Brain Imaging Behav 2021; 15:320-326. [PMID: 32125615 DOI: 10.1007/s11682-020-00259-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hippocampus is thought to play an important role in conveying contextual information to the amygdala as the neural basis of panic disorder (PD). Previous studies have revealed functional abnormalities in the hippocampus in patients with PD compared with healthy control subjects (HC), but no study has reported volume abnormalities in the hippocampus or evaluated minute structural changes in the hippocampus in such patients. We thus investigated volume abnormalities in the subfields of the hippocampus to better understand the neurobiological basis of PD. The hippocampus was extracted from structural brain magnetic resonance images obtained from 38 patients with PD and 38 HC and then segmented into six subfields. The relative volume of each subfield was compared between the two groups. The severity of symptoms was assessed using the Panic Disorder Severity Scale (PDSS) and social functioning was assessed using the Global Assessment of Functioning (GAF) scale. Our results revealed that patients with PD had a significantly smaller volume of the right cornu ammonis (CA) 2/3 hippocampal subfield compared with HC. No significant associations were found between the volumes of the right CA 2/3 and the PDSS or GAF scores in correlation analyses. In conclusion, CA2/3 is thought to be related to contextual memory function, and our results suggest that this particular hippocampal subfield plays a role in the development of PD symptoms.
Collapse
Affiliation(s)
- Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Haruhisa Yoshida
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Ryota Nakamura
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
- Heian Hospital, Okinawa, Japan
| |
Collapse
|
20
|
Hansen N, Singh A, Bartels C, Brosseron F, Buerger K, Cetindag AC, Dobisch L, Dechent P, Ertl-Wagner BB, Fliessbach K, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Laske C, Metzger CD, Munk MH, Peters O, Priller J, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Vukovich R, Wiltfang J, Duezel E, Jessen F, Goya-Maldonado R. Hippocampal and Hippocampal-Subfield Volumes From Early-Onset Major Depression and Bipolar Disorder to Cognitive Decline. Front Aging Neurosci 2021; 13:626974. [PMID: 33967736 PMCID: PMC8097178 DOI: 10.3389/fnagi.2021.626974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The hippocampus and its subfields (HippSub) are reported to be diminished in patients with Alzheimer's disease (AD), bipolar disorder (BD), and major depressive disorder (MDD). We examined these groups vs healthy controls (HC) to reveal HippSub alterations between diseases. Methods: We segmented 3T-MRI T2-weighted hippocampal images of 67 HC, 58 BD, and MDD patients from the AFFDIS study and 137 patients from the DELCODE study assessing cognitive decline, including subjective cognitive decline (SCD), amnestic mild cognitive impairment (aMCI), and AD, via Free Surfer 6.0 to compare volumes across groups. Results: Groups differed significantly in several HippSub volumes, particularly between patients with AD and mood disorders. In comparison to HC, significant lower volumes appear in aMCI and AD groups in specific subfields. Smaller volumes in the left presubiculum are detected in aMCI and AD patients, differing from the BD group. A significant linear regression is seen between left hippocampus volume and duration since the first depressive episode. Conclusions: HippSub volume alterations were observed in AD, but not in early-onset MDD and BD, reinforcing the notion of different neural mechanisms in hippocampal degeneration. Moreover, duration since the first depressive episode was a relevant factor explaining the lower left hippocampal volumes present in groups.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Aditya Singh
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, Göttingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arda C Cetindag
- Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Birgit B Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Maike Tscheuschler
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Roberto Goya-Maldonado
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Sneider JT, Cohen-Gilbert JE, Hamilton DA, Seraikas AM, Oot EN, Schuttenberg EM, Nickerson LD, Silveri MM. Brain Activation during Memory Retrieval is Associated with Depression Severity in Women. Psychiatry Res Neuroimaging 2021; 307:111204. [PMID: 33393466 PMCID: PMC7783190 DOI: 10.1016/j.pscychresns.2020.111204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023]
Abstract
Major depressive disorder (MDD) is a debilitating disorder that interferes with daily functioning, and that occurs at higher rates in women than in men. Structural and functional alterations in hippocampus and frontal lobe have been reported in MDD, which likely contribute to the multifaceted nature of MDD. One area impacted by MDD is hippocampal-mediated memory, which can be probed using a spatial virtual Morris water task (MWT). Women (n=24) across a spectrum of depression severity underwent functional magnetic resonance imaging (fMRI) during MWT. Depression severity, assessed via Beck Depression Inventory (BDI), was examined relative to brain activation during task performance. Significant brain activation was evident in areas traditionally implicated in spatial memory processing, including right hippocampus and frontal lobe regions, for retrieval > motor contrast. When BDI was included as a regressor, significantly less functional activation was evident in left hippocampus, and other non-frontal, task relevant regions for retrieval > rest contrast. Consistent with previous studies, depression severity was associated with functional alterations observed during spatial memory performance. These findings may contribute to understanding neurobiological underpinnings of depression severity and associated memory impairments, which may have implications for treatment approaches aimed at alleviating effects of depression in women.
Collapse
Affiliation(s)
- Jennifer T Sneider
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Dept. of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Julia E Cohen-Gilbert
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Dept. of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Derek A Hamilton
- Dept. of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Anna M Seraikas
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA
| | - Emily N Oot
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Boston University School of Medicine, Boston, MA, USA
| | - Eleanor M Schuttenberg
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA
| | - Lisa D Nickerson
- Applied Neuroimaging Statistics Lab, Belmont, McLean Hospital, MA, USA; Dept. of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Dept. of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
23
|
Espinoza Oyarce DA, Shaw ME, Alateeq K, Cherbuin N. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. J Psychiatry Neurosci 2020; 45:406-429. [PMID: 32726102 PMCID: PMC7595741 DOI: 10.1503/jpn.190156] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Structural differences associated with depression have not been confirmed in brain regions apart from the hippocampus. Comorbid anxiety has been inconsistently assessed, and may explain discrepancies in previous findings. We investigated the link between depression, comorbid anxiety and brain structure. METHODS We followed Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (PROSPERO CRD42018089286). We searched the Cochrane Library, MEDLINE, PsycInfo, PubMed and Scopus, from database inception to Sept. 13, 2018, for MRI case-control studies that reported brain volumes in healthy adults and adults with clinical depression. We summarized mean volumetric differences using meta-analyses, and we assessed demographics, depression factors and segmentation procedure as moderators using meta-regressions. RESULTS We included 112 studies in the meta-analyses, assessing 4911 healthy participants and 5934 participants with depression (mean age 49.8 yr, 68.2% female). Volume effects were greater in late-onset depression and in multiple episodes of depression. Adults with depression and no comorbidity showed significantly lower volumes in the putamen, pallidum and thalamus, as well as significantly lower grey matter volume and intracranial volume; the largest effects were in the hippocampus (6.8%, p < 0.001). Adults with depression and comorbid anxiety showed significantly higher volumes in the amygdala (3.6%, p < 0.001). Comorbid anxiety lowered depression effects by 3% on average. Sex moderated reductions in intracranial volume. LIMITATIONS High heterogeneity in hippocampus effects could not be accounted for by any moderator. Data on symptom severity and medication were sparse, but other factors likely made significant contributions. CONCLUSION Depression-related differences in brain structure were modulated by comorbid anxiety, chronicity of symptoms and onset of illness. Early diagnosis of anxiety symptomatology will prove crucial to ensuring effective, tailored treatments for improving long-term mental health and mitigating cognitive problems, given the effects in the hippocampus.
