1
|
Kazantseva A, Davydova Y, Enikeeva R, Mustafin R, Malykh S, Lobaskova M, Kanapin A, Prokopenko I, Khusnutdinova E. A Combined Effect of Polygenic Scores and Environmental Factors on Individual Differences in Depression Level. Genes (Basel) 2023; 14:1355. [PMID: 37510260 PMCID: PMC10379734 DOI: 10.3390/genes14071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The risk of depression could be evaluated through its multifactorial nature using the polygenic score (PGS) approach. Assuming a "clinical continuum" hypothesis of mental diseases, a preliminary assessment of individuals with elevated risk for developing depression in a non-clinical group is of high relevance. In turn, epidemiological studies suggest including social/lifestyle factors together with PGS to address the "missing heritability" problem. We designed regression models, which included PGS using 27 SNPs and social/lifestyle factors to explain individual differences in depression levels in high-education students from the Volga-Ural region (VUR) of Eurasia. Since issues related to population stratification in PGS scores may lead to imprecise variant effect estimates, we aimed to examine a sensitivity of PGS calculated on summary statistics of depression and neuroticism GWAS from Western Europeans to assess individual proneness to depression levels in the examined sample of Eastern Europeans. A depression score was assessed using the revised version of the Beck Depression Inventory (BDI) in 1065 young adults (age 18-25 years, 79% women, Eastern European ancestry). The models based on weighted PGS demonstrated higher sensitivity to evaluate depression level in the full dataset, explaining up to 2.4% of the variance (p = 3.42 × 10-7); the addition of social parameters enhanced the strength of the model (adjusted r2 = 15%, p < 2.2 × 10-16). A higher effect was observed in models based on weighted PGS in the women group, explaining up to 3.9% (p = 6.03 × 10-9) of variance in depression level assuming a combined SNPs effect and 17% (p < 2.2 × 10-16)-with the addition of social factors in the model. We failed to estimate BDI-measured depression based on summary statistics from Western Europeans GWAS of clinical depression. Although regression models based on PGS from neuroticism (depression-related trait) GWAS in Europeans were associated with a depression level in our sample (adjusted r2 = 0.43%, p = 0.019-for unweighted model), the effect was mainly attributed to the inclusion of social/lifestyle factors as predictors in these models (adjusted r2 = 15%, p < 2.2 × 10-16-for unweighted model). In conclusion, constructed PGS models contribute to a proportion of interindividual variability in BDI-measured depression in high-education students, especially women, from the VUR of Eurasia. External factors, including the specificity of rearing in childhood, used as predictors, improve the predictive ability of these models. Implementation of ethnicity-specific effect estimates in such modeling is important for individual risk assessment.
Collapse
Affiliation(s)
- Anastasiya Kazantseva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Yuliya Davydova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Renata Enikeeva
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Rustam Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Sergey Malykh
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
- Department of Psychology, Lomonosov Moscow State University, 125009 Moscow, Russia
| | - Marina Lobaskova
- Psychological Institute, Russian Academy of Education, 125009 Moscow, Russia
| | - Alexander Kanapin
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
- Department of Psychology, Lomonosov Moscow State University, 125009 Moscow, Russia
| |
Collapse
|
2
|
Zhao Q, Liu Y, Wang X, Zhu Y, Jiao Y, Bao Y, Shi W. Cuscuta chinensis flavonoids reducing oxidative stress of the improve sperm damage in bisphenol A exposed mice offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114831. [PMID: 36966614 DOI: 10.1016/j.ecoenv.2023.114831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a common environmental endocrine disruptor, and overexposure is a threat to male reproduction. Although studies have confirmed that BPA exposure causes a decrease in sperm quality in offspring, the dosage used, and the underlying mechanism is not clear. The purpose of this study is to investigate whether Cuscuta chinensis flavonoids (CCFs) can antagonize or alleviate BPA-induced reproductive injury by analyzing the processes associated with BPA's impairment of sperm quality. BPA and 40 mg/kg bw/day of CCFs were administered to the dams at gestation day (GD) 0.5-17.5. Testicles and serum of male mice are collected on postnatal day 56 (PND56), and spermatozoa are collected to detect relevant indicators. Our results showed that compared with the BPA group, CCFs could significantly increase the serum contents of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T) in males at PND 56, as well as the transcription levels of estrogen receptor alpha (ERα), steroidogenic acute regulatory protein (StAR) and Cytochrome P450 family 11, subfamily A, and member 1 (CYP11A1). CCFs also significantly inhibit the production of reactive oxygen species (ROS), reduce oxidative stress, increase mitochondrial membrane potential, and reduce sperm apoptosis. It also has a certain regulatory effect on sperm telomere length and mitochondrial DNA copy number. These results suggest that CCFs can increase reproductive hormone and receptor levels in adult males by regulating the expression of oxidative stress correlated factors, and ultimately mitigate the negative effects of BPA on sperm quality in male mice.
Collapse
Affiliation(s)
- Qianhui Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ying Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yulan Jiao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Veterinary Biotenology Innovation Center, Baoding 071001, China; Ruipu (Baoding) Biological Pharmaceutical Co., Ltd., Baoding 071000, China
| | - Yongzhan Bao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Veterinary Biotenology Innovation Center, Baoding 071001, China.
| |
Collapse
|
3
|
Increased telomerase activity in major depressive disorder with melancholic features: Possible role of pro-inflammatory cytokines and the brain-derived neurotrophic factor. Brain Behav Immun Health 2021; 14:100259. [PMID: 34589765 PMCID: PMC8474565 DOI: 10.1016/j.bbih.2021.100259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
The biological mechanisms responsible for depression symptoms are not yet understood. For this reason, it is important to reveal the etiopathogenetic mechanisms in this disease. This study aims to compare the levels of pro-inflammatory cytokines, Brain-Derived Neurotrophic Factor (BDNF), and telomerase activity in patients with major depressive disorder (MDD) and healthy controls. Plasma BDNF, interleukin-6 (IL-6), IL-1beta, and Tumor Necrosis Factor-alpha (TNF-alpha) levels, and telomerase activity were measured in 39 patients with major depression and 39 healthy controls matched with patients in terms of age, gender, and education year. Plasma concentration of BDNF, IL-6 levels, and telomerase activity was significantly different between patients with MDD and healthy controls. Correlation analysis showed a positive trend between plasma BDNF levels and plasma IL-6 levels in patients with MDD with melancholic features. Furthermore, the path analysis results showed that the telomerase activity was indirectly affected by gender, IL-1β, IL-6, BDNF, and BMI, via the severity of depression and anxiety and MDD status as the mediators. Further studies are needed to examine the molecular mechanism of the telomerase activity and the role of BDNF and pro-inflammatory cytokines in the telomerase activation in MDD.
Collapse
|
4
|
Schroder JD, de Araújo JB, de Oliveira T, de Moura AB, Fries GR, Quevedo J, Réus GZ, Ignácio ZM. Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications. Rev Neurosci 2021; 33:227-255. [PMID: 34388328 DOI: 10.1515/revneuro-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.
Collapse
Affiliation(s)
- Jessica Daniela Schroder
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Julia Beatrice de Araújo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Airam Barbosa de Moura
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Gabriel Rodrigo Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| |
Collapse
|