1
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
2
|
Rengasamy M, Mathew S, Howland R, Griffo A, Panny B, Price R. Neural connectivity moderators and mechanisms of ketamine treatment among treatment-resistant depressed patients: a randomized controlled trial. EBioMedicine 2024; 99:104902. [PMID: 38141395 PMCID: PMC10788398 DOI: 10.1016/j.ebiom.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Intravenous (IV) ketamine has emerged as a rapid and effective treatment for TRD. However, the specific neural mechanisms of ketamine's effects in humans remains unclear. Although neuroplasticity is implicated as a mechanism of action in animal models, relatively few randomized controlled trials (RCTs) in TRD patients have examined ketamine's impact on functional connectivity, a posited functional marker of neuroplasticity-particularly in the context of a mood-induction paradigm (termed miFC). METHODS 152 adults with TRD (63% female; 37% male) were randomly allocated to receive a single infusion of ketamine or saline in a 2:1 ratio. We examined changes in connectivity (from baseline to 24-h post-infusion) that differed by treatment, and whether clinical treatment response at 24-h post-infusion was uniquely related (among patients allocated to ketamine relative to saline) to (1) pre-treatment connectivity and (2) changes in connectivity. We examined both miFC and rsFC, using prefrontal cortex and limbic seed regions. We also conducted a multiverse analysis to examine findings most robust against analytic decisions. FINDINGS Across both miFC and rsFC, ketamine was associated with greater in prefrontal/limbic connectivity compared to saline, and lower baseline connectivity of limbic and prefrontal regions predicted greater treatment response in patients receiving ketamine. Greater connectivity increases in participants receiving ketamine was uniquely related to greater treatment response. In addition, certain findings were identified as being reproducible against different analytic decisions in multiverse analyses. INTERPRETATION Our findings identify specific neural connectivity patterns impacted by ketamine and were uniquely related to outcomes following ketamine (relative to saline). These findings generally support prominent neuroplasticity models of ketamine's therapeutic efficacy. These findings lay new groundwork for understanding how to enhance and optimize ketamine treatments and develop novel rapid-acting treatments for depression. FUNDING This research was supported by NIH grant R01MH113857 and by the Clinical and Translational Sciences Institute at the University of Pittsburgh (UL1-TR-001857).
Collapse
Affiliation(s)
- Manivel Rengasamy
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Sanjay Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Michael E. Debakey VA Medical Center, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Robert Howland
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Angela Griffo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Panny
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Wu G, Xu H. A synopsis of multitarget therapeutic effects of anesthetics on depression. Eur J Pharmacol 2023; 957:176032. [PMID: 37660970 DOI: 10.1016/j.ejphar.2023.176032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Depression is a profound mental disorder that dampens the mood and undermines volition, which exhibited an increased incidence over the years. Although drug-based interventions remain the primary approach for depression treatment, the available medications still can't satisfy the patients. In recent years, the newly discovered therapeutic targets such as N-methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, and tyrosine kinase B (TrkB) have brought new breakthroughs in the development of antidepressant drugs. Moreover, it has come to light that certain anesthetics possess pharmacological mechanisms intricately linked to the aforementioned therapeutic targets for depression. At present, numerous preclinical and clinical studies have explored the therapeutic effects of anesthetic drugs such as ketamine, isoflurane, N2O, and propofol, on depression. These investigations suggested that these drugs can swiftly ameliorate patients' depression symptoms and engender long-term effects. In this paper, we provide a comprehensive review of the research progress and potential molecular mechanisms of various anesthetic drugs for depression treatment. By shedding light on this subject, we aim to facilitate the development and clinical implementation of new antidepressant drugs based on anesthetic medications.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongwei Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
4
|