Collapse
Affiliation(s)
- Daniela A Espinoza Oyarce
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| | - Marnie E Shaw
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| | - Khawlah Alateeq
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| | - Nicolas Cherbuin
- From the Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, ACT, Australia (Espinoza Oyarce, Alateeq, Cherbuin); and the College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia (Shaw)
| |
Collapse
|
24
|
Nolan M, Roman E, Nasa A, Levins KJ, O'Hanlon E, O'Keane V, Willian Roddy D. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. CHRONIC STRESS 2020; 4:2470547020944553. [PMID: 33015518 PMCID: PMC7513405 DOI: 10.1177/2470547020944553] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Medial temporal lobe structures have long been implicated in the pathogenesis of
major depressive disorder. Although findings of smaller hippocampal and
amygdalar volumes are common, inconsistencies remain in the literature. In this
targeted review, we examine recent and significant neuroimaging papers examining
the volumes of these structures in major depressive disorder. A targeted
PubMed/Google Scholar search was undertaken focusing on volumetric neuroimaging
studies of the hippocampus and amygdala in major depressive disorder. Where
possible, mean volumes and accompanying standard deviations were extracted
allowing computation of Cohen’s ds effect sizes. Although not a
meta-analysis, this allows a broad comparison of volume changes across studies.
Thirty-nine studies in total were assessed. Hippocampal substructures and
amygdale substructures were investigated in 11 and 2 studies, respectively. The
hippocampus was more consistently smaller than the amygdala across studies,
which is reflected in the larger cumulative difference in volume found with the
Cohen’s ds calculations. The left and right hippocampi were,
respectively, 92% and 91.3% of the volume found in controls, and the left and
right amygdalae were, respectively, 94.8% and 92.6% of the volume of controls
across all included studies. The role of stress in temporal lobe structure
volume reduction in major depressive disorder is discussed.
Collapse
Affiliation(s)
- Mark Nolan
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kirk J Levins
- Department of Anaesthesia, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Darren Willian Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Yuan M, Rubin-Falcone H, Lin X, Rizk MM, Miller JM, Sublette ME, Oquendo MA, Burke A, Ogden RT, Mann JJ. Smaller left hippocampal subfield CA1 volume is associated with reported childhood physical and/or sexual abuse in major depression: A pilot study. J Affect Disord 2020; 272:348-354. [PMID: 32553377 DOI: 10.1016/j.jad.2020.03.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/22/2020] [Accepted: 03/29/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Smaller hippocampal volumes are reported in adults with major depressive disorder (MDD) and in reported childhood abuse. The hippocampus is a complex structure with distinct functional subfields. We sought to examine the effect of MDD diagnosis and childhood abuse on hippocampal subfields. METHODS Forty-one MDD participants (17 reported abuse and 24 did not) and 46 healthy volunteers (HV) (2 reported abuse) underwent T1- weighted structural magnetic resonance imaging (MRI) and clinical characterization in a retrospective design. A subfield segmentation program was used to measure the whole and subfield hippocampal volumes. Linear mixed-effects models were fitted for group comparisons. RESULTS No main effect of diagnosis interaction effect between diagnosis and subfield region was observed. However, a comparison of abused MDD vs. HVs showed a group by region interaction. A significant interaction between childhood abuse and region was observed. Effects were confined to the left side of the brain, and post hoc, exploratory region-specific tests indicated smaller left CA1 volume in abused MDD compared with non-abused MDD. In addition, smaller amygdala volume was found in all MDD compared with HVs. LIMITATIONS We did not have a sample of healthy volunteers with reported childhood abuse. CONCLUSIONS The diagnosis of pure MDD may not be sufficient to exert effects on hippocampal volumes, indicating the importance of taking into account childhood trauma in studies on psychopathological mechanisms. Left CA1 might be the hippocampal subfield most relevant to reported childhood abuse. Smaller amygdala volume may be related to MDD diagnosis independent of childhood abuse.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States.
| | - Harry Rubin-Falcone
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States
| | - Xuejing Lin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Mina M Rizk
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States; Department of Psychiatry, Faculty of Medicine, Minia University, Egypt
| | - Jeffrey M Miller
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States
| | - M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ainsley Burke
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States
| | - R Todd Ogden
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, United States; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, United States; Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
26
|
Olescowicz G, Sampaio TB, de Paula Nascimento-Castro C, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Protective Effects of Agmatine Against Corticosterone-Induced Impairment on Hippocampal mTOR Signaling and Cell Death. Neurotox Res 2020; 38:319-329. [DOI: 10.1007/s12640-020-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
|
27
|
Choi KW, Kwon S, Pyun SB, Tae WS. Shape Deformation in the Brainstem of Medication-Naïve Female Patients with Major Depressive Disorder. Psychiatry Investig 2020; 17:465-474. [PMID: 32403210 PMCID: PMC7265019 DOI: 10.30773/pi.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Although neuroimaging studies have shown volumetric reductions, such as the anterior cingulate, prefrontal cortices, and hippocampus in patients with major depressive disorder (MDD), few studies have investigated the volume of or shape alterations in the subcortical regions and the brainstem. We hypothesized that medication-naïve female adult patients with MDD might present with shape and volume alterations in the subcortical regions, including the brainstem, compared to healthy controls (HCs). METHODS A total of 20 medication-naïve female patients with MDD and 21 age-matched female HCs, underwent 3D T1-weighted structural magnetic resonance scanning. We analyzed the volumes of each subcortical region and each brainstem region, including the midbrain, pons, and medulla oblongata. We also performed surface-based vertex analyses on the subcortical areas and brainstem. RESULTS Female patients with MDD showed non-significant volumetric differences in the subcortical regions, whole brainstem, and each brainstem region compared to the HCs. However, in the surface-based vertex analyses, significant shape contractions were observed in both cerebellar peduncles located on the lateral wall of the posterior brainstem [threshold-free cluster enhancement, corrected for family-wise error (FWE) at p<0.05] in patients with MDD. CONCLUSION We revealed shape alterations in the posterior brainstem in female patients with MDD.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soonwook Kwon
- Department of Anatomy, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Katsuki A, Watanabe K, Nguyen L, Otsuka Y, Igata R, Ikenouchi A, Kakeda S, Korogi Y, Yoshimura R. Structural Changes in Hippocampal Subfields in Patients with Continuous Remission of Drug-Naive Major Depressive Disorder. Int J Mol Sci 2020; 21:ijms21093032. [PMID: 32344826 PMCID: PMC7246866 DOI: 10.3390/ijms21093032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hippocampal volume is reduced in patients with major depressive disorder (MDD) compared with healthy controls. The hippocampus is a limbic structure that has a critical role in MDD. The aim of the present study was to investigate the changes in the volume of the hippocampus and its subfields in MDD patients who responded to antidepressants and subsequently were in continuous remission. SUBJECTS AND METHODS Eighteen patients who met the following criteria were enrolled in the present study: the DSM-IV-TR criteria for MDD, drug-naïve at least 8 weeks or more, scores on the 17-items of Hamilton Rating Scale for Depression (HAMD) of 14 points or more, and antidepressant treatment response within 8 weeks and continuous remission for at least 6 months. All participants underwent T1-weighted structural MRI and were treated with antidepressants for more than 8 weeks. We compared the volumes of the hippocampus, including its subfields, in responders at baseline to the volumes at 6 months. The volumes of the whole hippocampus and the hippocampal subfields were measured using FreeSurfer v6.0. RESULTS The volumes of the left cornu Ammonis (CA) 3 (p = 0.016) and the granule cell layer of the dentate gyrus (GC-DG) region (p = 0.021) were significantly increased after 6 months of treatment compared with those at baseline. CONCLUSIONS Increases in volume was observed in MDD patients who were in remission for at least 6 months.
