1
|
Shukla K, Mishra V, Singh J, Varshney V, Verma R, Srivastava S. Nanotechnology in sustainable agriculture: A double-edged sword. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5675-5688. [PMID: 38285130 DOI: 10.1002/jsfa.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Nanotechnology is a rapidly developing discipline that has the potential to transform the way we approach problems in a variety of fields, including agriculture. The use of nanotechnology in sustainable agriculture has gained popularity in recent years. It has various applications in agriculture, such as the development of nanoscale materials and devices to boost agricultural productivity, enhance food quality and safety, improve the efficiency of water and nutrient usage, and reduce environmental pollution. Nanotechnology has proven to be very beneficial in this field, particularly in the development of nanoscale delivery systems for agrochemicals such as pesticides, fertilizers, and growth regulators. These nanoscale delivery technologies offer various benefits over conventional delivery systems, including better penetration and distribution, enhanced efficacy, and lower environmental impact. Encapsulating agrochemicals in nanoscale particles enables direct delivery to the targeted site in the plant, thereby reducing waste and minimizing off-target effects. Plants are fundamental building blocks of all ecosystems and evaluating the interaction between nanoparticles (NPs) and plants is a crucial aspect of risk assessment. This critical review therefore aims to provide an overview of the latest advances regarding the positive and negative effects of nanotechnology in agriculture. It also explores potential future research directions focused on ensuring the safe utilization of NPs in this field, which could lead to sustainable development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kavita Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jawahar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, UK
| | - Vishal Varshney
- Department of Botany, Govt. Shaheed GendSingh College, Charama, Chattisgarh, India
| | - Rajnandini Verma
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Kaushal K, Rajani K, Kumar RR, Ranjan T, Kumar A, Ahmad MF, Kumar V, Kumar V, Kumar A. Physio-biochemical responses and crop performance analysis in chickpea upon botanical priming. Sci Rep 2024; 14:9342. [PMID: 38653763 PMCID: PMC11039450 DOI: 10.1038/s41598-024-59878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.
Collapse
Affiliation(s)
- Kamini Kaushal
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
- Division of Seed Science and Technology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kumari Rajani
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India.
- Bhola Paswan Shastri Agricultural College, Bihar Agricultural University, Sabour, Purnea, 854302, India.
| | - Ravi Ranjan Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
- Bhola Paswan Shastri Agricultural College, Bihar Agricultural University, Sabour, Purnea, 854302, India
| | - Tushar Ranjan
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Anand Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - M Feza Ahmad
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Vikash Kumar
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Vinod Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Aman Kumar
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| |
Collapse
|
3
|
Gautam A, Rusli LS, Yaacob JS, Kumar V, Guleria P. Nanopriming with magnesium oxide nanoparticles enhanced antioxidant potential and nutritional richness of radish leaves grown in field. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2024. [DOI: 10.1007/s10098-023-02697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2025]
|