Acevedo J, Mugarura NE, Welter AL, Johnson EM, Siegel JA. The Effects of Acute and Repeated Administration of Ketamine on Memory, Behavior, and Plasma Corticosterone Levels in Female Mice. Neuroscience 2023; 512:99-109. [PMID: 36496189 DOI: 10.1016/j.neuroscience.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Ketamine is an anesthetic drug that has recently been approved for the treatment of treatment-resistant depression. Females are diagnosed with Major Depressive Disorder at higher rates than males, yet most of the pre-clinical research on ketamine has been conducted in male subjects. Additionally, the literature on the acute and long-term behavioral and cognitive effects of ketamine shows conflicting results. It is important to examine the acute and long-term cognitive and behavioral effects of ketamine exposure at lower sub-anesthetic doses, as the recreational use of the drug at higher doses is associated with cognitive and memory impairments. The current study examined the effects of acute and repeated ketamine exposure on anxiety-like behavior, novel object recognition memory, depression-like behavior, and plasma corticosterone levels in 20 adult female C57BL/6J mice. Mice were exposed acutely or repeatedly for 10 consecutive days to saline or 15 mg/kg ketamine and behavior was measured in the open field test, novel object recognition test, and the Porsolt forced swim test. Plasma corticosterone levels were measured following behavioral testing. Acute ketamine exposure decreased locomotor activity and increased anxiety-like behavior in the open field test compared to controls, while repeated ketamine exposure impaired memory in the novel object recognition test. There were no effects of acute or repeated ketamine exposure on depression-like behavior in the Porsolt forced swim test or on plasma corticosterone levels. These findings suggest that a subanesthetic dose of ketamine alters behavior and cognition in female mice and the effects are dependent on the duration of exposure.
Collapse
Affiliation(s)
- Jonathan Acevedo
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA 90502, USA.
| | - Naomi E Mugarura
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Alex L Welter
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Emily M Johnson
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Jessica A Siegel
- Department of Biochemistry and Biophysics, The College of Science, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
5
|
Jollant F, Colle R, Nguyen TML, Corruble E, Gardier AM, Walter M, Abbar M, Wagner G. Ketamine and esketamine in suicidal thoughts and behaviors: a systematic review. Ther Adv Psychopharmacol 2023; 13:20451253231151327. [PMID: 36776623 PMCID: PMC9912570 DOI: 10.1177/20451253231151327] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/01/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND More than 2% of the general population experience suicidal ideas each year and a large number of them will attempt suicide. Evidence-based therapeutic options to manage suicidal crisis are currently limited. OBJECTIVES The aim of this study was to overview the findings on the use of ketamine and esketamine for the treatment of suicidal ideas and acts. DESIGN Systematic review. DATA SOURCES AND METHODS PubMed, article references, and Clinicaltrials.gov up to June 30, 2022. Meta-analyses published within the last 2 years were also reviewed. RESULTS We identified 12 randomized controlled trials with reduction of suicidal ideation as the primary objective and 14 trials as secondary objectives. Intravenous racemic ketamine was superior to control drugs (placebo or midazolam) within the first 72 h, in spite of large placebo effects. Adverse events were minor and transient. In contrast, intranasal esketamine did not differ from placebo in large-scale studies. Limitations, clinical considerations, and opportunities for future research include the following points: large placebo effects when studying suicidal ideation reduction; small concerns about blinding quality due to dissociative effects; no studies on the risk/prevention of suicidal acts and mortality; lack of studies beyond affective disorders; no studies in adolescents and older people; lack of knowledge of long-term side effects, notably liability for abuse; no robust predictive markers; limited understanding of the mechanisms of ketamine on suicidal ideas; need for improved assessment of suicidal ideation in clinical trials; need for studies in outpatient settings, emergency room, and liaison consultation; need for research on ketamine administration; limited knowledge on the positive and negative effects of concomitant treatments. CONCLUSION Overall, there is compelling evidence for a favorable short-term benefit-risk balance with intravenous racemic ketamine but not intranasal esketamine. The place of ketamine will have to be defined within a multimodal care strategy for suicidal patients. Caution remains necessary for clinical use, and pharmacovigilance will be essential.