Collapse
Affiliation(s)
- Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (K.W.); (Y.K.)
| | - LeHoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (K.W.); (Y.K.)
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
- Correspondence: ; Tel.: +81-936917253; Fax: +81-936924894
| |
Collapse
|
29
|
Ho TC, Gutman B, Pozzi E, Grabe HJ, Hosten N, Wittfeld K, Völzke H, Baune B, Dannlowski U, Förster K, Grotegerd D, Redlich R, Jansen A, Kircher T, Krug A, Meinert S, Nenadic I, Opel N, Dinga R, Veltman DJ, Schnell K, Veer I, Walter H, Gotlib IH, Sacchet MD, Aleman A, Groenewold NA, Stein DJ, Li M, Walter M, Ching CRK, Jahanshad N, Ragothaman A, Isaev D, Zavaliangos‐Petropulu A, Thompson PM, Sämann PG, Schmaal L. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Hum Brain Mapp 2020; 43:341-351. [PMID: 32198905 PMCID: PMC8675412 DOI: 10.1002/hbm.24988] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD‐related differences in subcortical regions using shape analysis. In this meta‐analysis of subcortical shape from the ENIGMA‐MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta‐analysis. Relative to CTL, patients with adolescent‐onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = −0.164 to −0.180). Relative to first‐episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = −0.173 to −0.184). Our results suggest that previously reported MDD‐associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.
Collapse
Affiliation(s)
- Tiffany C. Ho
- Department of Psychiatry & Weill Institute for Neurosciences San Francisco California USA
- Department of Psychiatry & Behavioral Sciences Stanford University Stanford California USA
- Department of Psychology Stanford University Stanford California USA
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago Illinois USA
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry The University of Melbourne & Melbourne Health Melbourne Australia
- Orygen, The National Centre of Excellence in Youth Mental Health Parkville Australia
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy University Medicine Greifswald Germany
- German Centre of Neurodegenerative Diseases (DZNE) site Greifswald/Rostock Germany
| | - Norbert Hosten
- Department of Diagnostic Radiology and Neuroradiology University Medicine Greifswald Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy University Medicine Greifswald Germany
- German Centre of Neurodegenerative Diseases (DZNE) site Greifswald/Rostock Germany
| | - Henry Völzke
- Institute for Community Medicine University Medicine Greifswald Germany
| | - Bernhard Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry, Melbourne Medical School The University of Melbourne Melbourne Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | | | | | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Andreas Jansen
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Tilo Kircher
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Axel Krug
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Susanne Meinert
- Department of Psychiatry University of Münster Münster Germany
| | - Igor Nenadic
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Richard Dinga
- Department of Psychiatry, Amsterdam University Medical Centers VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam University Medical Centers VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Knut Schnell
- Department of Psychiatry and Psychotherapy University Medical Center Göttingen Göttingen Germany
| | - Ilya Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ian H. Gotlib
- Department of Psychology Stanford University Stanford California USA
| | - Matthew D. Sacchet
- Department of Psychiatry & Behavioral Sciences Stanford University Stanford California USA
- McLean Hospital and Department of Psychiatry Harvard Medical School Belmont Massachusetts USA
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Neuroscience Groningen The Netherlands
| | - Nynke A. Groenewold
- University of Groningen, University Medical Center Groningen, Department of Neuroscience Groningen The Netherlands
- University of Groningen, University Medical Center Groningen Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE) Groningen The Netherlands
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town South Africa
| | - Meng Li
- Max Planck Institute for Biological Cybernetics Tuebingen Germany
| | - Martin Walter
- Department of Psychiatry University Tuebingen Germany
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Anjanibhargavi Ragothaman
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Dmitry Isaev
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | | | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
30
|
Linnemann C, Lang UE. Pathways Connecting Late-Life Depression and Dementia. Front Pharmacol 2020; 11:279. [PMID: 32231570 PMCID: PMC7083108 DOI: 10.3389/fphar.2020.00279] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Late-life depression is associated with significant cognitive impairment. Meta-analyses showed that depression is associated with an increased risk for Alzheimer’s disease (AD) and it might be an etiological factor for AD. Since late-life depression is often connected with cognitive impairment and dementia is usually associated with depressive symptoms, a simple diagnostic approach to distinguish between the disorders is challenging. Several overlapping pathophysiological substrates might explain the comorbidity of both syndromes. Firstly, a stress syndrome, i.e., elevated cortisol levels, has been observed in up to 70% of depressed patients and also in AD pathology. Stress conditions can cause hippocampal neuronal damage as well as cognitive impairment. Secondly, the development of a depression and dementia after the onset of vascular diseases, the profile of cerebrovascular risk factors in both disorders and the impairments depending on the location of cerebrovascular lesions, speak in favor of a vascular hypothesis as a common factor for both disorders. Thirdly, neuroinflammatory processes play a key role in the etiology of depression as well as in dementia. Increased activation of microglia, changes in Transforming-Growth-Factor beta1 (TGF-beta1) signaling, production of pro-inflammatory cytokines as well as reduction of anti-inflammatory molecules are examples of common pathways impaired in dementia and depression. Fourthly, the neurotrophin BDNF is highly expressed in the central nervous system, especially in the hippocampus, where it plays a key role in the proliferation, differentiation and the maintenance of neuronal integrity throughout lifespan. It has been associated not only with antidepressant properties but also a reduction of cognitive impairment and therefore could be involved also in AD. Another etiologic factor is amyloid accumulation, as plasma amyloid beta-42 independently predicts both late-onset depression and AD. Higher plasma amyloid beta-42 predicts the development of late onset depression and conversion to possible AD. However, clinical trials with antibodies against beta amyloid recently failed, i.e., Solanezumab, Aducanumab, and Crenezumab. An overproduction of amyloid-beta might simply reflect a form of synaptic plasticity to compensate for neuronal dysfunction in different kind of neurological and psychiatric diseases of multiple etiologies. The tau hypothesis, sex/gender specific differences, epigenetics and the gut microbiota-brain axis imply other potential common pathways connecting late-life depression and dementia. In conclusion, different potential pathophysiological links between dementia and depression highlight several specific synergistic and multifaceted treatment possibilities, depending on the individual risk profile of the patient.
Collapse
Affiliation(s)
- Christoph Linnemann
- University of Basel, Universitäre Psychiatrische Kliniken (UPK), Basel, Switzerland
| | - Undine E Lang
- University of Basel, Universitäre Psychiatrische Kliniken (UPK), Basel, Switzerland
| |
Collapse
|
31
|
Hao ZY, Zhong Y, Ma ZJ, Xu HZ, Kong JY, Wu Z, Wu Y, Li J, Lu X, Zhang N, Wang C. Abnormal resting-state functional connectivity of hippocampal subfields in patients with major depressive disorder. BMC Psychiatry 2020; 20:71. [PMID: 32066415 PMCID: PMC7026985 DOI: 10.1186/s12888-020-02490-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many studies have found that the hippocampus plays a very important role in major depressive disorder (MDD). The hippocampus can be divided into three subfields: the cornu ammonis (CA), dentate gyrus (DG) and subiculum. Each subfield of the hippocampus has a unique function and are differentially associated with the pathological mechanisms of MDD. However, no research exists to describe the resting state functional connectivity of each hippocampal subfield in MDD. METHODS Fifty-five patients with MDD and 25 healthy controls (HCs) matched for gender, age and years of education were obtained. A seed-based method that imposed a template on the whole brain was used to assess the resting-state functional connectivity (rsFC) of each hippocampal subfield. RESULTS Patients with MDD demonstrated increased connectivity in the left premotor cortex (PMC) and reduced connectivity in the right insula with the CA seed region. Increased connectivity was reported in the left orbitofrontal cortex (OFC) and left ventrolateral prefrontal cortex (vlPFC) with the DG seed region. The subiculum seed region revealed increased connectivity with the left premotor cortex (PMC), the right middle frontal gyrus (MFG), the left ventrolateral prefrontal cortex (vlPFC) and reduced connectivity with the right insula. ROC curves confirmed that the differences between groups were statistically significant. CONCLUSION The results suggest that the CA, DG and subiculum have significant involvement with MDD. Specifically, the abnormal functional connectivity of the CA may be related to bias of coding and integration of information in patients with MDD. The abnormal functional connectivity of the DG may be related to the impairment of working memory in patients with MDD, and the abnormal functional connectivity of the subiculum may be related to cognitive impairment and negative emotions in patients with MDD.
Collapse
Affiliation(s)
- Zi Yu Hao
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China
| | - Yuan Zhong
- grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China ,grid.260474.30000 0001 0089 5711Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, 210097 People’s Republic of China
| | - Zi Juan Ma
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Hua Zhen Xu
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Jing Ya Kong
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China
| | - Zhou Wu
- grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China
| | - Yun Wu
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China
| | - Jian Li
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China
| | - Xin Lu
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China
| | - Ning Zhang
- grid.452645.40000 0004 1798 8369Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.260474.30000 0001 0089 5711School of Psychology, Nanjing Normal University, Nanjing, 210097 Jiangsu China ,grid.89957.3a0000 0000 9255 8984Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029 Jiangsu China ,grid.89957.3a0000 0000 9255 8984Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,School of Psychology, Nanjing Normal University, Nanjing, 210097, Jiangsu, China. .,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
32
|
Kraus C, Seiger R, Pfabigan DM, Sladky R, Tik M, Paul K, Woletz M, Gryglewski G, Vanicek T, Komorowski A, Kasper S, Lamm C, Windischberger C, Lanzenberger R. Hippocampal Subfields in Acute and Remitted Depression-an Ultra-High Field Magnetic Resonance Imaging Study. Int J Neuropsychopharmacol 2019; 22:513-522. [PMID: 31175352 PMCID: PMC6672627 DOI: 10.1093/ijnp/pyz030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies investigating hippocampal volume changes after treatment with serotonergic antidepressants in patients with major depressive disorder yielded inconsistent results, and effects on hippocampal subfields are unclear. METHODS To detail treatment effects on total hippocampal and subfield volumes, we conducted an open-label study with escitalopram followed by venlafaxine upon nonresponse in 20 unmedicated patients with major depressive disorder. Before and after 12 weeks treatment, we measured total hippocampal formation volumes and subfield volumes with ultra-high field (7 Tesla), T1-weighted, structural magnetic resonance imaging, and FreeSurfer. Twenty-eight remitted patients and 22 healthy subjects were included as controls. We hypothesized to detect increased volumes after treatment in major depressive disorder. RESULTS We did not detect treatment-related changes of total hippocampal or subfield volumes in patients with major depressive disorder. Secondary results indicated that the control group of untreated, stable remitted patients, compared with healthy controls, had larger volumes of the right hippocampal-amygdaloid transition area and right fissure at both measurement time points. Depressed patients exhibited larger volumes of the right subiculum compared with healthy controls at MRI-2. Exploratory data analyses indicated lower baseline volumes in the subgroup of remitting (n = 10) vs nonremitting (n = 10) acute patients. CONCLUSIONS The results demonstrate that monoaminergic antidepressant treatment in major depressive disorder patients was not associated with volume changes in hippocampal subfields. Studies with larger sample sizes to detect smaller effects as well as other imaging modalities are needed to further assess the impact of antidepressant treatment on hippocampal subfields.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Daniela M Pfabigan
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Katharina Paul
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Michael Woletz
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
33
|
Jiang L, Cao X, Jiang J, Li T, Wang J, Yang Z, Li C. Atrophy of hippocampal subfield CA2/3 in healthy elderly men is related to educational attainment. Neurobiol Aging 2019; 80:21-28. [PMID: 31077957 DOI: 10.1016/j.neurobiolaging.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/10/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022]
Abstract
A higher education level is a protective factor against cognitive decline in elders; however, the underlying neural mechanisms remain unclear. Modulated by both aging and education, the hippocampus is a starting point for understanding the long-lasting effect of education on the aging of human brain. Because the hippocampus possesses functionally heterogeneous subfields and exhibits sex differences, we examined hippocampal subfields in men and women separately. We performed both cross-sectional (n = 143) and longitudinal (n = 51) analyses on healthy participants aged 65-75 years, who underwent structural magnetic resonance imaging. Volumes of the hippocampi and their subfields were estimated by automated segmentation. We found significantly positive correlations between educational attainment and the volume of hippocampal CA2/3 in men but not in women. The longitudinal analysis focusing on this region validated the above results by showing that a higher education level attenuated the progression of atrophy during a 15-month follow-up period in the CA2/3 region in men. These findings suggest that, in men, education plays a role in the aging of specific hippocampal subfields.
Collapse
Affiliation(s)
- Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Li
- Department of Geriatric Psychiatry, Shanghai Changning Mental Health Center, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong Universit, Shanghai, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong Universit, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong Universit, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
34
|
Malhi GS, Das P, Outhred T, Irwin L, Gessler D, Bwabi Z, Bryant R, Mannie Z. The effects of childhood trauma on adolescent hippocampal subfields. Aust N Z J Psychiatry 2019; 53:447-457. [PMID: 30712362 DOI: 10.1177/0004867418824021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Mood disorders are more common among girls and typically emerge during adolescence. The precise reasons for this are unknown, but among the many mechanisms implicated are stress-induced hippocampal structural changes during this developmental stage. The hippocampus is a complex structure comprised of subfields that develop differentially and respond variably to stress and childhood adversity, both of which are risk factors for mood disorders. To better understand vulnerability to mood disorders, we investigated a cohort of adolescent girls and determined volumetric changes in their hippocampal subfields to elucidate the potential effects of childhood trauma. METHODS Of the 229 participants, 201 girls (aged 12-17 years) fulfilled our analysis inclusion criteria. Of these, 76 had been exposed to higher emotional trauma (emotional abuse or neglect). The girls underwent high-resolution structural magnetic resonance imaging scans, and hippocampal subfield volumes were measured using FreeSurfer. We compared hippocampal subfield volumes in those exposed to higher emotional trauma and those exposed to minimal emotional trauma, at three time-points of adolescent development: early (12-13 years), mid (14-15 years) and late (16-17 years). RESULTS Mid-adolescent girls exposed to higher emotional trauma had significantly smaller left CA3 volumes than minimal emotional trauma girls ( p = 0.028). Within the minimal emotional trauma group, mid-adolescents had significantly larger left CA3 volumes than early ( p = 0.034) and late ( p = 0.036) adolescents. Within the higher emotional trauma group, early adolescents had significantly larger left CA3 volumes than late adolescents ( p = 0.036). CONCLUSION In our exploratory study, we observed higher emotional trauma-induced volume changes in the left CA3 hippocampal subfield, which varied depending on age, and may ultimately produce deficits in behavioural, cognitive and emotional processes. We propose that these changes (1) may provide a mechanism through which vulnerability to mood disorders may be increased in adolescent girls, and (2) may signal the best times to implement targeted prevention interventions.