Collapse
Affiliation(s)
- Fabrice Jollant
- Service de Psychiatrie, CHU Bicêtre, APHP, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France.,Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France.,Department of Psychiatry, CHU Nîmes, Univ Montpellier, Nîmes, France.,Department of Psychiatry & McGill Group for Suicide Studies, McGill University, Montréal, QC, Canada
| | - Romain Colle
- Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Department of Psychiatry, CHU Bicêtre, APHP, Le Kremlin-Bicêtre, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Thi Mai Loan Nguyen
- Faculty of Pharmacy, University Paris-Saclay, Orsay, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Department of Psychiatry, CHU Bicêtre, APHP, Le Kremlin-Bicêtre, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Faculty of Pharmacy, University Paris-Saclay, Orsay, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,German Center for Mental Health (DZPG), site Jena Magdeburg Halle, Germany.,Center for Intervention and Research on adaptive and maladaptive Brain Circuits underlying Mental Health (C-I-R-C), site Jena Magdeburg Halle, Germany
| | - Mocrane Abbar
- Department of Psychiatry, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Network for Suicide Prevention in Thuringia (NeST), Jena, Germany.,Center for Intervention and Research on adaptive and maladaptive Brain Circuits underlying Mental Health (C-I-R-C), site Jena Magdeburg Halle, Germany
| |
Collapse
|
6
|
Chen CC, Zhou N, Hu N, Feng JG, Wang XB. Acute Effects of Intravenous Sub-Anesthetic Doses of Ketamine and Intranasal Inhaled Esketamine on Suicidal Ideation: A Systematic Review and Meta-Analysis. Neuropsychiatr Dis Treat 2023; 19:587-599. [PMID: 36942150 PMCID: PMC10024508 DOI: 10.2147/ndt.s401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Purpose Suicide is a major public health concern with currently no validated and efficacious treatments approved. Preliminary evidence suggests that intravenous ketamine has rapid and sustained antidepressant effects, making it a candidate with therapeutic potential for depressed patients at risk for suicide. We conducted a meta-analysis to evaluate the efficacy of ketamine and esketamine in reducing suicidal ideation (SI), as well as their respective onset and duration of action. Data Sources We searched PubMed, Embase, Ovid, Cochrane, and Web of Science databases for studies published from inception to September 29, 2022. Study Eligibility Criteria We conducted a systematic review of all parallel randomized controlled trials (RCTs) examining the effect and duration of ketamine or esketamine on SI. Our primary outcome measure was the Suicide Scale score, which was measured using the Scale for Suicidal Ideation (SSI), Beck Scale for Suicide Ideation (BSS), Beck Depression Inventory (BDI), or Modified Scale for Suicidal Ideation (MSSI). To obtain effect sizes (Cohen's d), we calculated the difference in Suicide Scale scores before and after administration in each group. Results Our study showed that intravenous sub-anesthetic doses of ketamine and intranasal inhaled esketamine had a significant anti-SI effect. Specifically, ketamine produced a large degree of anti-SI effect within the 4-6 hours (Cohen's d = 1.16, 95% CI: 0.50, 1.81) and a medium-large degree in the 24 hours (Cohen's d = 0.95, 95% CI: 0.48, 1.41). Esketamine, on the other hand, produced a small-medium degree of anti-SI effect within the 4-6 hours timeframe (Cohen's d = 0.26, 95% CI: 0.09, 0.44) and the 24 hours (Cohen's d = 0.30, 95% CI: 0.17, 0.47). Conclusion Intravenous sub-anesthetic doses of ketamine and intranasal inhaled esketamine could reduce SI within 4 hours and last for 24 hours.
Collapse
Affiliation(s)
- Cheng-Chuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Na Zhou
- School of Nursing, Southwest Medical University, Luzhou, People’s Republic of China
| | - Na Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Xiao-Bin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
- Correspondence: Xiao-Bin Wang, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China, Tel +86 13708280087, Fax +86 830-3161222, Email
| |
Collapse
|
7
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|