Collapse
Affiliation(s)
- Gin S Malhi
- 1 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Pritha Das
- 1 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tim Outhred
- 1 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lauren Irwin
- 1 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Danielle Gessler
- 1 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.,5 Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,6 Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Zina Bwabi
- 3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,7 Department of Music and Performing Arts Professions, Steinhardt School of Culture, Education and Human Development, New York University, New York, NY, USA
| | - Richard Bryant
- 8 Faculty of Science, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Zola Mannie
- 1 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.,9 NSW Health and Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
35
|
Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, O'Keane V, O'Hanlon E. The Hippocampus in Depression: More Than the Sum of Its Parts? Advanced Hippocampal Substructure Segmentation in Depression. Biol Psychiatry 2019; 85:487-497. [PMID: 30528746 DOI: 10.1016/j.biopsych.2018.08.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hippocampal volume reduction is the most replicated finding in neuroimaging studies of major depressive disorder (MDD). Varying hippocampal volume definition is a well-established problem in this field. Given that hippocampal function can be mapped onto anatomically defined substructures and that detailed examination of substructure volumes is now possible, we examined different hippocampal composite measures in MDD to look for hippocampal markers of MDD. METHODS Magnetic resonance imaging brain scans were compared between 80 patients with a range of MDD duration and 83 healthy control subjects. High-resolution T1-weighted and T2-weighted-fluid-attenuated inversion recovery magnetic resonance images were examined using the automated hippocampal substructure module in FreeSurfer 6.0. Between-group volumetric assessments were performed at substructure and composite substructures levels. RESULTS Patients with MDD showed a bilateral pattern of volume reduction in principal hippocampal substructures: the cornu ammonis (CA1-CA4), dentate gyrus, and subiculum. Changes were more pronounced on the left of these structures and in recurrent depression. CA2 to CA4 were the only substructures reduced in first-presentation depression. Overall changes were most marked in the left CA1, and CA1 volume was a predictor of illness duration. CONCLUSIONS Hippocampal involvement in MDD is confined to principal substructures only. Differences between patients with MDD and healthy control subjects increased with progressively restricted hippocampal definitions, with the left CA1 emerging as a potential marker of MDD. Changes were more extensive in patients with recurrent, as opposed to first-presentation, MDD, suggesting a hippocampal disease process. These findings identify core hippocampal regions in the pathology of MDD, suggesting a potential marker of disease progression in MDD.
Collapse
Affiliation(s)
- Darren W Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Physiology, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Chloe Farrell
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kelly Doolin
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
36
|
The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry 2019; 85:443-453. [PMID: 30470559 PMCID: PMC6380948 DOI: 10.1016/j.biopsych.2018.09.031] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.
Collapse
|
37
|
Automated Subfield Volumetric Analysis of Hippocampus in Patients with Drug-Naïve Nondementia Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:8254263. [PMID: 30854188 PMCID: PMC6378059 DOI: 10.1155/2019/8254263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
Several studies used automated segmentation of hippocampal subfield (ASHS) for detailed measurements of anatomic subregions of the hippocampus, especially in the field of neurodegenerative disorders. In this study, we investigated the hippocampal subfield volume of patients with early-stage nondementia PD compared with normal healthy subjects using the ASHS method. A total of 32 subjects were enrolled in this study (sixteen patients with drug naive nondementia PD and sixteen healthy controls). All subjects were scanned with a 1.5 tesla MRI. The volumes of the seven subfields were calculated separately, and then, the whole hippocampal volume was calculated by the summing of CA1, CA2-3, CA4-DG, subiculum, presubiculum, and fimbria, excluding the hippocampal fissure. There were significant diagnosis-by-hemisphere interactive effects on the total hippocampal volume (F = 5.197; p=0.031) and the subfield volume of CA2-3 (F = 7.586; p=0.010) and CA4-DG (F = 7.403; p=0.011). The volumes of CA2-3 (F = 19.911; p < 0.001), CA4-DG (F = 20.273; p < 0.001), and total hippocampus (F = 10.573; p=0.005) in the left hemisphere were reduced compared to the right hemisphere. We suggest that the hippocampal volume asymmetry, especially in CA4-DG and CA2-3, could be observed in drug-naïve PD patients even in the early stage of the disease.
Collapse
|
38
|
Han KM, Kim A, Kang W, Kang Y, Kang J, Won E, Tae WS, Ham BJ. Hippocampal subfield volumes in major depressive disorder and bipolar disorder. Eur Psychiatry 2019; 57:70-77. [PMID: 30721801 DOI: 10.1016/j.eurpsy.2019.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The hippocampus is not a uniform structure, but rather consists of multiple, functionally specialized subfields. Few studies have explored hippocampal subfield volume difference in the same sample of major depressive disorder (MDD) and bipolar disorder (BD) cases. We aimed to investigate the difference of hippocampal subfield volume between patents with MDD and BD and healthy controls (HCs). METHODS A total of 102 MDD and 55 BD patients and 135 HCs were recruited and underwent T1-weighted image. Hippocampal subfield volume was calculated by automated segmentation and volumetric procedures developed by Iglesias et al. and implemented in FreeSurfer. Volume differences between the groups were analyzed using the analysis of covariance and controlling for age, sex, and total intracranial cavity volume. RESULTS Patients with MDD had significantly reduced volumes in the bilateral cornu ammonis 1 (CA1), CA4, the granule cell layer (GCL), molecular layer (ML), whole hippocampus, the left CA2/3, and right presubiclum and subiculum. Patients with BD had significantly reduced volumes in the right CA1, GCL, and the whole hippocampus as compared to HCs. No significant volume differences were observed between the MDD and BD groups. Illness duration was negatively correlated with volumes of the left CA1, CA4, ML, presubiculum, subiculum, and the whole hippocampus in patients with BD. CONCLUSION We observed hippocampal subfield volume reductions in both MDD and BD, a finding which more prominent in MDD. The inverse correlation between BD illness duration and hippocampal subfield volume may evidence the neuroprogressive nature of BD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Al-Amin M, Bradford D, Sullivan RKP, Kurniawan ND, Moon Y, Han SH, Zalesky A, Burne THJ. Vitamin D deficiency is associated with reduced hippocampal volume and disrupted structural connectivity in patients with mild cognitive impairment. Hum Brain Mapp 2018; 40:394-406. [PMID: 30251770 DOI: 10.1002/hbm.24380] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
Vitamin D deficiency may exacerbate adverse neurocognitive outcomes in the progression of diseases such as Parkinson's, Alzheimer's, and other dementias. Mild cognitive impairment (MCI) is prodromal for these neurocognitive disorders and neuroimaging studies suggest that, in the elderly, this cognitive impairment is associated with a reduction in hippocampal volume and white matter structural integrity. To test whether vitamin D is associated with neuroanatomical correlates of MCI, we analyzed an existing structural and diffusion MRI dataset of elderly patients with MCI. Based on serum 25-OHD levels, patients were categorized into serum 25-OHD deficient (<12 ng/mL, n = 27) or not-deficient (>12 ng/mL, n = 29). Freesurfer 6.0 was used to parcellate the whole brain into 164 structures and segment the hippocampal subfields. Whole-brain structural connectomes were generated using probabilistic tractography with MRtrix. The network-based statistic (NBS) was used to identify subnetworks of connections that significantly differed between the groups. We found a significant reduction in total hippocampal volume in the serum 25-OHD deficient group especially in the CA1, molecular layer, dentate gyrus, and fimbria. We observed a connection deficit in 13 regions with the right hippocampus at the center of the disrupted network. Our results demonstrate that low vitamin D is associated with reduced volumes of hippocampal subfields and connection deficits in elderly people with MCI, which may exacerbate neurocognitive outcomes. Longitudinal studies are now required to determine if vitamin D can serve as a biomarker for Alzheimer's disease and if intervention can prevent the progression from MCI to major cognitive disorders.
Collapse
Affiliation(s)
- Mamun Al-Amin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, Wacol, Australia
| |
Collapse
|
40
|
Donix M, Haussmann R, Helling F, Zweiniger A, Lange J, Werner A, Donix KL, Brandt MD, Linn J, Bauer M, Buthut M. Cognitive impairment and medial temporal lobe structure in young adults with a depressive episode. J Affect Disord 2018; 237:112-117. [PMID: 29803901 DOI: 10.1016/j.jad.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive deficits are common in patients with a depressive episode although the predictors for their development and severity remain elusive. We investigated whether subjective and objective cognitive impairment in young depressed adults would be associated with cortical thinning in medial temporal subregions. METHODS High-resolution magnetic resonance imaging, cortical unfolding data analysis, and comprehensive assessments of subjective and objective cognitive abilities were performed on 27 young patients with a depressive episode (mean age: 29.0 ± 5.8 years) and 23 older participants without a history of a depressive disorder but amnestic mild cognitive impairment (68.5 ± 6.6 years) or normal cognition (65.2 ± 8.7 years). RESULTS Thickness reductions in parahippocampal, perirhinal and fusiform cortices were associated with subjective memory deficits only among young patients with a depressive episode and a measurable cognitive impairment. LIMITATIONS Long-term longitudinal data would be desirable to determine the trajectories of cognitive impairment associated with depression in patients with or without cortical structure changes. CONCLUSIONS The presence of clinically significant cognitive deficits in young people with a depressive episode may identify a patient population with extrahippocampal cortical thinning.
Collapse
Affiliation(s)
- Markus Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany.
| | - Robert Haussmann
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Franziska Helling
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne Zweiniger
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan Lange
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annett Werner
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Katharina L Donix
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Moritz D Brandt
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE), 01307 Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Buthut
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Department of Neurology (Neustadt/Trachau), Städtisches Klinikum Dresden, Industriestr. 40, 01129 Dresden, Germany
| |
Collapse
|
41
|
Yüksel D, Engelen J, Schuster V, Dietsche B, Konrad C, Jansen A, Dannlowski U, Kircher T, Krug A. Longitudinal brain volume changes in major depressive disorder. J Neural Transm (Vienna) 2018; 125:1433-1447. [PMID: 30167933 DOI: 10.1007/s00702-018-1919-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
Patients with major depressive disorder (MDD) exhibit gray matter volume (GMV) reductions in limbic regions. Clinical variables-such as the number of depressive episodes-seem to affect volume alterations. It is unclear whether the observed cross-sectional GMV abnormalities in MDD change over time, and whether there is a longitudinal relationship between GMV changes and the course of disorder. We investigated T1 structural MRI images of 54 healthy control (HC) and 37 MDD patients in a 3-Tesla-MRI with a follow-up interval of 3 years. The Cat12 toolbox was used to analyze longitudinal data (p < 0.05, FWE-corrected, whole-brain analysis; flexible factorial design). Interaction effects indicated increasing GMV in MDD in the bilateral amygdala, and decreasing GMV in the right thalamus between T1 and T2. Further analyses comparing patients with a mild course of disorder (MCD; 0-1 depressive episode during the follow-up) to patients with a severe course of disorder (SCD; > 1 depressive episode during the follow-up) revealed increasing amygdalar volume in MCD. Our study confirms structural alterations in limbic regions in MDD patients and an association between these impairments and the course of disorder. Thus, we assume that the reported volumetric alterations in the left amygdala (i.e. volumetric normalization) are reversible and apparently driven by the clinical phenotype. Hence, these results support the assumption that the severity and progression of disease influences amygdalar GMV changes in MDD or vice versa.
Collapse
Affiliation(s)
- Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany.
| | - Jennifer Engelen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Verena Schuster
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Agaplesion Diakonieklinikum Rotenburg, Centre for Psychosocial Medicine, Elise-Averdieck-Straße 17, 27356, Rotenburg (Wümme), Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
| |
Collapse
|
42
|
Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM. Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Mol Psychiatry 2018; 23:1737-1744. [PMID: 29133948 DOI: 10.1038/mp.2017.224] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Studies of patients with major depressive disorder (MDD) have consistently reported reduced hippocampal volumes; however, the exact pattern of these volume changes in specific anatomical subfields and their functional significance is unclear. We sought to clarify the relationship between hippocampal tail volumes and (i) a diagnosis of MDD, and (ii) clinical remission to anti-depressant medications (ADMs). Outpatients with nonpsychotic MDD (n=202) based on DSM-IV criteria and a 17-item Hamilton Rating Scale for Depression (HRSD17) score ⩾16 underwent pretreatment magnetic resonance imaging as part of the international Study to Predict Optimized Treatment for Depression (iSPOT-D). Gender-matched healthy controls (n=68) also underwent MRI scanning. An automated pipeline was used to objectively measure hippocampal subfield and whole brain volumes. Remission was defined as an HRSD17 of ⩽7 following 8 weeks of randomized open-label treatment ADMs: escitalopram, sertraline or venlafaxine-extended release. After controlling for age and total brain volume, hippocampal tail volume was larger in the MDD cohort compared to control subjects. Larger hippocampal tail volume was positively related to clinical remission, independent of total hippocampal volume, total brain volume and age. These data provide convergent evidence of the importance of the hippocampus in the development or treatment of MDD. Hippocampal tail volume is proposed as a potentially useful biomarker of sensitivity to ADM treatment.
Collapse
Affiliation(s)
- J J Maller
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia. .,General Electric Healthcare, Richmond, VIC, Australia.
| | - K Broadhouse
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - A J Rush
- Duke-National University of Singapore, Singapore, Singapore
| | - E Gordon
- Brain Resource Ltd, Sydney, NSW, Australia.,Brain Resource Ltd, San Francisco, CA, USA
| | - S Koslow
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,The Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| |
Collapse
|
43
|
Ross DE, Seabaugh J, Cooper L, Seabaugh J. NeuroQuant® and NeuroGage® reveal effects of traumatic brain injury on brain volume. Brain Inj 2018; 32:1437-1441. [PMID: 29953249 DOI: 10.1080/02699052.2018.1489980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This report describes the case of a 58-year-old man with moderate traumatic brain injury (TBI) and pre-accident brain disorders who had multiple persistent neuropsychiatric symptoms. NeuroQuant® 2.0 and NeuroGage® 2.0 MRI brain volume analyses were used during the chronic stage of injury (> 1 year after injury) to help understand the effects of the TBI on his brain volume. NeuroQuant® showed widespread cross-sectional atrophy, especially in the frontal and temporal lobes, consistent with encephalomalacia seen on the MRIs. Several of his clinical symptoms were consistent with the volume abnormalities. NeuroGage® longitudinal analyses of volume change from the time 1 to time 2 magnetic resonance imaging showed abnormally rapid atrophy and ventricular enlargement. The high rates of volume change were much more consistent with the relatively recent effects of TBI than with effects of the much more chronic pre-accident brain disorders.
Collapse
Affiliation(s)
- David E Ross
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA.,c Department of Psychiatry, Virginia Commonwealth University , Richmond , VA, USA
| | - John Seabaugh
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA
| | - Leah Cooper
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA.,d Neuroscience, Virginia Polytechnic Institute and State University , Blacksburg , VA, USA
| | - Jan Seabaugh
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA
| |
Collapse
|
44
|
Chen Z, Chen X, Liu M, Ma L, Yu S. Lower hippocampal subfields volume in relation to anxiety in medication-overuse headache. Mol Pain 2018; 14:1744806918761257. [PMID: 29424272 PMCID: PMC5871043 DOI: 10.1177/1744806918761257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/30/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background Hippocampus (HIP) was an important limbic structure, and concurrent emotion disorders may occur in medication-overuse headache patients. The aim of this study is to investigate altered HIP and HIP subfields volume in relation with the anxiety in medication-overuse headache patients using a state-of-the-art hippocampal segment method. Results The current study presented that a significant lower HIP and HIP subfields volume were identified in medication-overuse headache compared with that in normal controls except right HIP tail, bilateral parasubiculums, and HIP fissure. The left HIP and right subiculum presented negative correlation with headache variables, and the right subiculum, Cornu Ammonis 4, granule cell layer of dentate gyrus, bilateral Cornu Ammonis 1, molecular layer, and whole HIP presented negative correlation with Hamilton Anxiety Scale score, which were further confirmed by the linear regression analysis with the exclusion of psychological variables and headache variables, respectively. Conclusions The lower HIP and HIP subfields volume were identified in medication-overuse headache patients, and negatively related with anxiety condition. The potential mechanism for the comorbidity medication-overuse headache and anxiety might be interpreted as the reciprocal causation relationship and co-occurrence relationship.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
- Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
- Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol Psychiatry 2017; 82:914-923. [PMID: 28629541 PMCID: PMC5683934 DOI: 10.1016/j.biopsych.2017.05.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hippocampal volume loss is a hallmark of clinical depression. Chronic stress produces volume loss in the hippocampus in humans and atrophy of CA3 pyramidal cells and suppression of adult neurogenesis in rodents. METHODS To investigate the relationship between decreased adult neurogenesis and stress-induced changes in hippocampal structure and volume, we compared the effects of chronic unpredictable restraint stress and inhibition of neurogenesis in a rat pharmacogenetic model. RESULTS Chronic unpredictable restraint stress over 4 weeks decreased total hippocampal volume, reflecting loss of volume in all hippocampal subfields and in both dorsal and ventral hippocampus. In contrast, complete inhibition of adult neurogenesis for 4 weeks led to volume reduction only in the dentate gyrus. With prolonged inhibition of neurogenesis for 8 or 16 weeks, volume loss spread to the CA3 region, but not CA1. Combining stress and inhibition of adult neurogenesis did not have additive effects on the magnitude of volume loss but did produce a volume reduction throughout the hippocampus. One month of chronic unpredictable restraint stress and inhibition of adult neurogenesis led to atrophy of pyramidal cell apical dendrites in dorsal CA3 and to neuronal reorganization in ventral CA3. Stress also significantly affected granule cell dendrites. CONCLUSIONS The findings suggest that adult neurogenesis is required to maintain hippocampal volume but is not responsible for stress-induced volume loss.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| | - Hayley C McCausland
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - H Douglas Morris
- Nuclear Magnetic Resonance Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
46
|
Averill CL, Satodiya RM, Scott JC, Wrocklage KM, Schweinsburg B, Averill LA, Akiki TJ, Amoroso T, Southwick SM, Krystal JH, Abdallah CG. Posttraumatic Stress Disorder and Depression Symptom Severities Are Differentially Associated With Hippocampal Subfield Volume Loss in Combat Veterans. ACTA ACUST UNITED AC 2017. [PMID: 29520395 PMCID: PMC5839647 DOI: 10.1177/2470547017744538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Two decades of human neuroimaging research have associated volume reductions
in the hippocampus with posttraumatic stress disorder. However, little is
known about the distribution of volume loss across hippocampal subfields.
Recent advances in neuroimaging methods have made it possible to accurately
delineate 10 gray matter hippocampal subfields. Here, we apply a volumetric
analysis of hippocampal subfields to data from a group of combat-exposed
Veterans. Method Veterans (total, n = 68, posttraumatic stress disorder, n = 36; combat
control, n = 32) completed high-resolution structural magnetic resonance
imaging. Based on previously validated methods, hippocampal subfield volume
measurements were conducted using FreeSurfer 6.0. The Clinician-Administered
PTSD Scale assessed posttraumatic stress disorder symptom severity; Beck
Depression Inventory assessed depressive symptom severity. Controlling for
age and intracranial volume, partial correlation analysis examined the
relationship between hippocampal subfields and symptom severity. Correction
for multiple comparisons was performed using false discovery rate. Gender,
intelligence, combat severity, comorbid anxiety, alcohol/substance use
disorder, and medication status were investigated as potential
confounds. Results In the whole sample, total hippocampal volume
negatively correlated with Clinician-Administered PTSD Scale and Beck Depression Inventory scores. Of the 10
hippocampal subfields, Clinician-Administered PTSD Scale symptom severity
negatively correlated with the hippocampus–amygdala
transition area (HATA). Beck Depression Inventory scores
negatively correlated with dentate gyrus, cornu ammonis 4 (CA4), HATA,
CA2/3, molecular layer, and CA1. Follow-up analysis limited to the
posttraumatic stress disorder group showed a negative correlation between
Clinician-Administered PTSD Scale symptom severity and each of HATA, CA2/3,
molecular layer, and CA4. Conclusion This study provides the first evidence relating posttraumatic stress disorder
and depression symptoms to abnormalities in the HATA, an anterior
hippocampal region highly connected to prefrontal-amygdala circuitry.
Notably, dentate gyrus abnormalities were associated with depression
severity but not posttraumatic stress disorder symptoms. Future confirmatory
studies should determine the extent to which dentate gyrus volume can
differentiate between posttraumatic stress disorder- and depression-related
pathophysiology.
Collapse
Affiliation(s)
- Christopher L Averill
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ritvij M Satodiya
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,VISN4 Mental Illness Research, Education, and Clinical Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Kristen M Wrocklage
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Gaylord Specialty Healthcare, Department of Psychology, Wallingford, CT, USA
| | - Brian Schweinsburg
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lynnette A Averill
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Teddy J Akiki
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy Amoroso
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Steven M Southwick
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Li Y, Yan J, Zhu X, Zhu Y, Qin J, Zhang N, Ju S. Increased hippocampal fissure width is a sensitive indicator of rat hippocampal atrophy. Brain Res Bull 2017; 137:91-97. [PMID: 29174731 DOI: 10.1016/j.brainresbull.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Volume loss within the hippocampus is known as the most replicated finding of structural brain imaging studies of neuropsychiatric diseases. Although voxel-based auto or semi-auto volumetric measurements are widely used in the determination of the human hippocampus, the detection of hippocampal atrophy in rats is still a dilemma as it relies on a relatively primitive and complex approach. In this study, we aimed to develop a convenient way to measure the atrophy of the hippocampus in rats. METHODS Twenty-four male Wistar rats were exposed to chronic unpredictable mild stress (CUMS) and a wheel running test (WRT) to simulate the conditions of hippocampal volume atrophy and improvement. The hippocampal volume and hippocampal fissure (HiF) width were dynamically measured using 7 T structural magnetic resonance imaging (MRI) with the grayscale method at week 0, 2, 4, and 8. The changes in the hippocampal volume and HiF width in rats were compared. In addition, hematoxylin-eosin (HE) staining of the HiF was used to verify the MRI findings. RESULTS The hippocampal volume and the HiF width presented opposite trends based on the MRI findings and the histology data. The atrophy of the hippocampal subfields was closely related to the corresponding increase in the HiF width. CONCLUSION Determination of the HiF width may serve as a sensitive and convenient indicator of rat hippocampal atrophy.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, China; Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jiasheng Qin
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ningning Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
48
|
Li Y, Zhu X, Ju S, Yan J, Wang D, Zhu Y, Zang F. Detection of volume alterations in hippocampal subfields of rats under chronic unpredictable mild stress using 7T MRI: A follow-up study. J Magn Reson Imaging 2017; 46:1456-1463. [PMID: 28225578 DOI: 10.1002/jmri.25667] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine hippocampal subfields volume loss in depression, which was simulated by a rat chronic unpredictable mild stress (CUMS) model. As different cellular and molecular characteristics in hippocampal subfields, these subfields are regarded as differentially vulnerable to processes associated with stress. MATERIALS AND METHODS Twenty male Wistar rats were exposed to various stressors until the model was successfully established. The effects of physical exercise on recovery of hippocampal volume in depressed rats were simulated using the wheel running test (WRT). These rats hippocampal volumes were dynamically measured using T2 -weighted images (T2 WIs) at 7T structural magnetic resonance imaging (MRI). RESULTS After 4 weeks of CUMS (CUMS-4W), the behavioral tests showed that the rat model of depression was successfully established (P < 0.001). In this process, the bilateral CA1 volume was significantly atrophic after 2 weeks of CUMS (CUMS-2W) compared with controls (left: 21.09 ± 2.31 vs. 26.16 ± 3.83 mm3 , P < 0.001; right: 21.05 ± 2.36 vs. 26.12 ± 3.78 mm3 , P < 0.001), whereas the other subfields did not show a similar change (all P > 0.05). The volume of CA3, dentate gyrus (DG), and subiculum displayed atrophy after CUMS-4W (CA3: left:12.23 ± 1.10 mm3 , right: 12.20 ± 1.14 mm3 ; DG: left:8.16 ± 0.58 mm3 , right: 8.18 ± 0.92 mm3 ; subiculum: left: 4.30 ± 0.52 mm3 , right: 4.29 ± 0.44 mm3 ; all P < 0.05). The rats' (CUMS-4W) hippocampal DG volume was restored (left: 10.67 ± 1.60 mm3 , right: 10.71 ± 1.58 mm3 ), and the depression-like behaviors of these rats improved after WRT-4W (P < 0.05). CONCLUSION In general, volume loss was demonstrated in various rat hippocampal subfields during the development and recovery from depression, which were detected by ultrahigh-field MRI. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1456-1463.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| | - Xiaolan Zhu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Fengchao Zang
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| |
Collapse
|
49
|
Nie L, Wei G, Peng S, Qu Z, Yang Y, Yang Q, Huang X, Liu J, Zhuang Z, Yang X. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease. Biofactors 2017; 43:593-611. [PMID: 28608594 DOI: 10.1002/biof.1369] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease accompanied by neuropsychiatric symptoms, such as anxiety and depression. The levels of melatonin decrease in brains of AD patients. The potential effect of melatonin on anxiety and depression behaviors in AD and the underlying mechanisms remain unclear. In this study, we treated 10-month-old triple transgenic mice of AD (3xTg-AD) with melatonin (10 mg/kg body weight/day) for 1 month and explored the effects of melatonin on anxiety and depression-like behaviors in 3xTg-AD mice and the protein expression of hippocampal tissues. The behavioral test showed that melatonin ameliorated anxiety and depression-like behaviors of 3xTg-AD mice as measured by open field test, elevated plus maze test, forced swimming test, and tail suspension test. By carrying out two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, we revealed a total of 46 differentially expressed proteins in hippocampus between the wild-type (WT) mice and non-treated 3xTg-AD mice. A total of 21 differentially expressed proteins were revealed in hippocampus between melatonin-treated and non-treated 3xTg-AD mice. Among these differentially expressed proteins, glutathione S-transferase P 1 (GSTP1) (an anxiety-associated protein) and complexin-1 (CPLX1) (a depression-associated protein) were significantly down-regulated in hippocampus of 3xTg-AD mice compared with the WT mice. The expression of these two proteins was modulated by melatonin treatment. Our study suggested that melatonin could be used as a potential candidate drug to improve the neuropsychiatric behaviors in AD via modulating the expression of the proteins (i.e. GSTP1 and CPLX1) involved in anxiety and depression behaviors. © 2017 BioFactors, 43(4):593-611, 2017.
Collapse
Affiliation(s)
- Lulin Nie
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Gang Wei
- Thyroid & Breast Surgery Department, Hubei Maternal & Children Hospital, Wuhan, 430070, China
| | - Shengming Peng
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhongsen Qu
- Department of Neurology, Shanghai Jiaotong University Affiliated the Sixth Hospital, Shanghai, 200233, China
| | - Ying Yang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Qian Yang
- Department of cell biology and Anatomy, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhixiong Zhuang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
50
|
Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users. Psychopharmacology (Berl) 2017; 234:2149-2157. [PMID: 28424833 DOI: 10.1007/s00213-017-4620-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE Cannabis use is associated with neuroanatomical alterations in the hippocampus. While the hippocampus is composed of multiple subregions, their differential vulnerability to cannabis dependence remains unknown. OBJECTIVES The objective of the study is to investigate gray matter alteration in each of the hippocampal subregions (presubiculum, subiculum, cornu ammonis (CA) subfields CA1-4, and dentate gyrus (DG)) as associated with cannabis use and dependence. METHODS A total of 35 healthy controls (HC), 22 non-dependent (CB-nondep), and 39 dependent (CB-dep) cannabis users were recruited. We investigated group differences in hippocampal subregion volumes between HC, CB-nondep, and CB-dep users. We further explored the association between CB use variables (age of onset of regular use, monthly use, lifetime use) and hippocampal subregions in CB-nondep and CB-dep users separately. RESULTS The CA1, CA2/3, CA4/DG, as well as total hippocampal gray matter were reduced in volume in CB-dep but not in CB-nondep users, relative to HC. The right CA2/3 and CA4/DG volumes were also negatively associated with lifetime cannabis use in CB-dep users. CONCLUSIONS Our results suggest a regionally and dependence-specific influence of cannabis use on the hippocampus. Hippocampal alteration in cannabis users was specific to the CA and DG regions and confined to dependent users.
Collapse
|